Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 2/2019

17.11.2018

Evaluation of thermoacoustics parameters of CoFe2O4–ethylene glycol nanofluid using ultrasonic velocity technique

verfasst von: Prashant B. Kharat, Apparao R. Chavan, Ashok V. Humbe, K. M. Jadhav

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Chemical co-precipitation method was employed to synthesize cobalt ferrite (CoFe2O4) nanoparticles and to prepare stable nanofluids. The cobalt ferrite nanoparticles and the prepared nanofluids were characterized further for their structural, morphological, elemental, magnetic properties and dispersion stability in order to explore various properties. It shows the prepared CoFe2O4 nanoparticles of spinel structured and 11 nm superparamagnetic, spherical in nature. Finally, CoFe2O4 nanoparticles were dispersed in the ethylene glycol to prepare magnetic nanofluid in various concentrations (0.2%, 0.4%, 0.6%, 0.8%, and 1% by volume). The prepared nanofluids showed highly stable of more than 8 days for 0.2 vol%. The thermo-acoustic studies were carried out at different temperatures ranging from 20 to 80 °C of the nanofluids. Thermo-acoustical properties such as ultrasonic velocity (U), acoustic impedance (Z), adiabatic compressibility (β), bulk modulus (K), ultrasonic attenuation (α), relaxation time (τ), and intermolecular free length (Lf) were estimated and examined in the present work. The thermo-acoustic studies of magnetic nanofluids elaborate deeper understanding of particle–fluid, particle–particle interactions as functions of concentration, temperature. In addition, the paper is intended to formulate a relationship between thermo-acoustic properties and concentration of CoFe2O4 in nanofluids, which would be of great importance to the nanofluids.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Chiam, W. Azmi, N. Usri, R. Mamat, N. Adam, Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture. Exp. Therm. Fluid Sci. 81, 420–429 (2017)CrossRef H. Chiam, W. Azmi, N. Usri, R. Mamat, N. Adam, Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture. Exp. Therm. Fluid Sci. 81, 420–429 (2017)CrossRef
2.
Zurück zum Zitat L.J. Felicia, S. Vinod, J. Philip, Recent advances in magnetorheology of ferrofluids (magnetic nanofluids)—a critical review. J. Nanofluids 5, 1–22 (2016)CrossRef L.J. Felicia, S. Vinod, J. Philip, Recent advances in magnetorheology of ferrofluids (magnetic nanofluids)—a critical review. J. Nanofluids 5, 1–22 (2016)CrossRef
3.
Zurück zum Zitat A. Chiolerio, M.B. Quadrelli, Smart fluid systems: the advent of autonomous liquid robotics. Adv. Sci. 4, 1700036 (2017)CrossRef A. Chiolerio, M.B. Quadrelli, Smart fluid systems: the advent of autonomous liquid robotics. Adv. Sci. 4, 1700036 (2017)CrossRef
4.
Zurück zum Zitat I. Nkurikiyimfura, Y. Wang, Z. Pan, Heat transfer enhancement by magnetic nanofluids—a review. Renew. Sustain. Energy Rev. 21, 548–561 (2013)CrossRef I. Nkurikiyimfura, Y. Wang, Z. Pan, Heat transfer enhancement by magnetic nanofluids—a review. Renew. Sustain. Energy Rev. 21, 548–561 (2013)CrossRef
5.
Zurück zum Zitat R. Saidur, K. Leong, H. Mohammad, A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15, 1646–1668 (2011)CrossRef R. Saidur, K. Leong, H. Mohammad, A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15, 1646–1668 (2011)CrossRef
7.
Zurück zum Zitat L. Godson, B. Raja, D.M. Lal, S. Wongwises, Enhancement of heat transfer using nanofluids—an overview. Renew. Sustain. Energy Rev. 14, 629–641 (2010)CrossRef L. Godson, B. Raja, D.M. Lal, S. Wongwises, Enhancement of heat transfer using nanofluids—an overview. Renew. Sustain. Energy Rev. 14, 629–641 (2010)CrossRef
8.
Zurück zum Zitat D. Jiles, Introduction to Magnetism and Magnetic Materials. (CRC Press, Boca Raton, 2015) D. Jiles, Introduction to Magnetism and Magnetic Materials. (CRC Press, Boca Raton, 2015)
9.
Zurück zum Zitat M. Shisode, P.B. Kharat, D.N. Bhoyar, V. Vinayak, M. Babrekar, K. Jadhav, Structural and multiferroic properties of Ba2+ doped BiFeO3 nanoparticles synthesized via sol-gel method. AIP Conf. Proc. 1953, 030276 (2018)CrossRef M. Shisode, P.B. Kharat, D.N. Bhoyar, V. Vinayak, M. Babrekar, K. Jadhav, Structural and multiferroic properties of Ba2+ doped BiFeO3 nanoparticles synthesized via sol-gel method. AIP Conf. Proc. 1953, 030276 (2018)CrossRef
10.
Zurück zum Zitat S.B. Kale, S.B. Somvanshi, M. Sarnaik, S. More, S. Shukla, K. Jadhav, Enhancement in surface area and magnetization of CoFe2O4 nanoparticles for targeted drug delivery application. AIP Conf. Proc. 1953, 030193 (2018)CrossRef S.B. Kale, S.B. Somvanshi, M. Sarnaik, S. More, S. Shukla, K. Jadhav, Enhancement in surface area and magnetization of CoFe2O4 nanoparticles for targeted drug delivery application. AIP Conf. Proc. 1953, 030193 (2018)CrossRef
11.
Zurück zum Zitat G. Kale, A.V. Humbe, P. Kharat, D. Bhoyar, K. Jadhav, Tartaric acid a novel fuel approach: synthesis and characterization of CoFe2O4 nano particles. Bionano Front. 8, 146–148 (2015) G. Kale, A.V. Humbe, P. Kharat, D. Bhoyar, K. Jadhav, Tartaric acid a novel fuel approach: synthesis and characterization of CoFe2O4 nano particles. Bionano Front. 8, 146–148 (2015)
12.
Zurück zum Zitat A. López-Ortega, E. Lottini, C.d.J. Fernandez, C. Sangregorio, Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of a rare-earth-free permanent magnet. Chem. Mater. 27, 4048–4056 (2015)CrossRef A. López-Ortega, E. Lottini, C.d.J. Fernandez, C. Sangregorio, Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of a rare-earth-free permanent magnet. Chem. Mater. 27, 4048–4056 (2015)CrossRef
13.
Zurück zum Zitat J.S. Kounsalye, P.B. Kharat, M.V. Shisode, K. Jadhav, Influence of Ti4+ ion substitution on structural, electrical and dielectric properties of Li0.5Fe2.5O4 nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 17254–17261 (2017) J.S. Kounsalye, P.B. Kharat, M.V. Shisode, K. Jadhav, Influence of Ti4+ ion substitution on structural, electrical and dielectric properties of Li0.5Fe2.5O4 nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 17254–17261 (2017)
14.
Zurück zum Zitat S. More, R. Kadam, A. Kadam, A. Shite, D. Mane, K. Jadhav, Cation distribution in nanocrystalline Al3+ and Cr3+ co-substituted CoFe2O4. J. Alloys Compd. 502, 477–479 (2010)CrossRef S. More, R. Kadam, A. Kadam, A. Shite, D. Mane, K. Jadhav, Cation distribution in nanocrystalline Al3+ and Cr3+ co-substituted CoFe2O4. J. Alloys Compd. 502, 477–479 (2010)CrossRef
15.
Zurück zum Zitat A.V. Humbe, J.S. Kounsalye, M.V. Shisode, K. Jadhav, Rietveld refinement, morphology and superparamagnetism of nanocrystalline Ni0.70–xCuxZn0.30Fe2O4 spinel ferrite. Ceram. Int. 44, 5466–5472 (2018)CrossRef A.V. Humbe, J.S. Kounsalye, M.V. Shisode, K. Jadhav, Rietveld refinement, morphology and superparamagnetism of nanocrystalline Ni0.70–xCuxZn0.30Fe2O4 spinel ferrite. Ceram. Int. 44, 5466–5472 (2018)CrossRef
16.
Zurück zum Zitat A. Raut, D. Kurmude, S. Jadhav, D. Shengule, K. Jadhav, Effect of 100 kGy γ-irradiation on the structural, electrical and magnetic properties of CoFe2O4 NPs. J. Alloys Compd. 676, 326–336 (2016)CrossRef A. Raut, D. Kurmude, S. Jadhav, D. Shengule, K. Jadhav, Effect of 100 kGy γ-irradiation on the structural, electrical and magnetic properties of CoFe2O4 NPs. J. Alloys Compd. 676, 326–336 (2016)CrossRef
17.
Zurück zum Zitat R. Shu, G. Zhang, J. Zhang, X. Wang, M. Wang, Y. Gan, J. Shi, J. He, Fabrication of reduced graphene oxide/multi-walled carbon nanotubes/zinc ferrite hybrid composites as high-performance microwave absorbers. J. Alloys Compd. 736, 1–11 (2018)CrossRef R. Shu, G. Zhang, J. Zhang, X. Wang, M. Wang, Y. Gan, J. Shi, J. He, Fabrication of reduced graphene oxide/multi-walled carbon nanotubes/zinc ferrite hybrid composites as high-performance microwave absorbers. J. Alloys Compd. 736, 1–11 (2018)CrossRef
18.
Zurück zum Zitat B. Nafradi, E. Horvath, L. Forro, Magnetic-photoconductive material, magneto-optical data storage device, magneto-optical data storage system, and light-tunable microwave components comprising a photoconductive-ferromagnetic device, in, Google Patents, 2018 B. Nafradi, E. Horvath, L. Forro, Magnetic-photoconductive material, magneto-optical data storage device, magneto-optical data storage system, and light-tunable microwave components comprising a photoconductive-ferromagnetic device, in, Google Patents, 2018
20.
Zurück zum Zitat D.R. Karana, R.R. Sahoo, Effect on TEG performance for waste heat recovery of automobiles using MgO and ZnO nanofluid coolants. Case Stud. Therm. Eng. 12, 358–364 (2018)CrossRef D.R. Karana, R.R. Sahoo, Effect on TEG performance for waste heat recovery of automobiles using MgO and ZnO nanofluid coolants. Case Stud. Therm. Eng. 12, 358–364 (2018)CrossRef
22.
Zurück zum Zitat C. Qi, N. Zhao, X. Cui, T. Chen, J. Hu, Effects of half spherical bulges on heat transfer characteristics of CPU cooled by TiO2-water nanofluids. Int. J. Heat Mass Transf. 123, 320–330 (2018)CrossRef C. Qi, N. Zhao, X. Cui, T. Chen, J. Hu, Effects of half spherical bulges on heat transfer characteristics of CPU cooled by TiO2-water nanofluids. Int. J. Heat Mass Transf. 123, 320–330 (2018)CrossRef
23.
Zurück zum Zitat I. Zakaria, W. Mohamed, W. Azmi, A. Mamat, R. Mamat, W. Daud, Thermo-electrical performance of PEM fuel cell using Al2O3 nanofluids. Int. J. Heat Mass Transf. 119, 460–471 (2018)CrossRef I. Zakaria, W. Mohamed, W. Azmi, A. Mamat, R. Mamat, W. Daud, Thermo-electrical performance of PEM fuel cell using Al2O3 nanofluids. Int. J. Heat Mass Transf. 119, 460–471 (2018)CrossRef
24.
Zurück zum Zitat N.K. Gupta, A.K. Tiwari, S.K. Ghosh, Heat transfer mechanisms in heat pipes using nanofluids—a review. Exp. Therm. Fluid Sci. 90, 84–100 (2018)CrossRef N.K. Gupta, A.K. Tiwari, S.K. Ghosh, Heat transfer mechanisms in heat pipes using nanofluids—a review. Exp. Therm. Fluid Sci. 90, 84–100 (2018)CrossRef
25.
Zurück zum Zitat M. Siavashi, H.R.T. Bahrami, E. Aminian, Optimization of heat transfer enhancement and pumping power of a heat exchanger tube using nanofluid with gradient and multi-layered porous foams. Appl. Therm. Eng. 138, 465–474 (2018)CrossRef M. Siavashi, H.R.T. Bahrami, E. Aminian, Optimization of heat transfer enhancement and pumping power of a heat exchanger tube using nanofluid with gradient and multi-layered porous foams. Appl. Therm. Eng. 138, 465–474 (2018)CrossRef
26.
Zurück zum Zitat S.M. Jafari, F. Saramnejad, D. Dehnad, Designing and application of a shell and tube heat exchanger for nanofluid thermal processing of liquid food products. J. Food Process Eng. 41, e12658 (2018)CrossRef S.M. Jafari, F. Saramnejad, D. Dehnad, Designing and application of a shell and tube heat exchanger for nanofluid thermal processing of liquid food products. J. Food Process Eng. 41, e12658 (2018)CrossRef
27.
Zurück zum Zitat M.H. Esfe, S. Esfandeh, Investigation of rheological behavior of hybrid oil based nanolubricant-coolant applied in car engines and cooling equipments. Appl. Therm. Eng. 131, 1026–1033 (2018)CrossRef M.H. Esfe, S. Esfandeh, Investigation of rheological behavior of hybrid oil based nanolubricant-coolant applied in car engines and cooling equipments. Appl. Therm. Eng. 131, 1026–1033 (2018)CrossRef
28.
Zurück zum Zitat P.D. Tagle-Salazar, K. Nigam, C.I. Rivera-Solorio, Heat transfer model for thermal performance analysis of parabolic trough solar collectors using nanofluids. Renew. Energy 125, 334–343 (2018)CrossRef P.D. Tagle-Salazar, K. Nigam, C.I. Rivera-Solorio, Heat transfer model for thermal performance analysis of parabolic trough solar collectors using nanofluids. Renew. Energy 125, 334–343 (2018)CrossRef
29.
Zurück zum Zitat S. Akilu, A.T. Baheta, M.A.M. Said, A.A. Minea, K. Sharma, Properties of glycerol and ethylene glycol mixture based SiO2-CuO/C hybrid nanofluid for enhanced solar energy transport. Sol. Energy Mater. Sol. Cells 179, 118–128 (2018)CrossRef S. Akilu, A.T. Baheta, M.A.M. Said, A.A. Minea, K. Sharma, Properties of glycerol and ethylene glycol mixture based SiO2-CuO/C hybrid nanofluid for enhanced solar energy transport. Sol. Energy Mater. Sol. Cells 179, 118–128 (2018)CrossRef
30.
Zurück zum Zitat M.N. Rashin, J. Hemalatha, Magnetic and ultrasonic investigations on magnetite nanofluids. Ultrasonics 52, 1024–1029 (2012)CrossRef M.N. Rashin, J. Hemalatha, Magnetic and ultrasonic investigations on magnetite nanofluids. Ultrasonics 52, 1024–1029 (2012)CrossRef
31.
Zurück zum Zitat M.N. Rashin, J. Hemalatha, A novel ultrasonic approach to determine thermal conductivity in CuO–ethylene glycol nanofluids. J. Mol. Liq. 197, 257–262 (2014)CrossRef M.N. Rashin, J. Hemalatha, A novel ultrasonic approach to determine thermal conductivity in CuO–ethylene glycol nanofluids. J. Mol. Liq. 197, 257–262 (2014)CrossRef
32.
Zurück zum Zitat M.N. Rashin, J. Hemalatha, Viscosity studies on novel copper oxide–coconut oil nanofluid. Exp. Therm. Fluid Sci. 48, 67–72 (2013)CrossRef M.N. Rashin, J. Hemalatha, Viscosity studies on novel copper oxide–coconut oil nanofluid. Exp. Therm. Fluid Sci. 48, 67–72 (2013)CrossRef
33.
Zurück zum Zitat K. Anu, J. Hemalatha, Ultrasonic and magnetic investigations of the molecular interactions in zinc doped magnetite nanofluids. J. Mol. Liq. 256, 213–223 (2018)CrossRef K. Anu, J. Hemalatha, Ultrasonic and magnetic investigations of the molecular interactions in zinc doped magnetite nanofluids. J. Mol. Liq. 256, 213–223 (2018)CrossRef
35.
Zurück zum Zitat P.B. Kharat, M. Shisode, S. Birajdar, D. Bhoyar, K. Jadhav, Synthesis and characterization of water based NiFe2O4 ferrofluid. AIP Conf. Proc. 1832, 050122 (2017)CrossRef P.B. Kharat, M. Shisode, S. Birajdar, D. Bhoyar, K. Jadhav, Synthesis and characterization of water based NiFe2O4 ferrofluid. AIP Conf. Proc. 1832, 050122 (2017)CrossRef
36.
Zurück zum Zitat P.B. Kharat, A.V.H. JSK, S.D. Birajdar, K. Jadhav, Preparation and diverse properties of cobalt ferrite ferrofluid. Int. J. Adv. Res. Basic Appl. Sci. 2, 106–109 (2017) P.B. Kharat, A.V.H. JSK, S.D. Birajdar, K. Jadhav, Preparation and diverse properties of cobalt ferrite ferrofluid. Int. J. Adv. Res. Basic Appl. Sci. 2, 106–109 ​(2017)
37.
Zurück zum Zitat T. Kavitha, T. Vasantha, P. Venkatesu, R.R. Devi, T. Hofman, Thermophysical properties for the mixed solvents of N-methyl-2-pyrrolidone with some of the imidazolium-based ionic liquids. J. Mol. Liq. 198, 11–20 (2014)CrossRef T. Kavitha, T. Vasantha, P. Venkatesu, R.R. Devi, T. Hofman, Thermophysical properties for the mixed solvents of N-methyl-2-pyrrolidone with some of the imidazolium-based ionic liquids. J. Mol. Liq. 198, 11–20 (2014)CrossRef
38.
Zurück zum Zitat P.B. Kharat, S.B. Somvanshi, J.S. Kounsalye, S.S. Deshmukh, P.P. Khirade, K. Jadhav, Temperature dependent viscosity of cobalt ferrite/ethylene glycol ferrofluids. AIP Conf. Proc. 1942, 050044 (2018)CrossRef P.B. Kharat, S.B. Somvanshi, J.S. Kounsalye, S.S. Deshmukh, P.P. Khirade, K. Jadhav, Temperature dependent viscosity of cobalt ferrite/ethylene glycol ferrofluids. AIP Conf. Proc. 1942, 050044 (2018)CrossRef
39.
Zurück zum Zitat J.S. Kounsalye, P.B. Kharat, A.R. Chavan, A.V. Humbe, R. Borade, K. Jadhav, Symmetry transition via tetravalent impurity and investigations on magnetic properties of Li0.5Fe2.5O4. AIP Conf. Proc. 1942, 050067 (2018)CrossRef J.S. Kounsalye, P.B. Kharat, A.R. Chavan, A.V. Humbe, R. Borade, K. Jadhav, Symmetry transition via tetravalent impurity and investigations on magnetic properties of Li0.5Fe2.5O4. AIP Conf. Proc. 1942, 050067 (2018)CrossRef
40.
Zurück zum Zitat J.S. Kounsalye, P.B. Kharat, D.N. Bhoyar, K. Jadhav, Radiation-induced modifications in structural, electrical and dielectric properties of Ti4+ ions substituted Li0.5Fe2.5O4 nanoparticles. J. Mater. Sci.: Mater. Electron. 29, 8601–8609 (2018) J.S. Kounsalye, P.B. Kharat, D.N. Bhoyar, K. Jadhav, Radiation-induced modifications in structural, electrical and dielectric properties of Ti4+ ions substituted Li0.5Fe2.5O4 nanoparticles. J. Mater. Sci.: Mater. Electron. 29, 8601–8609 (2018)
41.
Zurück zum Zitat R. Zhang, L. Sun, Z. Wang, W. Hao, E. Cao, Y. Zhang, Dielectric and magnetic properties of CoFe2O4 prepared by sol-gel auto-combustion method. Mater. Res. Bull. 98, 133–138 (2018)CrossRef R. Zhang, L. Sun, Z. Wang, W. Hao, E. Cao, Y. Zhang, Dielectric and magnetic properties of CoFe2O4 prepared by sol-gel auto-combustion method. Mater. Res. Bull. 98, 133–138 (2018)CrossRef
42.
Zurück zum Zitat N. Daffé, F. Choueikani, S. Neveu, M.-A. Arrio, A. Juhin, P. Ohresser, V. Dupuis, P. Sainctavit, Magnetic anisotropies and cationic distribution in CoFe2O4 nanoparticles prepared by co-precipitation route: influence of particle size and stoichiometry. J. Magn. Magn. Mater. 460, 243–252 (2018)CrossRef N. Daffé, F. Choueikani, S. Neveu, M.-A. Arrio, A. Juhin, P. Ohresser, V. Dupuis, P. Sainctavit, Magnetic anisotropies and cationic distribution in CoFe2O4 nanoparticles prepared by co-precipitation route: influence of particle size and stoichiometry. J. Magn. Magn. Mater. 460, 243–252 (2018)CrossRef
43.
Zurück zum Zitat K.F. Herzfeld, T.A. Litovitz, Absorption and Dispersion of Ultrasonic Waves. (Academic Press, Cambridge, 2013) K.F. Herzfeld, T.A. Litovitz, Absorption and Dispersion of Ultrasonic Waves. (Academic Press, Cambridge, 2013)
44.
Zurück zum Zitat W. Azmi, K.A. Hamid, R. Mamat, K. Sharma, M. Mohamad, Effects of working temperature on thermo-physical properties and forced convection heat transfer of TiO2 nanofluids in water–ethylene glycol mixture. Appl. Therm. Eng. 106, 1190–1199 (2016)CrossRef W. Azmi, K.A. Hamid, R. Mamat, K. Sharma, M. Mohamad, Effects of working temperature on thermo-physical properties and forced convection heat transfer of TiO2 nanofluids in water–ethylene glycol mixture. Appl. Therm. Eng. 106, 1190–1199 (2016)CrossRef
45.
Zurück zum Zitat P. Shima, J. Philip, B. Raj, Synthesis of aqueous and nonaqueous iron oxide nanofluids and study of temperature dependence on thermal conductivity and viscosity. J. Phys. Chem. C 114, 18825–18833 (2010)CrossRef P. Shima, J. Philip, B. Raj, Synthesis of aqueous and nonaqueous iron oxide nanofluids and study of temperature dependence on thermal conductivity and viscosity. J. Phys. Chem. C 114, 18825–18833 (2010)CrossRef
46.
Zurück zum Zitat L. Schmid, A. Wixforth, D.A. Weitz, T. Franke, Novel surface acoustic wave (SAW)-driven closed PDMS flow chamber. Microfluid. Nanofluid. 12, 229–235 (2012)CrossRef L. Schmid, A. Wixforth, D.A. Weitz, T. Franke, Novel surface acoustic wave (SAW)-driven closed PDMS flow chamber. Microfluid. Nanofluid. 12, 229–235 (2012)CrossRef
47.
Zurück zum Zitat F. Franks, Water a Comprehensive Treatise: Aqueous Solutions of Amphiphiles and Macromolecules, vol. 4 (Springer, Berlin, 2013) F. Franks, Water a Comprehensive Treatise: Aqueous Solutions of Amphiphiles and Macromolecules, vol. 4 (Springer, Berlin, 2013)
48.
Zurück zum Zitat R.A. Mahdi, H. Mohammed, K. Munisamy, N. Saeid, Review of convection heat transfer and fluid flow in porous media with nanofluid. Renew. Sustain. Energy Rev. 41, 715–734 (2015)CrossRef R.A. Mahdi, H. Mohammed, K. Munisamy, N. Saeid, Review of convection heat transfer and fluid flow in porous media with nanofluid. Renew. Sustain. Energy Rev. 41, 715–734 (2015)CrossRef
49.
Zurück zum Zitat B. Raj, J. Philip, K. Rajkumar, P. Kalyanasundaram, Effect of magnetic field on ultrasonic velocity in a magnetic nanofluid. Proc.-Indian Natl. Sci. Acad. 72, 145 (2006) B. Raj, J. Philip, K. Rajkumar, P. Kalyanasundaram, Effect of magnetic field on ultrasonic velocity in a magnetic nanofluid. Proc.-Indian Natl. Sci. Acad. 72, 145 (2006)
50.
Zurück zum Zitat D. Pandey, S. Pandey, Ultrasonics: A Technique of Material Characterization in: Acoustic Waves. (InTech, London, 2010) D. Pandey, S. Pandey, Ultrasonics: A Technique of Material Characterization in: Acoustic Waves. (InTech, London, 2010)
51.
Zurück zum Zitat F. Kremer, A. Schönhals, The Scaling of the Dynamics of Glasses and Supercooled Liquids (Springer, New York, 2002) F. Kremer, A. Schönhals, The Scaling of the Dynamics of Glasses and Supercooled Liquids (Springer, New York, 2002)
52.
Zurück zum Zitat M. Leena, S. Srinivasan, Synthesis and ultrasonic investigations of titanium oxide nanofluids. J. Mol. Liq. 206, 103–109 (2015)CrossRef M. Leena, S. Srinivasan, Synthesis and ultrasonic investigations of titanium oxide nanofluids. J. Mol. Liq. 206, 103–109 (2015)CrossRef
Metadaten
Titel
Evaluation of thermoacoustics parameters of CoFe2O4–ethylene glycol nanofluid using ultrasonic velocity technique
verfasst von
Prashant B. Kharat
Apparao R. Chavan
Ashok V. Humbe
K. M. Jadhav
Publikationsdatum
17.11.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 2/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-0386-1

Weitere Artikel der Ausgabe 2/2019

Journal of Materials Science: Materials in Electronics 2/2019 Zur Ausgabe

Neuer Inhalt