Skip to main content
Top
Published in: Meccanica 6/2017

22-07-2016

Exact solution for axial and transverse dynamic response of functionally graded nanobeam under moving constant load based on nonlocal elasticity theory

Authors: S. A. H. Hosseini, O. Rahmani

Published in: Meccanica | Issue 6/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper aims to analyze the axial and transverse dynamic response of a functionally graded nanobeam under a moving constant load. The governing equations are obtained using the Hamilton principle and nonlocal Euler–Bernoulli beam theory. The mechanical properties vary in the thickness direction. The simply supported boundary condition is assumed and using the Laplace transform, the exact solution for the transverse and axial dynamic response is presented. Some examples were used to analyze nonlocal parameters such as power law index of FG materials, aspect ratio and the velocity of a moving constant load and also their influence on axial and transverse dynamic and maximum deflections. By obtaining a good agreement between the presented natural frequencies in this study and previous works, the results of this study are validated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kiani K (2011) Small-scale effect on the vibration of thin nanoplates subjected to a moving nanoparticle via nonlocal continuum theory. J Sound Vib 330(20):4896–4914ADSCrossRef Kiani K (2011) Small-scale effect on the vibration of thin nanoplates subjected to a moving nanoparticle via nonlocal continuum theory. J Sound Vib 330(20):4896–4914ADSCrossRef
2.
go back to reference Ebrahimi F, Ghadiri M, Salari E, Hoseini SAH, Shaghaghi GR (2015) Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams. J Mech Sci Technol 29(3):1207–1215CrossRef Ebrahimi F, Ghadiri M, Salari E, Hoseini SAH, Shaghaghi GR (2015) Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams. J Mech Sci Technol 29(3):1207–1215CrossRef
5.
go back to reference Niknam H, Aghdam M (2015) A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation. Compos Struct 119:452–462CrossRef Niknam H, Aghdam M (2015) A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation. Compos Struct 119:452–462CrossRef
8.
go back to reference Rahmani O, Asemani SS, Hosseini SAH (2015) Study the buckling of functionally graded nanobeams in elastic medium with surface effects based on a nonlocal theory. J Comput Theor Nanosci 12(10):3162–3170. doi:10.1166/jctn.2015.4095 CrossRef Rahmani O, Asemani SS, Hosseini SAH (2015) Study the buckling of functionally graded nanobeams in elastic medium with surface effects based on a nonlocal theory. J Comput Theor Nanosci 12(10):3162–3170. doi:10.​1166/​jctn.​2015.​4095 CrossRef
9.
go back to reference Rahmani O, Asemani SS, Hosseini SA (2016) Study the surface effect on the buckling of nanowires embedded in Winkler–Pasternak elastic medium based on a nonlocal theory. J Nanostruct 6(1):87–92 Rahmani O, Asemani SS, Hosseini SA (2016) Study the surface effect on the buckling of nanowires embedded in Winkler–Pasternak elastic medium based on a nonlocal theory. J Nanostruct 6(1):87–92
10.
11.
go back to reference Craciunescu C, Wuttig M (2003) New ferromagnetic and functionally grade shape memory alloys. J Optoelectron Adv Mater 5(1):139–146 Craciunescu C, Wuttig M (2003) New ferromagnetic and functionally grade shape memory alloys. J Optoelectron Adv Mater 5(1):139–146
12.
go back to reference Fu Y, Du H, Zhang S (2003) Functionally graded TiN/TiNi shape memory alloy films. Mater Lett 57(20):2995–2999CrossRef Fu Y, Du H, Zhang S (2003) Functionally graded TiN/TiNi shape memory alloy films. Mater Lett 57(20):2995–2999CrossRef
13.
go back to reference Fu Y, Du H, Huang W, Zhang S, Hu M (2004) TiNi-based thin films in MEMS applications: a review. Sens Actuators A 112(2):395–408CrossRef Fu Y, Du H, Huang W, Zhang S, Hu M (2004) TiNi-based thin films in MEMS applications: a review. Sens Actuators A 112(2):395–408CrossRef
14.
go back to reference Miyazaki S, Fu Y, Huang W (eds) (2009) Overview of sputter-deposited TiNi based thin films. In: Thin film shape memory alloys: fundamentals and device applications. Cambridge University Press, Cambridge Miyazaki S, Fu Y, Huang W (eds) (2009) Overview of sputter-deposited TiNi based thin films. In: Thin film shape memory alloys: fundamentals and device applications. Cambridge University Press, Cambridge
15.
go back to reference Jia X, Yang J, Kitipornchai S (2010) Characterization of FGM micro-switches under electrostatic and Casimir forces. In: IOP conference series: materials science and engineering, vol 1. IOP Publishing, p 012178 Jia X, Yang J, Kitipornchai S (2010) Characterization of FGM micro-switches under electrostatic and Casimir forces. In: IOP conference series: materials science and engineering, vol 1. IOP Publishing, p 012178
16.
go back to reference Jia X, Yang J, Kitipornchai S, Lim C (2011) Forced vibration of electrically actuated FGM micro-switches. Procedia Eng 14:280–287CrossRef Jia X, Yang J, Kitipornchai S, Lim C (2011) Forced vibration of electrically actuated FGM micro-switches. Procedia Eng 14:280–287CrossRef
17.
go back to reference Shariat BS, Liu Y, Rio G (2012) Thermomechanical modelling of microstructurally graded shape memory alloys. J Alloys Compd 541:407–414CrossRef Shariat BS, Liu Y, Rio G (2012) Thermomechanical modelling of microstructurally graded shape memory alloys. J Alloys Compd 541:407–414CrossRef
18.
go back to reference Carbonari RC, Silva EC, Paulino GH (2009) Multi-actuated functionally graded piezoelectric micro-tools design: a multiphysics topology optimization approach. Int J Numer Methods Eng 77(3):301–336CrossRefMATH Carbonari RC, Silva EC, Paulino GH (2009) Multi-actuated functionally graded piezoelectric micro-tools design: a multiphysics topology optimization approach. Int J Numer Methods Eng 77(3):301–336CrossRefMATH
19.
go back to reference Batra R, Porfiri M, Spinello D (2008) Vibrations of narrow microbeams predeformed by an electric field. J Sound Vib 309(3):600–612ADSCrossRef Batra R, Porfiri M, Spinello D (2008) Vibrations of narrow microbeams predeformed by an electric field. J Sound Vib 309(3):600–612ADSCrossRef
20.
go back to reference Chen H, Zhang G, Richardson K, Luo J (2008) Synthesis of nanostructured nanoclay-zirconia multilayers: a feasibility study. J Nanomater 2008:47 Chen H, Zhang G, Richardson K, Luo J (2008) Synthesis of nanostructured nanoclay-zirconia multilayers: a feasibility study. J Nanomater 2008:47
21.
go back to reference Hasanyan D, Batra R, Harutyunyan S (2008) Pull-in instabilities in functionally graded microthermoelectromechanical systems. J Therm Stress 31(10):1006–1021CrossRef Hasanyan D, Batra R, Harutyunyan S (2008) Pull-in instabilities in functionally graded microthermoelectromechanical systems. J Therm Stress 31(10):1006–1021CrossRef
22.
go back to reference Jia X, Yang J, Kitipornchai S, Lim CW (2012) Pull-in instability and free vibration of electrically actuated poly-SiGe graded micro-beams with a curved ground electrode. Appl Math Model 36(5):1875–1884MathSciNetCrossRefMATH Jia X, Yang J, Kitipornchai S, Lim CW (2012) Pull-in instability and free vibration of electrically actuated poly-SiGe graded micro-beams with a curved ground electrode. Appl Math Model 36(5):1875–1884MathSciNetCrossRefMATH
23.
go back to reference Mohammadi-Alasti B, Rezazadeh G, Borgheei A-M, Minaei S, Habibifar R (2011) On the mechanical behavior of a functionally graded micro-beam subjected to a thermal moment and nonlinear electrostatic pressure. Compos Struct 93(6):1516–1525CrossRef Mohammadi-Alasti B, Rezazadeh G, Borgheei A-M, Minaei S, Habibifar R (2011) On the mechanical behavior of a functionally graded micro-beam subjected to a thermal moment and nonlinear electrostatic pressure. Compos Struct 93(6):1516–1525CrossRef
24.
go back to reference Witvrouw A, Mehta A (2005) The use of functionally graded poly-SiGe layers for MEMS applications. In: Van der Biest O, Gasik M, Vleugels J (eds) Materials science forum, vol 492. Trans Tech Publications, Switzerland Witvrouw A, Mehta A (2005) The use of functionally graded poly-SiGe layers for MEMS applications. In: Van der Biest O, Gasik M, Vleugels J (eds) Materials science forum, vol 492. Trans Tech Publications, Switzerland
25.
go back to reference Eltaher M, Emam SA, Mahmoud F (2013) Static and stability analysis of nonlocal functionally graded nanobeams. Compos Struct 96:82–88CrossRef Eltaher M, Emam SA, Mahmoud F (2013) Static and stability analysis of nonlocal functionally graded nanobeams. Compos Struct 96:82–88CrossRef
26.
go back to reference Eltaher M, Khairy A, Sadoun A, Omar F-A (2014) Static and buckling analysis of functionally graded Timoshenko nanobeams. Appl Math Comput 229:283–295MathSciNet Eltaher M, Khairy A, Sadoun A, Omar F-A (2014) Static and buckling analysis of functionally graded Timoshenko nanobeams. Appl Math Comput 229:283–295MathSciNet
28.
go back to reference Kiani K, Mehri B (2010) Assessment of nanotube structures under a moving nanoparticle using nonlocal beam theories. J Sound Vib 329(11):2241–2264ADSCrossRef Kiani K, Mehri B (2010) Assessment of nanotube structures under a moving nanoparticle using nonlocal beam theories. J Sound Vib 329(11):2241–2264ADSCrossRef
30.
go back to reference Jandaghian A, Rahmani O (2016) Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation. Smart Mater Struct 25(3):035023ADSCrossRef Jandaghian A, Rahmani O (2016) Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation. Smart Mater Struct 25(3):035023ADSCrossRef
32.
go back to reference Hayati H, Hosseini SA, Rahmani O (2016) Coupled twist–bending static and dynamic behavior of a curved single-walled carbon nanotube based on nonlocal theory. Microsyst Technol 1–9. doi:10.1007/s00542-016-2933-0 Hayati H, Hosseini SA, Rahmani O (2016) Coupled twist–bending static and dynamic behavior of a curved single-walled carbon nanotube based on nonlocal theory. Microsyst Technol 1–9. doi:10.​1007/​s00542-016-2933-0
33.
go back to reference Jandaghian AA, Rahmani O (2015) On the buckling behavior of piezoelectric nanobeams: an exact solution. J Mech Sci Technol 29(8):3175–3182CrossRef Jandaghian AA, Rahmani O (2015) On the buckling behavior of piezoelectric nanobeams: an exact solution. J Mech Sci Technol 29(8):3175–3182CrossRef
34.
go back to reference Rahmani O, Noroozi Moghaddam MH (2014) On the vibrational behavior of piezoelectric nano-beams. Adv Mater Res 829:790–794CrossRef Rahmani O, Noroozi Moghaddam MH (2014) On the vibrational behavior of piezoelectric nano-beams. Adv Mater Res 829:790–794CrossRef
35.
go back to reference Rahmani O, Ghaffari S (2014) Frequency analysis of nano sandwich structure with nonlocal effect. Adv Mater Res 829:231–235CrossRef Rahmani O, Ghaffari S (2014) Frequency analysis of nano sandwich structure with nonlocal effect. Adv Mater Res 829:231–235CrossRef
36.
go back to reference Rahmani O (2014) On the flexural vibration of pre-stressed nanobeams based on a nonlocal theory. Acta Phys Pol A 125(2):532–534CrossRef Rahmani O (2014) On the flexural vibration of pre-stressed nanobeams based on a nonlocal theory. Acta Phys Pol A 125(2):532–534CrossRef
37.
go back to reference Rahmani O, Hosseini SAH, Noroozi Moghaddam MH, Fakhari Golpayegani I (2015) Torsional vibration of cracked nanobeam based on nonlocal stress theory with various boundary conditions: an analytical study. Int J Appl Mech 07(03):1550036. doi:10.1142/S1758825115500362 CrossRef Rahmani O, Hosseini SAH, Noroozi Moghaddam MH, Fakhari Golpayegani I (2015) Torsional vibration of cracked nanobeam based on nonlocal stress theory with various boundary conditions: an analytical study. Int J Appl Mech 07(03):1550036. doi:10.​1142/​S175882511550036​2 CrossRef
40.
go back to reference Rahmani O, Pedram O (2014) Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory. Int J Eng Sci 77:55–70MathSciNetCrossRef Rahmani O, Pedram O (2014) Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory. Int J Eng Sci 77:55–70MathSciNetCrossRef
42.
go back to reference Eltaher M, Emam SA, Mahmoud F (2012) Free vibration analysis of functionally graded size-dependent nanobeams. Appl Math Comput 218(14):7406–7420MathSciNetMATH Eltaher M, Emam SA, Mahmoud F (2012) Free vibration analysis of functionally graded size-dependent nanobeams. Appl Math Comput 218(14):7406–7420MathSciNetMATH
43.
go back to reference Kiani K (2010) Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects. Phys E 42(9):2391–2401MathSciNetCrossRef Kiani K (2010) Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects. Phys E 42(9):2391–2401MathSciNetCrossRef
44.
go back to reference Şimşek M (2010) Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory. Phys E 43(1):182–191CrossRef Şimşek M (2010) Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory. Phys E 43(1):182–191CrossRef
46.
go back to reference Pourseifi M, Rahmani O, Hoseini SAH (2015) Active vibration control of nanotube structures under a moving nanoparticle based on the nonlocal continuum theories. Meccanica 50(5):1351–1369MathSciNetCrossRefMATH Pourseifi M, Rahmani O, Hoseini SAH (2015) Active vibration control of nanotube structures under a moving nanoparticle based on the nonlocal continuum theories. Meccanica 50(5):1351–1369MathSciNetCrossRefMATH
47.
go back to reference Pirmohammadi A, Pourseifi M, Rahmani O, Hoseini S (2014) Modeling and active vibration suppression of a single-walled carbon nanotube subjected to a moving harmonic load based on a nonlocal elasticity theory. Appl Phys A 117(3):1547–1555CrossRef Pirmohammadi A, Pourseifi M, Rahmani O, Hoseini S (2014) Modeling and active vibration suppression of a single-walled carbon nanotube subjected to a moving harmonic load based on a nonlocal elasticity theory. Appl Phys A 117(3):1547–1555CrossRef
Metadata
Title
Exact solution for axial and transverse dynamic response of functionally graded nanobeam under moving constant load based on nonlocal elasticity theory
Authors
S. A. H. Hosseini
O. Rahmani
Publication date
22-07-2016
Publisher
Springer Netherlands
Published in
Meccanica / Issue 6/2017
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-016-0491-2

Other articles of this Issue 6/2017

Meccanica 6/2017 Go to the issue

Premium Partners