Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

16-10-2022 | Original Research Article

Experimental and Field Study of a Pavement Thermoelectric Energy Harvesting System Based on the Seebeck Effect

Authors: Zhongwu Xie, Kaixi Shi, Laifu Song, Xiran Hou

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Methods for harnessing clean energy have received considerable attention recently. In this study, a thermoelectric power generation device is developed for use in road engineering. The thermoelectric generator unit (TEGU) is systematically studied under the influence of various factors including varied temperature differences, load resistance, burial depth, and pavement defects. The experimental results indicate that the output voltage of the TEGU is consistent with the Seebeck effect. When the temperature difference is 60°C, the output power is 24.85 times the power generated when the temperature difference is 10°C. In addition, the deeper the burial depth of the TEGU, the lower the output voltage, and the higher the temperature difference at the same burial depth, the higher the output voltage. In the field test, the TEGU was buried 2 cm below the ground surface. When the maximum temperature difference reached 25.5°C, the open-circuit voltage was 21.41 V and the short-circuit current was 97.2 mA. When the optimal impedance matching resistance was 50 Ω, the output power reached a peak of 0.623 W, and the output voltage was 5.582 V. Furthermore, no significant changes in the power generation ability of the TEGU were observed with different degrees of asphalt pavement defects. The output voltage under typical road conditions when the temperature difference in the laboratory was 30°C only reached 55.49% of that when the temperature difference in the field test was 25.5°C. The developed system enables the conversion of the road surface heat energy and reduction of the internal temperature of the road surface, which can facilitate the development and application of thermoelectric technology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Tota-Maharaj and P. Paul, Sustainable Approaches for Stormwater Quality Improvements with Experimental Geothermal Paving Systems. Sustainability 7, 1388 (2015).CrossRef K. Tota-Maharaj and P. Paul, Sustainable Approaches for Stormwater Quality Improvements with Experimental Geothermal Paving Systems. Sustainability 7, 1388 (2015).CrossRef
2.
go back to reference U. Datta, S. Dessouky, and A.T. Papagiannakis, Harvesting Thermoelectric Energy from Asphalt Pavements. Transp. Res. Rec. 2628, 12 (2017).CrossRef U. Datta, S. Dessouky, and A.T. Papagiannakis, Harvesting Thermoelectric Energy from Asphalt Pavements. Transp. Res. Rec. 2628, 12 (2017).CrossRef
3.
go back to reference J. Wang, Z. Liu, G. Ding, H. Fu, and G. Cai, Watt-Level Road-Compatible Piezoelectric Energy Harvester for LED-Induced Lamp System. Energy 229, 120685 (2021).CrossRef J. Wang, Z. Liu, G. Ding, H. Fu, and G. Cai, Watt-Level Road-Compatible Piezoelectric Energy Harvester for LED-Induced Lamp System. Energy 229, 120685 (2021).CrossRef
4.
go back to reference J. Wang, X. Qin, Z. Liu, G. Ding, and G. Cai, Experimental Study on Fatigue Degradation of Piezoelectric Energy Harvesters under Equivalent Traffic Load Conditions. Int. J. Fatigue. 150, 106320 (2021).CrossRef J. Wang, X. Qin, Z. Liu, G. Ding, and G. Cai, Experimental Study on Fatigue Degradation of Piezoelectric Energy Harvesters under Equivalent Traffic Load Conditions. Int. J. Fatigue. 150, 106320 (2021).CrossRef
5.
go back to reference J. Wang, Z. Liu, K. Shi, and G. Ding, Development and Application Performance of Road Spring-Type Piezoelectric Transducer for Energy Harvesting. Smart Mater. Struct. 30, 085020 (2021).CrossRef J. Wang, Z. Liu, K. Shi, and G. Ding, Development and Application Performance of Road Spring-Type Piezoelectric Transducer for Energy Harvesting. Smart Mater. Struct. 30, 085020 (2021).CrossRef
6.
go back to reference J. Wang, X. Qin, Z. Liu, K. Shi, G. Ding, X. Li, and G. Cai, Experimental Field Study on a Full-Scale Road Piezoelectric Energy Harvester. Smart Mater. Struct. 31, 055003 (2022).CrossRef J. Wang, X. Qin, Z. Liu, K. Shi, G. Ding, X. Li, and G. Cai, Experimental Field Study on a Full-Scale Road Piezoelectric Energy Harvester. Smart Mater. Struct. 31, 055003 (2022).CrossRef
7.
go back to reference E. Sazonov, H. Li, D. Curry, and P. Pillay, Self-Powered Sensors for Monitoring of Highway Bridges. IEEE Sens. J. 9, 1422 (2009).CrossRef E. Sazonov, H. Li, D. Curry, and P. Pillay, Self-Powered Sensors for Monitoring of Highway Bridges. IEEE Sens. J. 9, 1422 (2009).CrossRef
8.
go back to reference H. Wang, A. Jasim, and X. Chen, Energy Harvesting Technologies in Roadway and Bridge for Different Applications-A Comprehensive Review. Appl. Energy. 212, 1083 (2018).CrossRef H. Wang, A. Jasim, and X. Chen, Energy Harvesting Technologies in Roadway and Bridge for Different Applications-A Comprehensive Review. Appl. Energy. 212, 1083 (2018).CrossRef
9.
go back to reference A. Bahaj, Solar photovoltaic energy: generation in the built environment. Proceedings of the Institution of Civil Engineers-Civil Engineering. 158, 45 (2005). A. Bahaj, Solar photovoltaic energy: generation in the built environment. Proceedings of the Institution of Civil Engineers-Civil Engineering. 158, 45 (2005).
10.
go back to reference Z. Zhou, X. Wang, X. Zhang, G. Chen, J. Zuo, and S. Pullen, Effectiveness of Pavement-Solar Energy System - An Experimental Study. Appl. Energy. 138, 1 (2015).CrossRef Z. Zhou, X. Wang, X. Zhang, G. Chen, J. Zuo, and S. Pullen, Effectiveness of Pavement-Solar Energy System - An Experimental Study. Appl. Energy. 138, 1 (2015).CrossRef
11.
go back to reference J. Wang, F. Xiao, and H. Zhao, Thermoelectric, Piezoelectric and Photovoltaic Harvesting Technologies for Pavement Engineering. Renew. Sustain. Energy Rev. 151, 111522 (2021).CrossRef J. Wang, F. Xiao, and H. Zhao, Thermoelectric, Piezoelectric and Photovoltaic Harvesting Technologies for Pavement Engineering. Renew. Sustain. Energy Rev. 151, 111522 (2021).CrossRef
12.
go back to reference B. Xiang, X. Cao, Y. Yuan, M. Hasanuzzaman, C. Zeng, Y. Ji, and L. Sun, A Novel Hybrid Energy System Combined with Solar-Road and Soil-Regenerator: Sensitivity Analysis and Optimization. Renew. Energy 129, 419 (2018).CrossRef B. Xiang, X. Cao, Y. Yuan, M. Hasanuzzaman, C. Zeng, Y. Ji, and L. Sun, A Novel Hybrid Energy System Combined with Solar-Road and Soil-Regenerator: Sensitivity Analysis and Optimization. Renew. Energy 129, 419 (2018).CrossRef
13.
go back to reference C. Pascual, J. de Castro, A. Kostro, A. Schueler, A.P. Vassilopoulos, and T. Keller, Diffuse Light Transmittance of Glass Fiber-Reinforced Polymer Laminates for Multifunctional Load-Bearing Structures. J. Compos. Mater. 48, 3621 (2014).CrossRef C. Pascual, J. de Castro, A. Kostro, A. Schueler, A.P. Vassilopoulos, and T. Keller, Diffuse Light Transmittance of Glass Fiber-Reinforced Polymer Laminates for Multifunctional Load-Bearing Structures. J. Compos. Mater. 48, 3621 (2014).CrossRef
14.
go back to reference S. Ahmad, M.A. Mujeebu, and M.A. Farooqi, Energy Harvesting from Pavements and Roadways: A Comprehensive Review of Technologies, Materials, and Challenges. Int. J. Energy Res. 43, 1974 (2019).CrossRef S. Ahmad, M.A. Mujeebu, and M.A. Farooqi, Energy Harvesting from Pavements and Roadways: A Comprehensive Review of Technologies, Materials, and Challenges. Int. J. Energy Res. 43, 1974 (2019).CrossRef
15.
go back to reference J. Heo, H. Moon, S. Chang, S. Han, and D.E. Lee, Case Study of Solar Photovoltaic Power-Plant Site Selection for Infrastructure Planning Using a BIM-GIS-Based Approach. Appl. Sci. 11, 8785 (2021).CrossRef J. Heo, H. Moon, S. Chang, S. Han, and D.E. Lee, Case Study of Solar Photovoltaic Power-Plant Site Selection for Infrastructure Planning Using a BIM-GIS-Based Approach. Appl. Sci. 11, 8785 (2021).CrossRef
16.
go back to reference S. Kim, Y. Lee, and H.R. Moon, Siting Criteria and Feasibility Analysis for PV Power Generation Projects Using road Facilities. Renew. Sustain. Energy Rev. 81, 3061 (2018).CrossRef S. Kim, Y. Lee, and H.R. Moon, Siting Criteria and Feasibility Analysis for PV Power Generation Projects Using road Facilities. Renew. Sustain. Energy Rev. 81, 3061 (2018).CrossRef
17.
go back to reference Q. Xue, L. Liu, Y. Zhao, Y.J. Chen, and J.S. Li, Dynamic behavior of Asphalt Pavement Structure under Temperature-Stress Coupled Loading. Appl. Therm. Eng. 53, 1 (2013).CrossRef Q. Xue, L. Liu, Y. Zhao, Y.J. Chen, and J.S. Li, Dynamic behavior of Asphalt Pavement Structure under Temperature-Stress Coupled Loading. Appl. Therm. Eng. 53, 1 (2013).CrossRef
18.
go back to reference W. Herb, R. Velasquez, H. Stefan, M.O. Marasteanu, and T. Clyne, Simulation and Characterization of Asphalt Pavement Temperatures. Road Mater. Pavement Des. 10, 233 (2009). W. Herb, R. Velasquez, H. Stefan, M.O. Marasteanu, and T. Clyne, Simulation and Characterization of Asphalt Pavement Temperatures. Road Mater. Pavement Des. 10, 233 (2009).
19.
go back to reference A. Mohajerani, J. Bakaric, and T. Jeffrey-Bailey, The Urban Heat Island Effect, its Causes, and Mitigation, with Reference to the Thermal Properties of Asphalt Concrete. J. Environ. Manag. 197, 522 (2017).CrossRef A. Mohajerani, J. Bakaric, and T. Jeffrey-Bailey, The Urban Heat Island Effect, its Causes, and Mitigation, with Reference to the Thermal Properties of Asphalt Concrete. J. Environ. Manag. 197, 522 (2017).CrossRef
20.
go back to reference J.A. Villena Del Carpio, D.L. Marinoski, G. Triches, R. Lamberts, and J.V. Staub de Melo, Urban pavements used in Brazil: Characterization of solar reflectance and temperature verification in the field. Sol. Energy. 134, 72 (2016).CrossRef J.A. Villena Del Carpio, D.L. Marinoski, G. Triches, R. Lamberts, and J.V. Staub de Melo, Urban pavements used in Brazil: Characterization of solar reflectance and temperature verification in the field. Sol. Energy. 134, 72 (2016).CrossRef
21.
go back to reference A. Moser, M. Erd, M. Kostic, K. Cobry, M. Kroener, L.M. Reindl, and P. Woias, Thermoelectric Energy Harvesting from Transient Ambient Temperature Gradients. J. Electron. Mater. 41, 1653 (2012).CrossRef A. Moser, M. Erd, M. Kostic, K. Cobry, M. Kroener, L.M. Reindl, and P. Woias, Thermoelectric Energy Harvesting from Transient Ambient Temperature Gradients. J. Electron. Mater. 41, 1653 (2012).CrossRef
22.
go back to reference G. Wu and X. Yu, System design to harvest thermal energy across pavement structure. in IEEE Energytech. (2012), p.1–4 G. Wu and X. Yu, System design to harvest thermal energy across pavement structure. in IEEE Energytech. (2012), p.1–4
23.
go back to reference J. Kim, S.T. Lee, S. Yang and J. Lee, Implementation of Thermal-Energy-Harvesting Technology on Pavement. J. Test. Eval. 45, 582 (2017).CrossRef J. Kim, S.T. Lee, S. Yang and J. Lee, Implementation of Thermal-Energy-Harvesting Technology on Pavement. J. Test. Eval. 45, 582 (2017).CrossRef
24.
go back to reference S.A. Whalen, and R.C. Dykhuizen, Thermoelectric Energy Harvesting from Diurnal Heat Flow in the Upper Soil Layer. Energy Convers. Manag. 64, 397 (2012).CrossRef S.A. Whalen, and R.C. Dykhuizen, Thermoelectric Energy Harvesting from Diurnal Heat Flow in the Upper Soil Layer. Energy Convers. Manag. 64, 397 (2012).CrossRef
25.
go back to reference W. Jiang, J. Xiao, D. Yuan, H. Lu, S. Xu, and Y. Huang, Design and Experiment of Thermoelectric Asphalt Pavements with Power-Generation and Temperature-Reduction Functions. Energy Build. 169, 39 (2018).CrossRef W. Jiang, J. Xiao, D. Yuan, H. Lu, S. Xu, and Y. Huang, Design and Experiment of Thermoelectric Asphalt Pavements with Power-Generation and Temperature-Reduction Functions. Energy Build. 169, 39 (2018).CrossRef
26.
go back to reference S.A. Tahami, M. Gholikhani, R. Nasouri, S. Dessouky, and A.T. Papagiannakis, Developing a New Thermoelectric Approach for Energy Harvesting from Asphalt Pavements. Appl. Energy. 238, 786 (2019).CrossRef S.A. Tahami, M. Gholikhani, R. Nasouri, S. Dessouky, and A.T. Papagiannakis, Developing a New Thermoelectric Approach for Energy Harvesting from Asphalt Pavements. Appl. Energy. 238, 786 (2019).CrossRef
27.
go back to reference T. Sakamoto, T. Iida, T. Sekiguchi, Y. Taguchi, N. Hirayama, K. Nishio, and Y. Takanashi, Selection and Evaluation of Thermal Interface Materials for Reduction of the Thermal Contact Resistance of Thermoelectric Generators. J. Electron. Mater. 43, 3792 (2014).CrossRef T. Sakamoto, T. Iida, T. Sekiguchi, Y. Taguchi, N. Hirayama, K. Nishio, and Y. Takanashi, Selection and Evaluation of Thermal Interface Materials for Reduction of the Thermal Contact Resistance of Thermoelectric Generators. J. Electron. Mater. 43, 3792 (2014).CrossRef
28.
go back to reference K. Karthick, G.C. Joy, S. Suresh, and R. Dhanuskodi, Impact of Thermal Interface Materials for Thermoelectric Generator Systems. J. Electron. Mater. 47, 5763 (2018).CrossRef K. Karthick, G.C. Joy, S. Suresh, and R. Dhanuskodi, Impact of Thermal Interface Materials for Thermoelectric Generator Systems. J. Electron. Mater. 47, 5763 (2018).CrossRef
29.
go back to reference W. Zhou, K. Yamamoto, A. Miura, R. Iguchi, Y. Miura, K.-I. Uchida, and Y. Sakuraba, Seebeck-Driven Transverse Thermoelectric Generation. Nat. Mater. 20, 463 (2021).CrossRef W. Zhou, K. Yamamoto, A. Miura, R. Iguchi, Y. Miura, K.-I. Uchida, and Y. Sakuraba, Seebeck-Driven Transverse Thermoelectric Generation. Nat. Mater. 20, 463 (2021).CrossRef
30.
go back to reference L.E. Bell, Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 321, 1457 (2008).CrossRef L.E. Bell, Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 321, 1457 (2008).CrossRef
31.
go back to reference Z.Z. He, A Coupled Electrical-Thermal Impedance Matching Model for Design Optimization of Thermoelectric Generator. Appl. Energy. 269, 115037 (2020).CrossRef Z.Z. He, A Coupled Electrical-Thermal Impedance Matching Model for Design Optimization of Thermoelectric Generator. Appl. Energy. 269, 115037 (2020).CrossRef
32.
go back to reference K. Zhu, Z. Liu, and Z. Wang, Experimental Study on SP1848 Thermoelectric Power Generation Sheet. Univ. Phy. Experiment. 34, 13 (2021). K. Zhu, Z. Liu, and Z. Wang, Experimental Study on SP1848 Thermoelectric Power Generation Sheet. Univ. Phy. Experiment. 34, 13 (2021).
33.
go back to reference A.A. Angeline, J. Jayakumar, L.G. Asirvatham, J.J. Marshal, and S. Wongwises, Power Generation Enhancement with Hybrid Thermoelectric Generator Using Biomass Waste Heat Energy. Exp. Therm. Fluid Sci. 85, 1 (2017).CrossRef A.A. Angeline, J. Jayakumar, L.G. Asirvatham, J.J. Marshal, and S. Wongwises, Power Generation Enhancement with Hybrid Thermoelectric Generator Using Biomass Waste Heat Energy. Exp. Therm. Fluid Sci. 85, 1 (2017).CrossRef
34.
go back to reference W. Chen, C.Y. Liao, C.I. Hung, and W.L. Huang, Experimental Study on Thermoelectric Modules for Power Generation at Various Operating Conditions. Energy 45, 874 (2012).CrossRef W. Chen, C.Y. Liao, C.I. Hung, and W.L. Huang, Experimental Study on Thermoelectric Modules for Power Generation at Various Operating Conditions. Energy 45, 874 (2012).CrossRef
Metadata
Title
Experimental and Field Study of a Pavement Thermoelectric Energy Harvesting System Based on the Seebeck Effect
Authors
Zhongwu Xie
Kaixi Shi
Laifu Song
Xiran Hou
Publication date
16-10-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09967-z

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue