Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 8/2020

31-03-2020 | Research Article-Electrical Engineering

Event-Driven ECG Sensor in Healthcare Devices for Data Transfer Optimization

Authors: Manel Ben-Romdhane, Asma Maalej, Mariam Tlili, Chiheb Rebai, François Rivet, Dominique Dallet

Published in: Arabian Journal for Science and Engineering | Issue 8/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The long-term monitoring of cardiovascular signs requires a wearable and connected electrocardiogram (ECG) healthcare device. It increases user’s comfort and diagnosis quality of chronic cardiac and/or high-risk patients. This paper covers the enormous data to be transmitted from the ECG device to the physician’s, namely the cardiologist’s, control unit. Existent ECG devices uniformly sample analog signals and convert them to digital samples which are compressed before data transmission. However, event-driven sampling simultaneously compresses and samples. Therefore, this paper quantitatively compares successive approximation register analog-to-digital converter (SAR ADC) with discrete wavelet transform (DWT) compression and level-crossing analog-to-digital converter (LC-ADC). Evaluation metrics are the percent root-mean-square difference (\( {\text{PRD}} \)), bit compression ratio (\( {\text{BCR}} \)) and data length in bits. When a 12-bit reconstruction is operated on the outputs of an 8-bit LC-ADC with 12-bit and 10-kHz reference counter, the \( {\text{BCR}} \) is equal to 80% for 75% of test ECG signals. That is better than the 71.87% \( {\text{BCR}} \) of the 12-bit 1-kHz SAR ADC with DWT compression. The modeled LC-ADC guarantees a signal quality in terms of \( {\text{PRD}} \) comparable to the \( {\text{PRD}} \) of the SAR ADC with DWT compression. The data length in bits of the LC-ADC is lower than the data length in bits of the SAR ADC with more than 14-bit resolution with DWT compression for 82% of the test ECG signals. However, for lower resolutions, to obtain lower power consumption for radiofrequency transmission, a better alternative remains the SAR ADC with DWT compression.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Majumder, S.; Chen, L.; Marinov, O.; Chen, C.-H.; Mondal, T.; Deen, M.J.: Non-contact wearable wireless ECG systems for long term monitoring. IEEE Rev. Biomed. Eng. 11(5), 306–321 (2018) Majumder, S.; Chen, L.; Marinov, O.; Chen, C.-H.; Mondal, T.; Deen, M.J.: Non-contact wearable wireless ECG systems for long term monitoring. IEEE Rev. Biomed. Eng. 11(5), 306–321 (2018)
2.
go back to reference Lim, C.L.P.; Woo, W.L.; Dlay, S.S.; Gao, B.: Heartrate-dependent heartwave biometric identification with thresholding-based GMM-HMM methodology. IEEE Trans. Industr. Inf. 15(1), 45–53 (2019) Lim, C.L.P.; Woo, W.L.; Dlay, S.S.; Gao, B.: Heartrate-dependent heartwave biometric identification with thresholding-based GMM-HMM methodology. IEEE Trans. Industr. Inf. 15(1), 45–53 (2019)
3.
go back to reference Lim, C.L.P.; Woo, W.L.; Dlay, S.S.; Wu, D.; Gao, B.: Deep multi-view heartwave authentication. IEEE Trans. Industr. Inf. 15(2), 777–786 (2019) Lim, C.L.P.; Woo, W.L.; Dlay, S.S.; Wu, D.; Gao, B.: Deep multi-view heartwave authentication. IEEE Trans. Industr. Inf. 15(2), 777–786 (2019)
4.
go back to reference Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; Delling, F.N.; Djousse, L.; Elkind, J.F.F.; Fornage, M.; Jordan, L.C.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Kwan, T.W.; Lackland, D.T.; Lewis, T.T.; Lichtman, J.H.; Longenecker, C.T.; Loop, M.S.; Lutsey, P.L.; Martin, S.S.; Matsushita, K.; Moran, A.E.; Mussolino, M.E.; O’Flaherty, M.; Pandey, A.; Perak, A.M.; Rosamond, W.D.; Roth, G.A.; Sampson, U.K.A.; Satou, G.M.; Schroeder, E.B.; Shah, S.H.; Spartano, N.L.; Stokes, S.; Tirschwell, D.L.; Tsao, C.W.; Turakhia, M.P.; VanWagner, L.B.; Wilkins, J.T.; Wong, S.S.; Virani, S.S.: AHA statistical update, Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation 139(10), 56–528 (2019) Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; Delling, F.N.; Djousse, L.; Elkind, J.F.F.; Fornage, M.; Jordan, L.C.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Kwan, T.W.; Lackland, D.T.; Lewis, T.T.; Lichtman, J.H.; Longenecker, C.T.; Loop, M.S.; Lutsey, P.L.; Martin, S.S.; Matsushita, K.; Moran, A.E.; Mussolino, M.E.; O’Flaherty, M.; Pandey, A.; Perak, A.M.; Rosamond, W.D.; Roth, G.A.; Sampson, U.K.A.; Satou, G.M.; Schroeder, E.B.; Shah, S.H.; Spartano, N.L.; Stokes, S.; Tirschwell, D.L.; Tsao, C.W.; Turakhia, M.P.; VanWagner, L.B.; Wilkins, J.T.; Wong, S.S.; Virani, S.S.: AHA statistical update, Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation 139(10), 56–528 (2019)
5.
go back to reference Habte, T.T.; Saleh, H.; Mohammad, B.; Ismail, M.: Ultra Low Power ECG Processing System for IoT Devices. Springer, Basel (2019) Habte, T.T.; Saleh, H.; Mohammad, B.; Ismail, M.: Ultra Low Power ECG Processing System for IoT Devices. Springer, Basel (2019)
6.
go back to reference Rana, K.P.S.; Kumar, V.; Singhal, A.; Chandel, A.; Pahuja, D.; Vashisht, A.: Time-varying pole-radius IIR multi-notch filters with improved performance. Arab. J. Sci. Eng. 44(8), 7101–7120 (2019) Rana, K.P.S.; Kumar, V.; Singhal, A.; Chandel, A.; Pahuja, D.; Vashisht, A.: Time-varying pole-radius IIR multi-notch filters with improved performance. Arab. J. Sci. Eng. 44(8), 7101–7120 (2019)
10.
go back to reference Mittal, N.; Singh, U.; Singh Sohi, B.: An energy-aware cluster-based stable protocol for wireless sensor networks. Neural Comput. Appl. 31(11), 7269–7286 (2019) Mittal, N.; Singh, U.; Singh Sohi, B.: An energy-aware cluster-based stable protocol for wireless sensor networks. Neural Comput. Appl. 31(11), 7269–7286 (2019)
11.
go back to reference Dong, J.; Jiang, H.; Yang, K.; Weng, Z.; Li, F.; Wei, J.; Ning, Y.; Chen, X.; Wang, Z.: A wireless body sound sensor with a dedicated compact chipset. Circuits Syst. Signal Proc. 36(6), 2341–2359 (2017)MathSciNet Dong, J.; Jiang, H.; Yang, K.; Weng, Z.; Li, F.; Wei, J.; Ning, Y.; Chen, X.; Wang, Z.: A wireless body sound sensor with a dedicated compact chipset. Circuits Syst. Signal Proc. 36(6), 2341–2359 (2017)MathSciNet
12.
go back to reference Wang, F.; Ma, Q.; Liu, W.; Chang, S.; Wang, H.; He, J.; Huang, Q.: A novel ECG signal compression method using spindle convolutional auto-encoder. Comput. Methods Programs Biomed. 175, 139–150 (2019) Wang, F.; Ma, Q.; Liu, W.; Chang, S.; Wang, H.; He, J.; Huang, Q.: A novel ECG signal compression method using spindle convolutional auto-encoder. Comput. Methods Programs Biomed. 175, 139–150 (2019)
13.
go back to reference Yazicioglu, R.F.; Kim, S.; Torfs, T.; Kim, H.; Hoof, C.V.: A 30 µW analog signal processor ASIC for portable biopotential signal monitoring. IEEE J. Solid-State Circuits 460(1), 209–223 (2011) Yazicioglu, R.F.; Kim, S.; Torfs, T.; Kim, H.; Hoof, C.V.: A 30 µW analog signal processor ASIC for portable biopotential signal monitoring. IEEE J. Solid-State Circuits 460(1), 209–223 (2011)
14.
go back to reference Chen, S.-L.; Villaverde, J.F.; Lee, H.-Y.; Chung, D.W.-Y.; Lin, T.-L.; Tseng, C.-H.; Lo, K.-A.: A power-efficient mixed-signal smart ADC design with adaptive resolution and variable sampling rate for low-power applications. IEEE Sens. J. 17(11), 3461–3469 (2017) Chen, S.-L.; Villaverde, J.F.; Lee, H.-Y.; Chung, D.W.-Y.; Lin, T.-L.; Tseng, C.-H.; Lo, K.-A.: A power-efficient mixed-signal smart ADC design with adaptive resolution and variable sampling rate for low-power applications. IEEE Sens. J. 17(11), 3461–3469 (2017)
15.
go back to reference Gonzalez, R.; Perez, R.; Lopez, M.; Fernandez, I.; Espinosa, J.; Badias, L.; Fernandez, A.; Pena, Y.; Rodriguez, G.: A new tool for heart disease prognosis in the community. Comput. Cardiol. 38, 773–776 (2011) Gonzalez, R.; Perez, R.; Lopez, M.; Fernandez, I.; Espinosa, J.; Badias, L.; Fernandez, A.; Pena, Y.; Rodriguez, G.: A new tool for heart disease prognosis in the community. Comput. Cardiol. 38, 773–776 (2011)
16.
go back to reference Rijnbeek, P.R.; Kors, J.A.; Witsenburg, M.: Minimum bandwidth requirements for recording of pediatric electrocardiograms. Circulation 104(25), 3087–3090 (2001) Rijnbeek, P.R.; Kors, J.A.; Witsenburg, M.: Minimum bandwidth requirements for recording of pediatric electrocardiograms. Circulation 104(25), 3087–3090 (2001)
18.
go back to reference Rodriguez-Vazquez, A.; Medeiro, F.; Janssens, E.: CMOS Telecom Data Converters. Springer, New York (2003) Rodriguez-Vazquez, A.; Medeiro, F.; Janssens, E.: CMOS Telecom Data Converters. Springer, New York (2003)
19.
go back to reference Kaur, A.; Agarwal, A.; Agarwal, R.; Kumar, S.: A novel approach to ECG R-peak detection. Arab. J. Sci. Eng. 44(8), 6679–6691 (2018) Kaur, A.; Agarwal, A.; Agarwal, R.; Kumar, S.: A novel approach to ECG R-peak detection. Arab. J. Sci. Eng. 44(8), 6679–6691 (2018)
20.
go back to reference Mansano, A.L.; Li, Y.; Bagga, S.; Serdijn, W.A.: An autonomous wireless sensor node with asynchronous ECG monitoring in 0.18 μm CMOS. IEEE Trans. Biomed. Circuits Syst. 10(3), 602–611 (2016) Mansano, A.L.; Li, Y.; Bagga, S.; Serdijn, W.A.: An autonomous wireless sensor node with asynchronous ECG monitoring in 0.18 μm CMOS. IEEE Trans. Biomed. Circuits Syst. 10(3), 602–611 (2016)
21.
go back to reference Moody, G.B.; Mark, R.G.; Goldberger, A.L.: PhysioNet: a web-based resource for the study of physiologic signals. IEEE Eng. Med. Biol. Mag. 20(3), 70–75 (2001) Moody, G.B.; Mark, R.G.; Goldberger, A.L.: PhysioNet: a web-based resource for the study of physiologic signals. IEEE Eng. Med. Biol. Mag. 20(3), 70–75 (2001)
22.
go back to reference Khan, M.G.: Rapid ECG Interpretation. Springer, New York (2008) Khan, M.G.: Rapid ECG Interpretation. Springer, New York (2008)
23.
go back to reference Wang, T.-Y.; Li, H.-Y.; Ma, Z.-Y.; Huang, Y.-J.; Peng, S.-Y.: A bypass-switching SAR ADC with a dynamic proximity comparator for biomedical applications. IEEE J. Solid State Circuits 53(6), 1743–1754 (2018) Wang, T.-Y.; Li, H.-Y.; Ma, Z.-Y.; Huang, Y.-J.; Peng, S.-Y.: A bypass-switching SAR ADC with a dynamic proximity comparator for biomedical applications. IEEE J. Solid State Circuits 53(6), 1743–1754 (2018)
24.
go back to reference Rahiminejad, E.; Saberi, M.; Lotfi, R.: A power-efficient signal-specific ADC for sensor-interface applications. IEEE Trans. Circuits Syst. II Express Briefs 64(9), 1032–1036 (2017) Rahiminejad, E.; Saberi, M.; Lotfi, R.: A power-efficient signal-specific ADC for sensor-interface applications. IEEE Trans. Circuits Syst. II Express Briefs 64(9), 1032–1036 (2017)
25.
go back to reference Yan, L.; Harpe, P.; Pamula, V.R.; Osawa, M.; Harada, Y.; Tamiya, K.; Van Hoof, C.; Yazicioglu, R.F.: A 680 nA ECG acquisition IC for leadless pacemaker applications. IEEE Trans. Biomed. Circuits Syst. 8(6), 779–786 (2014) Yan, L.; Harpe, P.; Pamula, V.R.; Osawa, M.; Harada, Y.; Tamiya, K.; Van Hoof, C.; Yazicioglu, R.F.: A 680 nA ECG acquisition IC for leadless pacemaker applications. IEEE Trans. Biomed. Circuits Syst. 8(6), 779–786 (2014)
26.
go back to reference Sharma, A.; Polley, A.; Lee, S.B.; Narayanan, S.; Li, W.; Sculley, T.; Ramaswamy, S.: A Sub-60-μA multimodal smart biosensing SoC with > 80-dB SNR, 35μA photoplethysmography signal chain. IEEE J. Solid State Circuits 52(4), 1021–1033 (2017) Sharma, A.; Polley, A.; Lee, S.B.; Narayanan, S.; Li, W.; Sculley, T.; Ramaswamy, S.: A Sub-60-μA multimodal smart biosensing SoC with > 80-dB SNR, 35μA photoplethysmography signal chain. IEEE J. Solid State Circuits 52(4), 1021–1033 (2017)
27.
go back to reference Hirai, Y.; Matsuoka, T.; Tani, S.; Isami, S.; Tatsumi, K.; Ueda, M.; Kamata, T.: A biomedical sensor system with stochastic A/D conversion and error correction by machine learning. IEEE Access 7, 21990–22001 (2019) Hirai, Y.; Matsuoka, T.; Tani, S.; Isami, S.; Tatsumi, K.; Ueda, M.; Kamata, T.: A biomedical sensor system with stochastic A/D conversion and error correction by machine learning. IEEE Access 7, 21990–22001 (2019)
28.
go back to reference Zhang, Z.; Li, J.; Zhang, Q.; Wu, K.; Ning, N.; Yu, Q.: A dynamic tracking algorithm based SAR ADC in bio-related applications. IEEE Access 6, 62166–62173 (2018) Zhang, Z.; Li, J.; Zhang, Q.; Wu, K.; Ning, N.; Yu, Q.: A dynamic tracking algorithm based SAR ADC in bio-related applications. IEEE Access 6, 62166–62173 (2018)
29.
go back to reference Adimulam, M.K.; Srinivas, M.B.: A 1.0 V, 9.84 fJ/c-s FOM reconfigurable hybrid SAR-sigma delta ADC for signal processing applications. Analog Integr. Circ. Sig. Process 99(2), 261–276 (2019) Adimulam, M.K.; Srinivas, M.B.: A 1.0 V, 9.84 fJ/c-s FOM reconfigurable hybrid SAR-sigma delta ADC for signal processing applications. Analog Integr. Circ. Sig. Process 99(2), 261–276 (2019)
30.
go back to reference Chen, C.; Chen, L.; Wang, X.; Zhang, F.: A 0.6 V, 8.4 μW AFE circuit for biomedical signal recording. Microelectron. J. 75, 105–112 (2018) Chen, C.; Chen, L.; Wang, X.; Zhang, F.: A 0.6 V, 8.4 μW AFE circuit for biomedical signal recording. Microelectron. J. 75, 105–112 (2018)
31.
go back to reference Mark, J.W.; Todd, T.D.: A nonuniform sampling approach to data compression. IEEE Trans. Commun. 29(1), 24–32 (1981) Mark, J.W.; Todd, T.D.: A nonuniform sampling approach to data compression. IEEE Trans. Commun. 29(1), 24–32 (1981)
32.
go back to reference Kozmin, K.; Johansson, J.; Delsing, J.: Level-crossing ADC performance evaluation toward ultrasound application. IEEE Trans. Circuits Syst. I Regul. Pap. 56(8), 1708–1719 (2009)MathSciNet Kozmin, K.; Johansson, J.; Delsing, J.: Level-crossing ADC performance evaluation toward ultrasound application. IEEE Trans. Circuits Syst. I Regul. Pap. 56(8), 1708–1719 (2009)MathSciNet
33.
go back to reference Li, Y.; Zhao, D.; Serdijn, W.: A sub-microwatt asynchronous level-crossing ADC for biomedical applications. IEEE Trans. Biomed. Circuits Syst. 7(2), 149–157 (2013) Li, Y.; Zhao, D.; Serdijn, W.: A sub-microwatt asynchronous level-crossing ADC for biomedical applications. IEEE Trans. Biomed. Circuits Syst. 7(2), 149–157 (2013)
34.
go back to reference Allier, E.; Sicard, G.; Fesquet, L.; Renaudin, M.: Asynchronous level crossing analog to digital converters. Measurement 37(4), 296–309 (2005) Allier, E.; Sicard, G.; Fesquet, L.; Renaudin, M.: Asynchronous level crossing analog to digital converters. Measurement 37(4), 296–309 (2005)
35.
go back to reference Weltin-Wu, C.; Tsividis, Y.: An event-driven clockless level-crossing ADC with signal-dependent adaptive resolution. IEEE J. Solid State Circuits 48(9), 2180–2190 (2013) Weltin-Wu, C.; Tsividis, Y.: An event-driven clockless level-crossing ADC with signal-dependent adaptive resolution. IEEE J. Solid State Circuits 48(9), 2180–2190 (2013)
36.
go back to reference Tang, W.; Osman, A.; Kim, D.; Goldstein, B.; Huang, C.; Martini, B.; Pieribone, V.A.; Culurciello, E.: Continuous time level crossing sampling ADC for bio-potential recording systems. IEEE Trans. Circuits Syst. I Regul. Pap. 60(6), 1407–1418 (2013) Tang, W.; Osman, A.; Kim, D.; Goldstein, B.; Huang, C.; Martini, B.; Pieribone, V.A.; Culurciello, E.: Continuous time level crossing sampling ADC for bio-potential recording systems. IEEE Trans. Circuits Syst. I Regul. Pap. 60(6), 1407–1418 (2013)
37.
go back to reference Rovere, G.; Fateh, S.; Benini, L.: A 2.2 μW cognitive always-on wake-up circuit for event-driven duty-cycling of IoT sensor nodes. IEEE J. Emerg. Sel. Top. Circuits Syst. 8(3), 543–554 (2018) Rovere, G.; Fateh, S.; Benini, L.: A 2.2 μW cognitive always-on wake-up circuit for event-driven duty-cycling of IoT sensor nodes. IEEE J. Emerg. Sel. Top. Circuits Syst. 8(3), 543–554 (2018)
38.
go back to reference Trakimas, M.; Sonkusale, S.R.: An adaptive resolution asynchronous ADC architecture for data compression in energy constrained sensing applications. IEEE Trans. Circuits Syst. I Regul. Pap. 58(5), 921–934 (2011)MathSciNet Trakimas, M.; Sonkusale, S.R.: An adaptive resolution asynchronous ADC architecture for data compression in energy constrained sensing applications. IEEE Trans. Circuits Syst. I Regul. Pap. 58(5), 921–934 (2011)MathSciNet
39.
go back to reference Zhang, X.; Lian, Y.: A 300-mV 220-nW Event-driven ADC with real-time QRS detection for wearable ECG sensors. IEEE Trans. Biomed. Circuits Syst. 8(6), 834–843 (2014) Zhang, X.; Lian, Y.: A 300-mV 220-nW Event-driven ADC with real-time QRS detection for wearable ECG sensors. IEEE Trans. Biomed. Circuits Syst. 8(6), 834–843 (2014)
40.
go back to reference Hou, Y.; Qu, J.; Tian, Z.; Atef, M.; Yousef, K.; Lian, Y.; Wang, G.: A 61-nW level-crossing ADC with adaptive sampling for biomedical applications. IEEE Trans. Circuits Syst. II Express Briefs 66(1), 56–60 (2019) Hou, Y.; Qu, J.; Tian, Z.; Atef, M.; Yousef, K.; Lian, Y.; Wang, G.: A 61-nW level-crossing ADC with adaptive sampling for biomedical applications. IEEE Trans. Circuits Syst. II Express Briefs 66(1), 56–60 (2019)
41.
go back to reference Cox, J.R.; Nolle, F.M.; Fozzard, H.A.; Oliver, G.C.: AZTEC, a preprocessing program for real-time ECG rhythm analysis. IEEE Trans. Biomed. Eng. 15(2), 128–129 (1968) Cox, J.R.; Nolle, F.M.; Fozzard, H.A.; Oliver, G.C.: AZTEC, a preprocessing program for real-time ECG rhythm analysis. IEEE Trans. Biomed. Eng. 15(2), 128–129 (1968)
42.
go back to reference Deepu, C.J.; Heng, C.H.; Lian, Y.: A hybrid data compression scheme for power reduction in wireless sensors for IoT. IEEE Trans. Biomed. Circuits Syst. 11(2), 245–254 (2017) Deepu, C.J.; Heng, C.H.; Lian, Y.: A hybrid data compression scheme for power reduction in wireless sensors for IoT. IEEE Trans. Biomed. Circuits Syst. 11(2), 245–254 (2017)
43.
go back to reference Zigel, Y.; Cohen, A.; Katz, A.: The weighted diagnostic distortion (WDD) measure for ECG signal compression. IEEE Trans. Biomed. Eng. 47(11), 1422–1430 (2000) Zigel, Y.; Cohen, A.; Katz, A.: The weighted diagnostic distortion (WDD) measure for ECG signal compression. IEEE Trans. Biomed. Eng. 47(11), 1422–1430 (2000)
44.
go back to reference Mamaghanian, H.; Khaled, N.; Atienza, D.; Vandergheynst, P.: Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 58(9), 2456–2466 (2011) Mamaghanian, H.; Khaled, N.; Atienza, D.; Vandergheynst, P.: Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 58(9), 2456–2466 (2011)
45.
go back to reference Jalaleddine, S.; Hutchens, C.G.; Strattan, R.D.; Coberly, W.: ECG data compression techniques-a unified approach. IEEE Trans. Biomed. Eng. 37(4), 329–343 (1990) Jalaleddine, S.; Hutchens, C.G.; Strattan, R.D.; Coberly, W.: ECG data compression techniques-a unified approach. IEEE Trans. Biomed. Eng. 37(4), 329–343 (1990)
46.
go back to reference Chua, E.; Fang, W.C.: Mixed bio-signal lossless data compressor for portable brain-heart monitoring systems. IEEE Trans. Consum. Electron. 57(1), 267–273 (2011) Chua, E.; Fang, W.C.: Mixed bio-signal lossless data compressor for portable brain-heart monitoring systems. IEEE Trans. Consum. Electron. 57(1), 267–273 (2011)
47.
go back to reference Chen, S.-L.; Lee, H.-Y.; Chen, C.-A.; Huang, H.-Y.; Luo, C.-H.: Wireless body sensor network with adaptive low-power design for biometrics and healthcare applications. IEEE Syst. J. 3(4), 398–409 (2009) Chen, S.-L.; Lee, H.-Y.; Chen, C.-A.; Huang, H.-Y.; Luo, C.-H.: Wireless body sensor network with adaptive low-power design for biometrics and healthcare applications. IEEE Syst. J. 3(4), 398–409 (2009)
48.
go back to reference Chen, S.-L.; Wang, J.-G.: VLSI implementation of low-power cost-efficient lossless ECG encoder design for wireless healthcare monitoring application. Electron. Lett. 49(2), 91–93 (2013)MathSciNet Chen, S.-L.; Wang, J.-G.: VLSI implementation of low-power cost-efficient lossless ECG encoder design for wireless healthcare monitoring application. Electron. Lett. 49(2), 91–93 (2013)MathSciNet
49.
go back to reference Deepu, C.J.; Lian, Y.: A joint QRS detection and data compression scheme for wearable sensors. IEEE Trans. Biomed. Eng. 62(1), 165–175 (2015) Deepu, C.J.; Lian, Y.: A joint QRS detection and data compression scheme for wearable sensors. IEEE Trans. Biomed. Eng. 62(1), 165–175 (2015)
50.
go back to reference Chen, S.-L.; Tuan, M.-C.; Chi, T.-K.; Lin, T.-L.: VLSI architecture of lossless ECG compression design based on fuzzy decision and optimization method for wearable devices. Electron. Lett. 51(18), 1409–1411 (2015) Chen, S.-L.; Tuan, M.-C.; Chi, T.-K.; Lin, T.-L.: VLSI architecture of lossless ECG compression design based on fuzzy decision and optimization method for wearable devices. Electron. Lett. 51(18), 1409–1411 (2015)
51.
go back to reference Chen, S.-L.; Tuan, M.-C.; Lee, H.-Y.; Lin, T.-L.: VLSI implementation of a cost-efficient micro control unit with an asymmetric encryption for wireless body sensor networks. IEEE Access 5, 4077–4086 (2017) Chen, S.-L.; Tuan, M.-C.; Lee, H.-Y.; Lin, T.-L.: VLSI implementation of a cost-efficient micro control unit with an asymmetric encryption for wireless body sensor networks. IEEE Access 5, 4077–4086 (2017)
52.
go back to reference Polania, L.F.; Carrillo, R.E.; Blanco-Velasco, M.; Barner, K. E.: Compressed sensing based method for ECG compression. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 761–764 (2011) Polania, L.F.; Carrillo, R.E.; Blanco-Velasco, M.; Barner, K. E.: Compressed sensing based method for ECG compression. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 761–764 (2011)
53.
go back to reference Ieong, C.-I.; Li, M.; Law, M.-K.; Mak, P.-I.; Vai, M.I.; Martins, R.P.: A 0.45 V 147–375 nW ECG compression processor with wavelet shrinkage and adaptive temporal decimation architectures. IEEE Trans. VLSI Syst. 25(4), 1307–1319 (2017) Ieong, C.-I.; Li, M.; Law, M.-K.; Mak, P.-I.; Vai, M.I.; Martins, R.P.: A 0.45 V 147–375 nW ECG compression processor with wavelet shrinkage and adaptive temporal decimation architectures. IEEE Trans. VLSI Syst. 25(4), 1307–1319 (2017)
54.
go back to reference Kumar, R.; Kumar, A.; Pandey, R.K.: Beta wavelet based ECG signal compression using lossless encoding with modified thresholding. Comput. Electr. Eng. 39(1), 130–140 (2013) Kumar, R.; Kumar, A.; Pandey, R.K.: Beta wavelet based ECG signal compression using lossless encoding with modified thresholding. Comput. Electr. Eng. 39(1), 130–140 (2013)
55.
go back to reference Elgendi, M.; Mohamed, A.; Ward, R.: Efficient ECG compression and QRS detection for e-Health applications. Sci. Rep. 7(1), 1–16 (2017) Elgendi, M.; Mohamed, A.; Ward, R.: Efficient ECG compression and QRS detection for e-Health applications. Sci. Rep. 7(1), 1–16 (2017)
56.
go back to reference Zhou, J.; Wang, C.: An ultra-low power turning angle based biomedical signal compression engine with adaptive threshold tuning. Sensors 17(8), 1–12 (2017) Zhou, J.; Wang, C.: An ultra-low power turning angle based biomedical signal compression engine with adaptive threshold tuning. Sensors 17(8), 1–12 (2017)
57.
go back to reference Abhishek, S.; Veni, S.; Narayanankutty, K.A.: Biorthogonal wavelet filters for compressed sensing ECG reconstruction. Biomed. Signal Process. Control 47, 183–195 (2019) Abhishek, S.; Veni, S.; Narayanankutty, K.A.: Biorthogonal wavelet filters for compressed sensing ECG reconstruction. Biomed. Signal Process. Control 47, 183–195 (2019)
58.
go back to reference Abo-Zahhad, M.M.; Abdel-Hamid, T.K.; Mohamed, A.M.: Compression of ECG signals based on DWT and exploiting the correlation between ECG signal samples. Int. J. Commun. Netw. Syst. Sci. 7, 53–70 (2014) Abo-Zahhad, M.M.; Abdel-Hamid, T.K.; Mohamed, A.M.: Compression of ECG signals based on DWT and exploiting the correlation between ECG signal samples. Int. J. Commun. Netw. Syst. Sci. 7, 53–70 (2014)
59.
go back to reference Strang, G.; Nguyen, T.: Wavelets and Filter Banks. Wellesley-Cambridge Press, Wellesley (1996)MATH Strang, G.; Nguyen, T.: Wavelets and Filter Banks. Wellesley-Cambridge Press, Wellesley (1996)MATH
60.
go back to reference Daubechies, I.: Ten Lectures on Wavelets. SIAM, Pennsylvania (1992)MATH Daubechies, I.: Ten Lectures on Wavelets. SIAM, Pennsylvania (1992)MATH
61.
go back to reference Misiti, M.; Misiti, Y.; Oppenheim, G.; Poggi, J.M.: Wavelet Toolbox User’s Guide. The MathWorks Inc., Natick (2009)MATH Misiti, M.; Misiti, Y.; Oppenheim, G.; Poggi, J.M.: Wavelet Toolbox User’s Guide. The MathWorks Inc., Natick (2009)MATH
62.
go back to reference Padhy, S.; Sharma, L.; Dandapat, S.: Multilead ECG data compression using SVD in multiresolution domain. Biomed. Signal Process. Control 23, 10–18 (2016) Padhy, S.; Sharma, L.; Dandapat, S.: Multilead ECG data compression using SVD in multiresolution domain. Biomed. Signal Process. Control 23, 10–18 (2016)
63.
go back to reference Tropp, J.A.; Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)MathSciNetMATH Tropp, J.A.; Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)MathSciNetMATH
64.
go back to reference Lu, L.; Yan, J.; de Silva, C.W.: Feature selection for ECG signal processing using improved genetic algorithm and empirical mode decomposition. Measurement 94, 372–381 (2016) Lu, L.; Yan, J.; de Silva, C.W.: Feature selection for ECG signal processing using improved genetic algorithm and empirical mode decomposition. Measurement 94, 372–381 (2016)
65.
go back to reference Schell, B.; Tsividis, Y.: A continuous-time ADC/DSP/DAC system with no clock and with activity-dependent power dissipation. IEEE J. Solid State Circuits 43(11), 2472–2481 (2008) Schell, B.; Tsividis, Y.: A continuous-time ADC/DSP/DAC system with no clock and with activity-dependent power dissipation. IEEE J. Solid State Circuits 43(11), 2472–2481 (2008)
66.
go back to reference Tlili, M.; Ben-Romdhane, M.; Maalej, A.; Rivet, F.; Dallet, D.; Rebai, C.: Level-crossing ADC design and evaluation methodology for normal and pathological electrocardiogram signals measurement. Measurement 124, 413–425 (2018) Tlili, M.; Ben-Romdhane, M.; Maalej, A.; Rivet, F.; Dallet, D.; Rebai, C.: Level-crossing ADC design and evaluation methodology for normal and pathological electrocardiogram signals measurement. Measurement 124, 413–425 (2018)
67.
go back to reference Jaw, F.-S.; Tseng, Y.-L.; Jang, J.-K.: Modular design of a long-term portable recorder for physiological signals. Measurement 43(10), 1363–1368 (2010) Jaw, F.-S.; Tseng, Y.-L.; Jang, J.-K.: Modular design of a long-term portable recorder for physiological signals. Measurement 43(10), 1363–1368 (2010)
68.
go back to reference Bera, P.; Gupta, R.: Hybrid encoding algorithm for real time compressed electrocardiogram acquisition. Measurement 91, 651–660 (2016) Bera, P.; Gupta, R.: Hybrid encoding algorithm for real time compressed electrocardiogram acquisition. Measurement 91, 651–660 (2016)
Metadata
Title
Event-Driven ECG Sensor in Healthcare Devices for Data Transfer Optimization
Authors
Manel Ben-Romdhane
Asma Maalej
Mariam Tlili
Chiheb Rebai
François Rivet
Dominique Dallet
Publication date
31-03-2020
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 8/2020
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04483-w

Other articles of this Issue 8/2020

Arabian Journal for Science and Engineering 8/2020 Go to the issue

Premium Partners