Skip to main content
Top
Published in: Fire Technology 5/2017

23-05-2017

Examination of WFDS in Modeling Spreading Fires in a Furniture Calorimeter

Authors: Y. Perez-Ramirez, W. E. Mell, P. A. Santoni, J. B. Tramoni, F. Bosseur

Published in: Fire Technology | Issue 5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Validation of physics-based models of fire behavior requires comparing systematically and objectively simulated results and experimental observations in different scenarios, conditions and scales. Heat Release Rate (HRR) is a key parameter for understanding combustion processes in vegetation fires and a main output data of physics-based models. This paper addresses the validation of the Wildland-urban interface Fire Dynamics Simulator (WFDS) through the comparison of predicted and measured values of HRR from spreading fires in a furniture calorimeter. Experimental fuel beds were made up of Pinus pinaster needles and three different fuel loadings (i.e. 0.6, 0.9 and 1.2 kg/m2) were tested under no-slope and up-slope conditions (20°). An Arrhenius type model for solid-phase degradation including char oxidation was implemented in WFDS. To ensure the same experimental and numerical conditions, sensitivity analyses were carried out in order to determine the grid resolution to capture the flow dynamics within the hood of the experimental device and to assess the grid resolution’s influence on the outputs of the model. The comparison of experimental and predicted HRR values showed that WFDS calculates accurately the mean HRR values during the steady-state of fire propagation. It also reproduces correctly the duration of the flaming combustion phase, which is directly tied to the fire rate of spread.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Morvan D (2011) physical phenomena and length scales governing the behaviour of wildfires: a case for physical modelling. Fire Technol 47:437–460CrossRef Morvan D (2011) physical phenomena and length scales governing the behaviour of wildfires: a case for physical modelling. Fire Technol 47:437–460CrossRef
2.
go back to reference Alexander M and Cruz MG (2013) Are the applications of wildland fire behavior models getting ahead of the evaluation again?. Environ Modell Softw 41:65–71CrossRef Alexander M and Cruz MG (2013) Are the applications of wildland fire behavior models getting ahead of the evaluation again?. Environ Modell Softw 41:65–71CrossRef
3.
go back to reference Babrauskas V, Peacock RD (1992) Heat release rate: the single most important variable in fire hasard. Fire Saf J 18:225–292CrossRef Babrauskas V, Peacock RD (1992) Heat release rate: the single most important variable in fire hasard. Fire Saf J 18:225–292CrossRef
4.
go back to reference Fites JA, Henson C (2004) Real-time evaluation of effects of fuel treatments and other previous land management activities on fire behavior during wildfires. Report of the Joint fires science rapid response project. US Forest Service, pp 1–13 Fites JA, Henson C (2004) Real-time evaluation of effects of fuel treatments and other previous land management activities on fire behavior during wildfires. Report of the Joint fires science rapid response project. US Forest Service, pp 1–13
5.
go back to reference McAthur AG (1962) Control burning in eucalypt forests. Comm. Aust. For. Timb. Bur. Leafl. No. 80 McAthur AG (1962) Control burning in eucalypt forests. Comm. Aust. For. Timb. Bur. Leafl. No. 80
6.
go back to reference Hammil KA, Bradstock RA (2006) Remote sensing of fire severity in Blue Mountains: influence of vegetation type and inferring fire intensity. Int J Wildland Fire 15:213–26CrossRef Hammil KA, Bradstock RA (2006) Remote sensing of fire severity in Blue Mountains: influence of vegetation type and inferring fire intensity. Int J Wildland Fire 15:213–26CrossRef
7.
go back to reference Sullivan AL, Ball R (2012) Thermal decomposition and combustion chemistry of cellulosic biomass. Atmos Environ 47:133–141CrossRef Sullivan AL, Ball R (2012) Thermal decomposition and combustion chemistry of cellulosic biomass. Atmos Environ 47:133–141CrossRef
8.
go back to reference Mell WE, Jenkins MA, Gould J, Cheney P (2007) A physics-based approach to modelling grassland fires. Int J Wildland 16:1–22CrossRef Mell WE, Jenkins MA, Gould J, Cheney P (2007) A physics-based approach to modelling grassland fires. Int J Wildland 16:1–22CrossRef
9.
go back to reference Mell WE, Maranghides A, McDermott R, Manzello S (2009) Numerical simulation and experiments of burning Douglas fir trees. Combust Flame 156:2023–2041CrossRef Mell WE, Maranghides A, McDermott R, Manzello S (2009) Numerical simulation and experiments of burning Douglas fir trees. Combust Flame 156:2023–2041CrossRef
10.
go back to reference Morandini F, Pérez-Ramirez Y, Tihay V, Santoni PA, Barboni T (2013) Global heat release, radiant and convective characterization of fires spreading across forest beds of fuel. Int J Therm Sci 70:83–91CrossRef Morandini F, Pérez-Ramirez Y, Tihay V, Santoni PA, Barboni T (2013) Global heat release, radiant and convective characterization of fires spreading across forest beds of fuel. Int J Therm Sci 70:83–91CrossRef
11.
go back to reference Santoni PA, Morandini F, Barboni T (2011) Determination of fireline intensity by oxygen consumption calorimetry. J Therm Anal Calorim 104:1005–1015CrossRef Santoni PA, Morandini F, Barboni T (2011) Determination of fireline intensity by oxygen consumption calorimetry. J Therm Anal Calorim 104:1005–1015CrossRef
12.
go back to reference Parker WJ (1982) Calculations of the heat release rate by oxygen consumption for various applications. NBSIR 81–2427–1. Parker WJ (1982) Calculations of the heat release rate by oxygen consumption for various applications. NBSIR 81–2427–1.
13.
go back to reference Tihay V, Morandini F, Santoni PA, Pérez-Ramirez Y, Barboni T (2014) Combustion of forest fuel beds under slope conditions: burning rate, heat release rate, convective and radiant fractions for different loads. Combust Flame 161(12):3237–3248CrossRef Tihay V, Morandini F, Santoni PA, Pérez-Ramirez Y, Barboni T (2014) Combustion of forest fuel beds under slope conditions: burning rate, heat release rate, convective and radiant fractions for different loads. Combust Flame 161(12):3237–3248CrossRef
14.
go back to reference McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2013) Fire Dynamics Simulator User’s Guide. Technical Report NIST Special Publication, 1019-6, National Institute of Standards and Technology, Gaithersburg, Maryland. McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2013) Fire Dynamics Simulator User’s Guide. Technical Report NIST Special Publication, 1019-6, National Institute of Standards and Technology, Gaithersburg, Maryland.
15.
go back to reference Overholt KJ, Kurzawski AJ, Cabrera J, Koopersmith M, Ezekoye OA (2014) Fire behavior and heat fluxes for lab-scale burning of little bluestem grass. Fire Saf J 67:70–81CrossRef Overholt KJ, Kurzawski AJ, Cabrera J, Koopersmith M, Ezekoye OA (2014) Fire behavior and heat fluxes for lab-scale burning of little bluestem grass. Fire Saf J 67:70–81CrossRef
16.
go back to reference Overholt KJ, Cabrera J, Kurzawski A, Koopersmith M, Ezekoye OA (2014) Characterization of fuel properties and fire spread rates for little bluestem grass. Fire Technol 50(1):9–38CrossRef Overholt KJ, Cabrera J, Kurzawski A, Koopersmith M, Ezekoye OA (2014) Characterization of fuel properties and fire spread rates for little bluestem grass. Fire Technol 50(1):9–38CrossRef
17.
go back to reference Castle D (2015) Numerical modeling of laboratory-scale surface-to-crown fire transition. M.S. Thesis, San Diego State University, California, USA. Castle D (2015) Numerical modeling of laboratory-scale surface-to-crown fire transition. M.S. Thesis, San Diego State University, California, USA.
18.
go back to reference Mueller E, Mell W, Simeoni A (2014) Large eddy simulation of forest canopy flow for wildland fire modeling. Can J For Res 44:1534–1544CrossRef Mueller E, Mell W, Simeoni A (2014) Large eddy simulation of forest canopy flow for wildland fire modeling. Can J For Res 44:1534–1544CrossRef
19.
go back to reference Buffachi P, Krieger GC, Mell W, Alvarado E, Santos JE, Carvalho JA (2016) Numerical simulation of surface fires in Brazilian Amazon. Fire Saf J 79:44–56CrossRef Buffachi P, Krieger GC, Mell W, Alvarado E, Santos JE, Carvalho JA (2016) Numerical simulation of surface fires in Brazilian Amazon. Fire Saf J 79:44–56CrossRef
20.
go back to reference Hoffman CM, Canfield J, Linn RR, Mell W, Sieg CH, Pimont F, Ziegler J (2016) Evaluating crown fire rate of spread predictions from physics-based models. Fire Technol 52 (1):221–237CrossRef Hoffman CM, Canfield J, Linn RR, Mell W, Sieg CH, Pimont F, Ziegler J (2016) Evaluating crown fire rate of spread predictions from physics-based models. Fire Technol 52 (1):221–237CrossRef
21.
go back to reference Porterie B, Consalvi JL, Kaiss A, Loraud JC (2005) Predicting wildland fire behavior and emissions using a fine-scale physical model. Numer Heat Transf A Appl 47:571–591CrossRef Porterie B, Consalvi JL, Kaiss A, Loraud JC (2005) Predicting wildland fire behavior and emissions using a fine-scale physical model. Numer Heat Transf A Appl 47:571–591CrossRef
22.
go back to reference Morvan D and Dupuy JL (2001) Modeling of fire spread through a forest fuel bed using a multiphase formulation. Combust Flame 127:1981–1994CrossRef Morvan D and Dupuy JL (2001) Modeling of fire spread through a forest fuel bed using a multiphase formulation. Combust Flame 127:1981–1994CrossRef
23.
go back to reference El Houssami M, Thomas JC, Lamorlette A, Morvan D, Chaos M, Hadden R, Simeoni A (2016) Experimental and numerical studies characterizing the burning dynamics of wildland fuels. Combust Flame 168:113–126CrossRef El Houssami M, Thomas JC, Lamorlette A, Morvan D, Chaos M, Hadden R, Simeoni A (2016) Experimental and numerical studies characterizing the burning dynamics of wildland fuels. Combust Flame 168:113–126CrossRef
24.
go back to reference Dahale A, Ferguson S, Shotorban B, Mahalingam S (2013) Effects of distribution of bulk density and moisture content on shrub fires. Int J Wildland Fire 22:625–641CrossRef Dahale A, Ferguson S, Shotorban B, Mahalingam S (2013) Effects of distribution of bulk density and moisture content on shrub fires. Int J Wildland Fire 22:625–641CrossRef
25.
go back to reference Porterie B, Morvan D, Larini M Loraud JC (1998) Wildfire propagation: a two dimensional multiphase approach. Combust Explos Shock Waves 34(1):139–150CrossRef Porterie B, Morvan D, Larini M Loraud JC (1998) Wildfire propagation: a two dimensional multiphase approach. Combust Explos Shock Waves 34(1):139–150CrossRef
26.
go back to reference Lautenberger C and Fernandez-Pello C (2009) A model for the oxidative pyrolysis of wood. Combust Flame 156:1503–1513CrossRef Lautenberger C and Fernandez-Pello C (2009) A model for the oxidative pyrolysis of wood. Combust Flame 156:1503–1513CrossRef
27.
go back to reference Park WC, Atreya A, Baum HR (2010) Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis. Combust Flame 157(3):481–494CrossRef Park WC, Atreya A, Baum HR (2010) Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis. Combust Flame 157(3):481–494CrossRef
28.
go back to reference Ritchie SJ, Steckler KD, Hamins A, Cleary TG, Yang JC, Kashiwagi T (1997) The effect of sample size on the heat release rate of charring materials. Fire Saf Sci 5:177–188CrossRef Ritchie SJ, Steckler KD, Hamins A, Cleary TG, Yang JC, Kashiwagi T (1997) The effect of sample size on the heat release rate of charring materials. Fire Saf Sci 5:177–188CrossRef
29.
go back to reference Pérez-Ramirez Y, Santoni PA, Tramoni JB, Mell WE (2014) Numerical simulations of spreading fires in a large-scale calorimeter: The influence of the experimental configuration. In Viegas DX (Ed): Proceedings of the VII International Conference on Forest Fires Research Pérez-Ramirez Y, Santoni PA, Tramoni JB, Mell WE (2014) Numerical simulations of spreading fires in a large-scale calorimeter: The influence of the experimental configuration. In Viegas DX (Ed): Proceedings of the VII International Conference on Forest Fires Research
30.
go back to reference Forney GP (2012) Smokeview (Version 6)—A Tool for Visualizing Fire Dynamics Simulation Data. Volume I: User’s Guide. NIST Special Publication 1017-1. National Institute of Standards and Technology, Gaithersburg, Maryland Forney GP (2012) Smokeview (Version 6)—A Tool for Visualizing Fire Dynamics Simulation Data. Volume I: User’s Guide. NIST Special Publication 1017-1. National Institute of Standards and Technology, Gaithersburg, Maryland
31.
go back to reference Zaida TJ (2012) Etude expérimentale et numérique de la dégradation thermique des lits combustibles végétaux. PhD Thesis. University of Oaugadougou—Université de Poitiers (Laboratoire de Physique Chimie et de l’Environnement) Zaida TJ (2012) Etude expérimentale et numérique de la dégradation thermique des lits combustibles végétaux. PhD Thesis. University of Oaugadougou—Université de Poitiers (Laboratoire de Physique Chimie et de l’Environnement)
32.
go back to reference Moro C (2006) Détermination des caractéristiques physique de particules de quelques espèces forestières méditerranéennes, INRA PIF2006-06 Moro C (2006) Détermination des caractéristiques physique de particules de quelques espèces forestières méditerranéennes, INRA PIF2006-06
33.
go back to reference Quintiere JG, Grove BS (1998) A unified analysis for fire plumes. In: Twenty Seventh Symposium (International) on Combustion. The Combustion Institute 2757–2766 Quintiere JG, Grove BS (1998) A unified analysis for fire plumes. In: Twenty Seventh Symposium (International) on Combustion. The Combustion Institute 2757–2766
Metadata
Title
Examination of WFDS in Modeling Spreading Fires in a Furniture Calorimeter
Authors
Y. Perez-Ramirez
W. E. Mell
P. A. Santoni
J. B. Tramoni
F. Bosseur
Publication date
23-05-2017
Publisher
Springer US
Published in
Fire Technology / Issue 5/2017
Print ISSN: 0015-2684
Electronic ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-017-0657-z

Other articles of this Issue 5/2017

Fire Technology 5/2017 Go to the issue