Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

27-10-2022 | Original Research Article

Novel Synthesis of a PANI/ZnO Nanohybrid for Enhanced NO2 Gas Sensing Performance at Low Temperatures

Authors: To Thi Nguyet, Lai Van Duy, Quan Thi Minh Nguyet, Chu Thi Xuan, Dang Thi Thanh Le, Chu Manh Hung, Nguyen Van Duy, Nguyen Duc Hoa

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanohybrids, which comprise organic and inorganic materials, have gained increasing interest in the application for enhanced sensing response to both reducing and oxidation gases. In this study, we prepared nanohybrids of polyaniline (PANI) and ZnO nanoplates through a hydrothermal route for high-performance nitrogen dioxide gas sensing at low temperatures. The structure, morphology, and surface composition of as-synthesized samples were, respectively, examined via x-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. The results indicated that the resistive sensor based on the PANI/ZnO hybrid showed the highest response toward NO2 at 150°C with a response value Rg/Ra = 601 to 5 ppm NO2. We also investigated the sensing properties of volatile organic compounds including methanol, ethanol, triethylamine, toluene, and isopropanol. Indeed, the heterojunction reflects the characteristics of the n-type ZnO semiconductor. Characterization and gas sensing measurements exhibited protonation and deprotonation of the PANI/ZnO heterojunction, which contributes to the nitrogen dioxide sensing mechanism. Overall, the obtained findings demonstrated that the PANI/ZnO nanoplates are promising materials for sensing applications in food analysis and environmental monitoring.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Yan, H. Lu, J. Gao, Y. Zhang, Q. Guo, and W. Ding, Improved NO2 Sensing Properties at Low Temperature using Reduced Graphene Oxide Nanosheet–In2O3 Heterojunction Nanofibers. J. Alloys Compd. 741, 908–917 (2018).CrossRef C. Yan, H. Lu, J. Gao, Y. Zhang, Q. Guo, and W. Ding, Improved NO2 Sensing Properties at Low Temperature using Reduced Graphene Oxide Nanosheet–In2O3 Heterojunction Nanofibers. J. Alloys Compd. 741, 908–917 (2018).CrossRef
2.
go back to reference S. Zhao, Y. Shen, R. Maboudian, C. Carraro, C. Han, W. Liu, and D. Wei, Facile Synthesis of ZnO-SnO2 Hetero-Structured Nanowires for High-Performance No2 Sensing Application. Sensor Actuators B Chem. 333, 129613 (2021).CrossRef S. Zhao, Y. Shen, R. Maboudian, C. Carraro, C. Han, W. Liu, and D. Wei, Facile Synthesis of ZnO-SnO2 Hetero-Structured Nanowires for High-Performance No2 Sensing Application. Sensor Actuators B Chem. 333, 129613 (2021).CrossRef
4.
go back to reference L. Zhang, J. Zhang, Y. Huang, H. Xu, X. Zhang, and H. Lu, Hexagonal ZnO Nanoplates/Graphene Composites with Excellent Sensing Performance to NO2 at Room Temperature. Appl. Surf. Sci. 537, 147785 (2021).CrossRef L. Zhang, J. Zhang, Y. Huang, H. Xu, X. Zhang, and H. Lu, Hexagonal ZnO Nanoplates/Graphene Composites with Excellent Sensing Performance to NO2 at Room Temperature. Appl. Surf. Sci. 537, 147785 (2021).CrossRef
5.
go back to reference Y. Su, J. Wang, B. Wang, T. Yang, B. Yang, and G. Xie, Alveolus-Inspired Active Membrane Sensors for Self-Powered Wearable Chemical Sensing and Breath Analysis. ACS Nano 14, 6067–6075 (2020).CrossRef Y. Su, J. Wang, B. Wang, T. Yang, B. Yang, and G. Xie, Alveolus-Inspired Active Membrane Sensors for Self-Powered Wearable Chemical Sensing and Breath Analysis. ACS Nano 14, 6067–6075 (2020).CrossRef
6.
go back to reference C. Zhang, Y. Luo, J. Xu, and M. Debliquy, Room Temperature Conductive Type Metal Oxide Semiconductor Gas Sensors for NO2 Detection. Sensor. Actuators A Phys. 289, 118–133 (2019).CrossRef C. Zhang, Y. Luo, J. Xu, and M. Debliquy, Room Temperature Conductive Type Metal Oxide Semiconductor Gas Sensors for NO2 Detection. Sensor. Actuators A Phys. 289, 118–133 (2019).CrossRef
7.
go back to reference C.W. Na, J.-H. Kim, H.-J. Kim, H.-S. Woo, A. Gupta, H.-K. Kim, and J.-H. Lee, Highly Selective and Sensitive Detection of NO2 using rGO-In2O3 Structure on Flexible Substrate at Low Temperature. Sensors Actuators B Chem. 255, 1671–1679 (2018).CrossRef C.W. Na, J.-H. Kim, H.-J. Kim, H.-S. Woo, A. Gupta, H.-K. Kim, and J.-H. Lee, Highly Selective and Sensitive Detection of NO2 using rGO-In2O3 Structure on Flexible Substrate at Low Temperature. Sensors Actuators B Chem. 255, 1671–1679 (2018).CrossRef
8.
go back to reference C. Lou, C. Yang, W. Zheng, X. Liu, and J. Zhang, Atomic Layer Deposition of ZnO on SnO2 Nanospheres for Enhanced Formaldehyde Detection. Sensors Actuators B Chem. 329, 129218 (2021).CrossRef C. Lou, C. Yang, W. Zheng, X. Liu, and J. Zhang, Atomic Layer Deposition of ZnO on SnO2 Nanospheres for Enhanced Formaldehyde Detection. Sensors Actuators B Chem. 329, 129218 (2021).CrossRef
9.
go back to reference X. Gao, Q. Ouyang, C. Zhu, X. Zhang, and Y. Chen, Porous MoO3/SnO2 Nanoflakes with n–n Junctions for Sensing H2S. ACS Appl. Nano Mater. 2, 2418–2425 (2019).CrossRef X. Gao, Q. Ouyang, C. Zhu, X. Zhang, and Y. Chen, Porous MoO3/SnO2 Nanoflakes with n–n Junctions for Sensing H2S. ACS Appl. Nano Mater. 2, 2418–2425 (2019).CrossRef
10.
go back to reference J. Liu, L. Zhang, J. Fan, B. Zhu, and J. Yu, Triethylamine Gas Sensor Based on Pt-Functionalized Hierarchical ZnO Microspheres. Sensors Actuators B Chem. 331, 129425 (2021).CrossRef J. Liu, L. Zhang, J. Fan, B. Zhu, and J. Yu, Triethylamine Gas Sensor Based on Pt-Functionalized Hierarchical ZnO Microspheres. Sensors Actuators B Chem. 331, 129425 (2021).CrossRef
11.
go back to reference F. Xu, C. Zhou, and H.-P. Ho, A Rule for Operation Temperature Selection of a Conductometric VOC Gas Sensor Based on ZnO Nanotetrapods. J. Alloys Compd. 858, 158294 (2021).CrossRef F. Xu, C. Zhou, and H.-P. Ho, A Rule for Operation Temperature Selection of a Conductometric VOC Gas Sensor Based on ZnO Nanotetrapods. J. Alloys Compd. 858, 158294 (2021).CrossRef
12.
go back to reference S. Yang, G. Lei, L. Tan, H. Xu, J. Xiong, Z. Wang, and H. Gu, Fe-doped MoO3 Nanoribbons for High-Performance Hydrogen Sensor at Room Temperature. J. Alloys Compd. 877, 160200 (2021).CrossRef S. Yang, G. Lei, L. Tan, H. Xu, J. Xiong, Z. Wang, and H. Gu, Fe-doped MoO3 Nanoribbons for High-Performance Hydrogen Sensor at Room Temperature. J. Alloys Compd. 877, 160200 (2021).CrossRef
14.
go back to reference S. Kanaparthi and S. Govind Singh, Highly Sensitive and Ultra-Fast Responsive Ammonia Gas Sensor Based on 2D ZnO Nanoflakes. Mater. Sci. Energy Technol., 3, 91–96 (2020). S. Kanaparthi and S. Govind Singh, Highly Sensitive and Ultra-Fast Responsive Ammonia Gas Sensor Based on 2D ZnO Nanoflakes. Mater. Sci. Energy Technol., 3, 91–96 (2020).
15.
go back to reference M. Turemis, D. Zappi, M.T. Giardi, G. Basile, A. Ramanaviciene, and A. Kapralovs, ZnO/polyaniline Composite Based Photoluminescence Sensor for the Determination of Acetic Acid Vapor. Talanta 211, 120658 (2020).CrossRef M. Turemis, D. Zappi, M.T. Giardi, G. Basile, A. Ramanaviciene, and A. Kapralovs, ZnO/polyaniline Composite Based Photoluminescence Sensor for the Determination of Acetic Acid Vapor. Talanta 211, 120658 (2020).CrossRef
16.
go back to reference T.V.A. Kusumam, V.S. Siril, K.N. Madhusoodanan, M. Prashantkumar, Y.T. Ravikiran, and N.K. Renuka, NO2 gas Sensing Performance of zinc oxide Nanostructures Synthesized by Surfactant Assisted Low Temperature Hydrothermal Technique. Sensor. Actuators A Phys. 318, 112389 (2021).CrossRef T.V.A. Kusumam, V.S. Siril, K.N. Madhusoodanan, M. Prashantkumar, Y.T. Ravikiran, and N.K. Renuka, NO2 gas Sensing Performance of zinc oxide Nanostructures Synthesized by Surfactant Assisted Low Temperature Hydrothermal Technique. Sensor. Actuators A Phys. 318, 112389 (2021).CrossRef
17.
go back to reference J. Xing, Z. Liu, J. Zhou, Q. Wang, Y. Geng, Y. Du, and Q. Pan, Mesostructure Carbon-Templated Synthesis of Mesoporous ZnO by a Nanocasting Route for NO2 sensing. Mater. Lett. 244, 182–185 (2019).CrossRef J. Xing, Z. Liu, J. Zhou, Q. Wang, Y. Geng, Y. Du, and Q. Pan, Mesostructure Carbon-Templated Synthesis of Mesoporous ZnO by a Nanocasting Route for NO2 sensing. Mater. Lett. 244, 182–185 (2019).CrossRef
18.
go back to reference Y.H. Navale, S.T. Navale, N.S. Ramgir, F.J. Stadler, S.K. Gupta, D.K. Aswal, and V.B. Patil, Zinc Oxide Hierarchical Nanostructures as Potential NO2 Sensors. Sensor. Actuators B Chem. 251, 551–563 (2017).CrossRef Y.H. Navale, S.T. Navale, N.S. Ramgir, F.J. Stadler, S.K. Gupta, D.K. Aswal, and V.B. Patil, Zinc Oxide Hierarchical Nanostructures as Potential NO2 Sensors. Sensor. Actuators B Chem. 251, 551–563 (2017).CrossRef
19.
go back to reference K. Zhang, S. Qin, P. Tang, Y. Feng, and D. Li, Ultra-Sensitive Ethanol Gas Sensors Based on Nanosheet-Assembled Hierarchical ZnO-In2O3 Heterostructures. J. Hazard. Mater. 391, 122191 (2020).CrossRef K. Zhang, S. Qin, P. Tang, Y. Feng, and D. Li, Ultra-Sensitive Ethanol Gas Sensors Based on Nanosheet-Assembled Hierarchical ZnO-In2O3 Heterostructures. J. Hazard. Mater. 391, 122191 (2020).CrossRef
20.
go back to reference C. Wang, M. Yang, L. Liu, Y. Xu, X. Zhang, and X. Cheng, One-step Synthesis of polypyrrole/Fe2O3 Nanocomposite and the Enhanced Response of NO2 at Low Temperature. J. Colloid Interface Sci. 560, 312–320 (2020).CrossRef C. Wang, M. Yang, L. Liu, Y. Xu, X. Zhang, and X. Cheng, One-step Synthesis of polypyrrole/Fe2O3 Nanocomposite and the Enhanced Response of NO2 at Low Temperature. J. Colloid Interface Sci. 560, 312–320 (2020).CrossRef
21.
go back to reference A.H. Ismail, N.A. Mohd Yahya, M.H. Yaacob, M.A. Mahdi, and Y. Sulaiman, Optical Ammonia Gas Sensor of poly(3,4-Polyethylenedioxythiophene), Polyaniline and Polypyrrole: A Comparative Study. Synth. Met. 260, 116294 (2020).CrossRef A.H. Ismail, N.A. Mohd Yahya, M.H. Yaacob, M.A. Mahdi, and Y. Sulaiman, Optical Ammonia Gas Sensor of poly(3,4-Polyethylenedioxythiophene), Polyaniline and Polypyrrole: A Comparative Study. Synth. Met. 260, 116294 (2020).CrossRef
22.
go back to reference X. Chen, C.A. Yuan, C.K.Y. Wong, H. Ye, S.Y.Y. Leung, and G. Zhang, Molecular Modeling of Protonic Acid Doping of Emeraldine Base Polyaniline for Chemical Sensors. Sensors Actuators B Chem. 174, 210–216 (2012).CrossRef X. Chen, C.A. Yuan, C.K.Y. Wong, H. Ye, S.Y.Y. Leung, and G. Zhang, Molecular Modeling of Protonic Acid Doping of Emeraldine Base Polyaniline for Chemical Sensors. Sensors Actuators B Chem. 174, 210–216 (2012).CrossRef
23.
go back to reference M. Eising, C.E. Cava, R.V. Salvatierra, A.J.G. Zarbin, and L.S. Roman, Doping effect on Self-Assembled Films of Polyaniline and Carbon Nanotube Applied as Ammonia Gas Sensor. Sensors Actuators B Chem. 245, 25–33 (2017).CrossRef M. Eising, C.E. Cava, R.V. Salvatierra, A.J.G. Zarbin, and L.S. Roman, Doping effect on Self-Assembled Films of Polyaniline and Carbon Nanotube Applied as Ammonia Gas Sensor. Sensors Actuators B Chem. 245, 25–33 (2017).CrossRef
24.
go back to reference L. Quan, J. Sun, S. Bai, R. Luo, D. Li, A. Chen, and C.C. Liu, A Flexible Sensor Based on Polyaniline Hybrid Using ZnO as Template and Sensing properties to Triethylamine at Room Temperature. Appl. Surf. Sci. 399, 583–591 (2017).CrossRef L. Quan, J. Sun, S. Bai, R. Luo, D. Li, A. Chen, and C.C. Liu, A Flexible Sensor Based on Polyaniline Hybrid Using ZnO as Template and Sensing properties to Triethylamine at Room Temperature. Appl. Surf. Sci. 399, 583–591 (2017).CrossRef
25.
go back to reference L. Xue, W. Wang, Y. Guo, G. Liu, and P. Wan, Flexible Polyaniline/Carbon Nanotube Nanocomposite Film-Based Electronic Gas Sensors. Sensor. Actuators B Chem. 244, 47–53 (2017).CrossRef L. Xue, W. Wang, Y. Guo, G. Liu, and P. Wan, Flexible Polyaniline/Carbon Nanotube Nanocomposite Film-Based Electronic Gas Sensors. Sensor. Actuators B Chem. 244, 47–53 (2017).CrossRef
26.
go back to reference S. Daikh, F.Z. Zeggai, A. Bellil, and A. Benyoucef, Chemical Polymerization, Characterization and Electrochemical Studies of PANI/ZnO doped with Hydrochloric Acid and/or Zinc Chloride: Differences between the Synthesized Nanocomposites. J. Phys. Chem. Solids 121, 78–84 (2018).CrossRef S. Daikh, F.Z. Zeggai, A. Bellil, and A. Benyoucef, Chemical Polymerization, Characterization and Electrochemical Studies of PANI/ZnO doped with Hydrochloric Acid and/or Zinc Chloride: Differences between the Synthesized Nanocomposites. J. Phys. Chem. Solids 121, 78–84 (2018).CrossRef
27.
go back to reference C. Liu, H. Tai, P. Zhang, Z. Yuan, X. Du, G. Xie, and Y. Jiang, A High-Performance Flexible Gas Sensor Based on Self-Assembled PANI-CeO2 Nanocomposite Thin Film for Trace-Level NH3 Detection at Room Temperature. Sensor. Actuators B Chem. 261, 587–597 (2018).CrossRef C. Liu, H. Tai, P. Zhang, Z. Yuan, X. Du, G. Xie, and Y. Jiang, A High-Performance Flexible Gas Sensor Based on Self-Assembled PANI-CeO2 Nanocomposite Thin Film for Trace-Level NH3 Detection at Room Temperature. Sensor. Actuators B Chem. 261, 587–597 (2018).CrossRef
28.
go back to reference S. Li, P. Lin, L. Zhao, C. Wang, D. Liu, F. Liu, and G. Lu, The Room Temperature Gas Sensor Based on Polyaniline@flower-like WO3 Nanocomposites and Flexible PET Substrate for NH3 Detection. Sensor. Actuators B Chem. 259, 505–513 (2018).CrossRef S. Li, P. Lin, L. Zhao, C. Wang, D. Liu, F. Liu, and G. Lu, The Room Temperature Gas Sensor Based on Polyaniline@flower-like WO3 Nanocomposites and Flexible PET Substrate for NH3 Detection. Sensor. Actuators B Chem. 259, 505–513 (2018).CrossRef
29.
go back to reference P. Yang, D. Lv, W. Shen, T. Wu, Y. Yang, Y. Zhao, and W. Song, Porous Flexible Polyaniline/Polyvinylidene Fluoride Composite Film for Trace-Level NH3 Detection at Room Temperature. Mater. Lett. 271, 127798 (2020).CrossRef P. Yang, D. Lv, W. Shen, T. Wu, Y. Yang, Y. Zhao, and W. Song, Porous Flexible Polyaniline/Polyvinylidene Fluoride Composite Film for Trace-Level NH3 Detection at Room Temperature. Mater. Lett. 271, 127798 (2020).CrossRef
30.
go back to reference S. Li, A. Liu, Z. Yang, J. He, J. Wang, F. Liu, H. Lu, X. Yan, P. Sun, X. Liang, Y. Gao, and G. Lu, Room Temperature Gas Sensor Based on tin Dioxide@ Polyaniline Nanocomposite Assembled on Flexible Substrate: ppb-Level Detection of NH3. Sensor. Actuators B Chem. 299, 126970 (2019).CrossRef S. Li, A. Liu, Z. Yang, J. He, J. Wang, F. Liu, H. Lu, X. Yan, P. Sun, X. Liang, Y. Gao, and G. Lu, Room Temperature Gas Sensor Based on tin Dioxide@ Polyaniline Nanocomposite Assembled on Flexible Substrate: ppb-Level Detection of NH3. Sensor. Actuators B Chem. 299, 126970 (2019).CrossRef
31.
go back to reference X. Wang, L. Gong, D. Zhang, X. Fan, Y. Jin, and L. Guo, Room Temperature Ammonia Gas Sensor Based on Polyaniline/Copper Ferrite Binary Nanocomposites. Sensor. Actuators B Chem. 322, 128615 (2020).CrossRef X. Wang, L. Gong, D. Zhang, X. Fan, Y. Jin, and L. Guo, Room Temperature Ammonia Gas Sensor Based on Polyaniline/Copper Ferrite Binary Nanocomposites. Sensor. Actuators B Chem. 322, 128615 (2020).CrossRef
32.
go back to reference A. Liu, S. Lv, L. Jiang, F. Liu, L. Zhao, J. Wang, and G. Lu, The Gas Sensor Utilizing Polyaniline/MoS2 Nanosheets/SnO2 Nanotubes for the Room Temperature Detection of Ammonia. Sensor. Actuators B Chem. 322, 128615 (2021). A. Liu, S. Lv, L. Jiang, F. Liu, L. Zhao, J. Wang, and G. Lu, The Gas Sensor Utilizing Polyaniline/MoS2 Nanosheets/SnO2 Nanotubes for the Room Temperature Detection of Ammonia. Sensor. Actuators B Chem. 322, 128615 (2021).
33.
go back to reference H. Xu, X. Chen, J. Zhang, J. Wang, B. Cao, and D. Cui, NO2 gas sensing with SnO2–ZnO/PANI Composite Thick Film Fabricated from Porous Nanosolid. Sensor Actuators B Chem. 176, 166–173 (2013).CrossRef H. Xu, X. Chen, J. Zhang, J. Wang, B. Cao, and D. Cui, NO2 gas sensing with SnO2–ZnO/PANI Composite Thick Film Fabricated from Porous Nanosolid. Sensor Actuators B Chem. 176, 166–173 (2013).CrossRef
34.
go back to reference S. Jain, N. Karmakar, A. Shah, and N.G. Shimpi, Development of Ni doped ZnO/polyaniline Nanocomposites as High Response Room Temperature NO2 Sensor. Mater. Sci. Eng. B 247, 114381 (2019).CrossRef S. Jain, N. Karmakar, A. Shah, and N.G. Shimpi, Development of Ni doped ZnO/polyaniline Nanocomposites as High Response Room Temperature NO2 Sensor. Mater. Sci. Eng. B 247, 114381 (2019).CrossRef
35.
go back to reference Z.S. Ali, and A.M. Shano, The Influence of Solvents on Polyaniline Nanofibers Synthesized by a Hydrothermal Method and their Application in Gas Sensors. J. Electron. Mater. 49, 5528–5553 (2020).CrossRef Z.S. Ali, and A.M. Shano, The Influence of Solvents on Polyaniline Nanofibers Synthesized by a Hydrothermal Method and their Application in Gas Sensors. J. Electron. Mater. 49, 5528–5553 (2020).CrossRef
36.
go back to reference H.J. Akber, I.M. Ibrahim, and K.H. Razeg, Hydrothermal Synthesis of Polyaniline Nano-fibers as H2S Gas Sensor. J. Phys. Conf. Ser. 1664, 012017 (2020).CrossRef H.J. Akber, I.M. Ibrahim, and K.H. Razeg, Hydrothermal Synthesis of Polyaniline Nano-fibers as H2S Gas Sensor. J. Phys. Conf. Ser. 1664, 012017 (2020).CrossRef
37.
go back to reference L. Van Duy, N. Van Duy, C.M. Hung, N.D. Hoa, and N.Q. Dich, Urea Mediated Synthesis and Acetone-sensing properties of Ultrathin porous ZnO Nanoplates. Mater. Today Commun. 25, 101445 (2020).CrossRef L. Van Duy, N. Van Duy, C.M. Hung, N.D. Hoa, and N.Q. Dich, Urea Mediated Synthesis and Acetone-sensing properties of Ultrathin porous ZnO Nanoplates. Mater. Today Commun. 25, 101445 (2020).CrossRef
38.
go back to reference N.D. Hoa, C.M. Hung, N. Van Duy, and N. Van Hieu, Nanoporous and Crystal Evolution in Nickel Oxide Nanosheets for Enhanced Gas-Sensing Performance. Sensor. Actuators B Chem. 273, 784–793 (2018).CrossRef N.D. Hoa, C.M. Hung, N. Van Duy, and N. Van Hieu, Nanoporous and Crystal Evolution in Nickel Oxide Nanosheets for Enhanced Gas-Sensing Performance. Sensor. Actuators B Chem. 273, 784–793 (2018).CrossRef
39.
go back to reference N.X. Thai, N. Van Duy, C.M. Hung, H. Nguyen, M. Tonezzer, N. Van Hieu, and N.D. Hoa, Prototype Edge-grown Nanowire Sensor Array for the real-time Monitoring and Classification of Multiple Gases. J. Sci. Adv. Mater. Devices 5, 409–416 (2020).CrossRef N.X. Thai, N. Van Duy, C.M. Hung, H. Nguyen, M. Tonezzer, N. Van Hieu, and N.D. Hoa, Prototype Edge-grown Nanowire Sensor Array for the real-time Monitoring and Classification of Multiple Gases. J. Sci. Adv. Mater. Devices 5, 409–416 (2020).CrossRef
40.
go back to reference E. Luévano-Hipólito, A. Martínez-de la Cruz, and E. López Cuéllar, Performance of ZnO Synthesized by Sol-Gel as Photocatalyst in the Photooxidation Reaction of NO. Environ. Sci. Pollut. Res. 24, 7, 6361–6371 (2017). E. Luévano-Hipólito, A. Martínez-de la Cruz, and E. López Cuéllar, Performance of ZnO Synthesized by Sol-Gel as Photocatalyst in the Photooxidation Reaction of NO. Environ. Sci. Pollut. Res. 24, 7, 6361–6371 (2017).
41.
go back to reference S. Ramakrishnan, and S. Rajakarthihan, Low-Dose Gamma Irradiation Effect on Structural and Optical Properties of PANI–ZnO Composite Thin Films. Appl. Radiat. Isot. 160, 109104 (2020).CrossRef S. Ramakrishnan, and S. Rajakarthihan, Low-Dose Gamma Irradiation Effect on Structural and Optical Properties of PANI–ZnO Composite Thin Films. Appl. Radiat. Isot. 160, 109104 (2020).CrossRef
42.
go back to reference A. Mostafaei, and A. Zolriasatein, Synthesis and Characterization of Conducting Polyaniline Nanocomposites Containing ZnO Nanorods. Prog. Nat. Sci. Mater. Int. 22, 273–280 (2012).CrossRef A. Mostafaei, and A. Zolriasatein, Synthesis and Characterization of Conducting Polyaniline Nanocomposites Containing ZnO Nanorods. Prog. Nat. Sci. Mater. Int. 22, 273–280 (2012).CrossRef
43.
go back to reference U. Holzwarth, and N. Gibson, The Scherrer Equation Versus the ‘Debye-Scherrer equation.’ Nat. Nanotechnol. 6, 534–534 (2011).CrossRef U. Holzwarth, and N. Gibson, The Scherrer Equation Versus the ‘Debye-Scherrer equation.’ Nat. Nanotechnol. 6, 534–534 (2011).CrossRef
44.
go back to reference D. Yoo, J.J. Lee, C. Park, H.H. Choi, and J.-H. Kim, N-type organic Thermoelectric Materials based On Polyaniline Doped with the Aprotic Ionic Liquid 1-Ethyl-3-Methylimidazolium Ethyl Sulfate. RSC Adv. 6, 37130–37135 (2016).CrossRef D. Yoo, J.J. Lee, C. Park, H.H. Choi, and J.-H. Kim, N-type organic Thermoelectric Materials based On Polyaniline Doped with the Aprotic Ionic Liquid 1-Ethyl-3-Methylimidazolium Ethyl Sulfate. RSC Adv. 6, 37130–37135 (2016).CrossRef
45.
go back to reference R.K. Pippara, P.S. Chauhan, A. Yadav, V. Kishnani, and A. Gupta, Room Temperature Hydrogen Sensing with Polyaniline/SnO2/Pd Nanocomposites. Micro Nano Eng. 12, 100086 (2021).CrossRef R.K. Pippara, P.S. Chauhan, A. Yadav, V. Kishnani, and A. Gupta, Room Temperature Hydrogen Sensing with Polyaniline/SnO2/Pd Nanocomposites. Micro Nano Eng. 12, 100086 (2021).CrossRef
46.
go back to reference A.S. Nguyen, T.D. Nguyen, T.T. Thai, A.T. Trinh, G.V. Pham, H. Thai, and D.T. Nguyen, Synthesis of Conducting PANi/SiO2 Nanocomposites and Their Effect on Electrical And Mechanical Properties Of Antistatic Waterborne Epoxy coating. J. Coatings Technol. Res. 17, 361–370 (2020).CrossRef A.S. Nguyen, T.D. Nguyen, T.T. Thai, A.T. Trinh, G.V. Pham, H. Thai, and D.T. Nguyen, Synthesis of Conducting PANi/SiO2 Nanocomposites and Their Effect on Electrical And Mechanical Properties Of Antistatic Waterborne Epoxy coating. J. Coatings Technol. Res. 17, 361–370 (2020).CrossRef
47.
go back to reference J. Chu, X. Li, Q. Li, J. Ma, B. Wu, X. Wang, and S. Xiong, Hydrothermal Synthesis of PANI Nanowires for High-Performance Supercapacitor. High Perform. Polym. 32, 258–267 (2020).CrossRef J. Chu, X. Li, Q. Li, J. Ma, B. Wu, X. Wang, and S. Xiong, Hydrothermal Synthesis of PANI Nanowires for High-Performance Supercapacitor. High Perform. Polym. 32, 258–267 (2020).CrossRef
48.
go back to reference A. Kumar, A. Kumar, H. Mudila, K. Awasthi, and V. Kumar, Synthesis and Thermal Analysis of Polyaniline (PANI). J. Phys. Conf. Ser. 1531, 012108 (2020).CrossRef A. Kumar, A. Kumar, H. Mudila, K. Awasthi, and V. Kumar, Synthesis and Thermal Analysis of Polyaniline (PANI). J. Phys. Conf. Ser. 1531, 012108 (2020).CrossRef
49.
go back to reference S.M. Mali, P.P. Chavan, Y.H. Navale, V.B. Patil, and B.R. Sathe, Ultrasensitive and Bifunctional Zno Nanoplates For An Oxidative Electrochemical And Chemical Sensor Of NO2: Implications Towards Environmental Monitoring of the Nitrite Reaction. RSC Adv. 8, 11177–11185 (2018).CrossRef S.M. Mali, P.P. Chavan, Y.H. Navale, V.B. Patil, and B.R. Sathe, Ultrasensitive and Bifunctional Zno Nanoplates For An Oxidative Electrochemical And Chemical Sensor Of NO2: Implications Towards Environmental Monitoring of the Nitrite Reaction. RSC Adv. 8, 11177–11185 (2018).CrossRef
50.
go back to reference P.P. Mahamuni, P.M. Patil, M.J. Dhanavade, M.V. Badiger, P.G. Shadija, A.C. Lokhande, and R.A. Bohara, Synthesis and Characterization of Zinc Oxide Nanoparticles by Using polyol Chemistry for Their Antimicrobial and Antibiofilm Activity. Biochem. Biophys. Reports 17, 71–80 (2019).CrossRef P.P. Mahamuni, P.M. Patil, M.J. Dhanavade, M.V. Badiger, P.G. Shadija, A.C. Lokhande, and R.A. Bohara, Synthesis and Characterization of Zinc Oxide Nanoparticles by Using polyol Chemistry for Their Antimicrobial and Antibiofilm Activity. Biochem. Biophys. Reports 17, 71–80 (2019).CrossRef
51.
go back to reference J. Chu, D. Lu, B. Wu, X. Wang, M. Gong, R. Zhang, and S. Xiong, Synthesis and Electrochromic Properties of Conducting Polymers: Polyaniline directly Grown on Fluorine-Doped tin Oxide Substrate Via Hydrothermal techniques. Sol. Energy Mater. Sol. Cells 177, 70–74 (2018).CrossRef J. Chu, D. Lu, B. Wu, X. Wang, M. Gong, R. Zhang, and S. Xiong, Synthesis and Electrochromic Properties of Conducting Polymers: Polyaniline directly Grown on Fluorine-Doped tin Oxide Substrate Via Hydrothermal techniques. Sol. Energy Mater. Sol. Cells 177, 70–74 (2018).CrossRef
52.
go back to reference R.K. Sonker, B.C. Yadav, A. Sharma, M. Tomar, and V. Gupta, Experimental Investigations on NO2 Sensing of Pure ZnO and PANI–ZnO Composite Thin Films. RSC Adv. 6, 56149–56158 (2016).CrossRef R.K. Sonker, B.C. Yadav, A. Sharma, M. Tomar, and V. Gupta, Experimental Investigations on NO2 Sensing of Pure ZnO and PANI–ZnO Composite Thin Films. RSC Adv. 6, 56149–56158 (2016).CrossRef
53.
go back to reference R. Pandimurugan, and S. Thambidurai, Synthesis of Seaweed-ZnO-PANI hybrid Composite for Adsorption of Methylene Blue Dye. J. Environ. Chem. Eng. 4, 1332–1347 (2016).CrossRef R. Pandimurugan, and S. Thambidurai, Synthesis of Seaweed-ZnO-PANI hybrid Composite for Adsorption of Methylene Blue Dye. J. Environ. Chem. Eng. 4, 1332–1347 (2016).CrossRef
54.
go back to reference S.D. Birajdar, R.C. Alange, S.D. More, V.D. Murumkar, and K.M. Jadhav, Sol-gel Auto Combustion Synthesis, Structural and Magnetic Properties of Mn doped ZnO Nanoparticles. Procedia Manuf. 20, 174–180 (2018).CrossRef S.D. Birajdar, R.C. Alange, S.D. More, V.D. Murumkar, and K.M. Jadhav, Sol-gel Auto Combustion Synthesis, Structural and Magnetic Properties of Mn doped ZnO Nanoparticles. Procedia Manuf. 20, 174–180 (2018).CrossRef
55.
go back to reference M. Mathew, and C.S. Rout, Schottky Diodes Based on 2D Materials for Environmental gas Monitoring: A Review on emerging Trends, Recent Developments and Future Perspectives. J. Mater. Chem. C 9, 395–416 (2021).CrossRef M. Mathew, and C.S. Rout, Schottky Diodes Based on 2D Materials for Environmental gas Monitoring: A Review on emerging Trends, Recent Developments and Future Perspectives. J. Mater. Chem. C 9, 395–416 (2021).CrossRef
56.
go back to reference M. Sik Choi, M. Young Kim, A. Mirzaei, H.-S. Kim, S. Kim, S.-H. Baek, and K. Hyoung Lee, Selective, Sensitive, and Stable NO2 gas sensor based on porous ZnO Nanosheets. Appl. Surf. Sci. 568, 150910 (2021).CrossRef M. Sik Choi, M. Young Kim, A. Mirzaei, H.-S. Kim, S. Kim, S.-H. Baek, and K. Hyoung Lee, Selective, Sensitive, and Stable NO2 gas sensor based on porous ZnO Nanosheets. Appl. Surf. Sci. 568, 150910 (2021).CrossRef
57.
go back to reference N.X. Thai, N. Van Duy, N. Van Toan, C.M. Hung, N. Van Hieu, and N.D. Hoa, Effective Monitoring and Classification of Hydrogen and Ammonia Gases with a Bilayer Pt/SnO2 Thin Film Sensor. Int. J. Hydrogen Energy 45, 2418–2428 (2020).CrossRef N.X. Thai, N. Van Duy, N. Van Toan, C.M. Hung, N. Van Hieu, and N.D. Hoa, Effective Monitoring and Classification of Hydrogen and Ammonia Gases with a Bilayer Pt/SnO2 Thin Film Sensor. Int. J. Hydrogen Energy 45, 2418–2428 (2020).CrossRef
58.
go back to reference V.T. Dang, T.T.O. Nguyen, T.H. Truong, A.T. Le, and T.D. Nguyen, Facile Synthesis of different ZnO Nanostructures for Detecting sub-ppm NO2 gas. Mater. Today Commun. 22, 100826 (2020).CrossRef V.T. Dang, T.T.O. Nguyen, T.H. Truong, A.T. Le, and T.D. Nguyen, Facile Synthesis of different ZnO Nanostructures for Detecting sub-ppm NO2 gas. Mater. Today Commun. 22, 100826 (2020).CrossRef
59.
go back to reference L. Van Duy, T.T. Nguyet, C.M. Hung, and D. Le Thanh, Ultrasensitive NO2 Gas Sensing Performance of Two Dimensional ZnO Nanomaterials: Nanosheets and Nanoplates. Ceram. Int. 47, 28811–28820 (2021).CrossRef L. Van Duy, T.T. Nguyet, C.M. Hung, and D. Le Thanh, Ultrasensitive NO2 Gas Sensing Performance of Two Dimensional ZnO Nanomaterials: Nanosheets and Nanoplates. Ceram. Int. 47, 28811–28820 (2021).CrossRef
60.
go back to reference A. Umar, A.A. Ibrahim, H. Algadi, H. Albargi, M.A. Alsairi, Y. Wang, S. Akbar, Enhanced NO2 Gas Sensor device Based on Supramolecularly Assembled Polyaniline/Silver oxide/Graphene Oxide composites. Ceram. Int. 47, 25696–25707 (2021).CrossRef A. Umar, A.A. Ibrahim, H. Algadi, H. Albargi, M.A. Alsairi, Y. Wang, S. Akbar, Enhanced NO2 Gas Sensor device Based on Supramolecularly Assembled Polyaniline/Silver oxide/Graphene Oxide composites. Ceram. Int. 47, 25696–25707 (2021).CrossRef
61.
go back to reference H. Wang, M. Dai, Y. Li, J. Bai, Y. Liu, Y. Li, and G. Lu, The Influence of Different ZnO Nanostructures on NO2 Sensing Performance. Sensors Actuators B Chem. 329, 129145 (2021).CrossRef H. Wang, M. Dai, Y. Li, J. Bai, Y. Liu, Y. Li, and G. Lu, The Influence of Different ZnO Nanostructures on NO2 Sensing Performance. Sensors Actuators B Chem. 329, 129145 (2021).CrossRef
62.
go back to reference S. Kailasa Ganapathi, M. Kaur, M. Shaheera, A. Pathak, S.C. Gadkari, and A.K. Debnath, Highly Sensitive NO2 Sensor Based on ZnO Nanostructured Thin Film Prepared by SILAR Technique. Sensors Actuators B Chem. 335, 129678 (2021). S. Kailasa Ganapathi, M. Kaur, M. Shaheera, A. Pathak, S.C. Gadkari, and A.K. Debnath, Highly Sensitive NO2 Sensor Based on ZnO Nanostructured Thin Film Prepared by SILAR Technique. Sensors Actuators B Chem. 335, 129678 (2021).
63.
go back to reference J. Ding, S. Chen, N. Han, Y. Shi, P. Hu, H. Li, and J. Wang, Aerosol Assisted Chemical Vapour Deposition of Nanostructured ZnO thin films for NO2 and Ethanol Monitoring. Ceram. Int. 46, 15152–15158 (2020).CrossRef J. Ding, S. Chen, N. Han, Y. Shi, P. Hu, H. Li, and J. Wang, Aerosol Assisted Chemical Vapour Deposition of Nanostructured ZnO thin films for NO2 and Ethanol Monitoring. Ceram. Int. 46, 15152–15158 (2020).CrossRef
64.
go back to reference S. Kailasa, M. Sai Bhargava Reddy, B. Geeta Rani, H. Maseed, and K. Venkateswara Rao, Twisted Polyaniline Nanobelts @ rGO for Room Temperature NO2 Sensing. Mater. Lett. 257, 126687 (2019).CrossRef S. Kailasa, M. Sai Bhargava Reddy, B. Geeta Rani, H. Maseed, and K. Venkateswara Rao, Twisted Polyaniline Nanobelts @ rGO for Room Temperature NO2 Sensing. Mater. Lett. 257, 126687 (2019).CrossRef
65.
go back to reference H. Xu, D. Ju, W. Li, H. Gong, J. Zhang, J. Wang, and B. Cao, Low-Working-Temperature, Fast-Response-Speed NO2 Sensor with nanoporous-SnO2/polyaniline Double-Layered Film. Sensors Actuators B Chem. 224, 654–660 (2016).CrossRef H. Xu, D. Ju, W. Li, H. Gong, J. Zhang, J. Wang, and B. Cao, Low-Working-Temperature, Fast-Response-Speed NO2 Sensor with nanoporous-SnO2/polyaniline Double-Layered Film. Sensors Actuators B Chem. 224, 654–660 (2016).CrossRef
66.
go back to reference R.K. Sonker, and B.C. Yadav, Development of Fe2O3–PANI Nanocomposite Thin Film Based sensor for NO2 Detection. J. Taiwan Inst. Chem. Eng. 77, 276–281 (2017).CrossRef R.K. Sonker, and B.C. Yadav, Development of Fe2O3–PANI Nanocomposite Thin Film Based sensor for NO2 Detection. J. Taiwan Inst. Chem. Eng. 77, 276–281 (2017).CrossRef
67.
go back to reference W. Zhang, S. Cao, Z. Wu, M. Zhang, Y. Cao, J. Guo, and D. Jia, High-Performance Gas Sensor of Polyaniline/Carbon Nanotube Composites Promoted by Interface Engineering. Sensors 20, 149 (2019).CrossRef W. Zhang, S. Cao, Z. Wu, M. Zhang, Y. Cao, J. Guo, and D. Jia, High-Performance Gas Sensor of Polyaniline/Carbon Nanotube Composites Promoted by Interface Engineering. Sensors 20, 149 (2019).CrossRef
68.
go back to reference W. He, Y. Zhao, and Y. Xiong, Bilayer Polyaniline–WO3 Thin-Film Sensors Sensitive to NO2. ACS Omega 5, 9744–9751 (2020).CrossRef W. He, Y. Zhao, and Y. Xiong, Bilayer Polyaniline–WO3 Thin-Film Sensors Sensitive to NO2. ACS Omega 5, 9744–9751 (2020).CrossRef
69.
go back to reference J.H. Bang, Y.J. Kwon, J.-H. Lee, A. Mirzaei, H.Y. Lee, H. Choi, and H.W. Kim, Proton-Beam Engineered Surface-Point Defects for Highly Sensitive and Reliable NO2 Sensing Under Humid Environments. J. Hazard. Mater. 416, 125841 (2021).CrossRef J.H. Bang, Y.J. Kwon, J.-H. Lee, A. Mirzaei, H.Y. Lee, H. Choi, and H.W. Kim, Proton-Beam Engineered Surface-Point Defects for Highly Sensitive and Reliable NO2 Sensing Under Humid Environments. J. Hazard. Mater. 416, 125841 (2021).CrossRef
70.
go back to reference K. Hassan, R. Hossain, and V. Sahajwalla, Novel Microrecycled ZnO Nanoparticles Decorated Macroporous 3D Graphene Hybrid Aerogel for Efficient Detection of NO2 at Room Temperature. Sensor. Actuators B Chem. 330, 129278 (2021).CrossRef K. Hassan, R. Hossain, and V. Sahajwalla, Novel Microrecycled ZnO Nanoparticles Decorated Macroporous 3D Graphene Hybrid Aerogel for Efficient Detection of NO2 at Room Temperature. Sensor. Actuators B Chem. 330, 129278 (2021).CrossRef
71.
go back to reference F. Usman, J. Ojur Dennis, K. Cheng Seong, A. Yousif Ahmed, F. Meriaudeau, O. Bolarinwa Ayodele, and A. Yar, Synthesis and Characterisation of a Ternary Composite of Polyaniline, Reduced Graphene-Oxide and Chitosan with Reduced Optical Band Gap and Stable Aqueous Dispersibility. Results Phys. 15, 102690 (2019).CrossRef F. Usman, J. Ojur Dennis, K. Cheng Seong, A. Yousif Ahmed, F. Meriaudeau, O. Bolarinwa Ayodele, and A. Yar, Synthesis and Characterisation of a Ternary Composite of Polyaniline, Reduced Graphene-Oxide and Chitosan with Reduced Optical Band Gap and Stable Aqueous Dispersibility. Results Phys. 15, 102690 (2019).CrossRef
72.
go back to reference V. Paolucci, J. De Santis, L. Lozzi, M. Rigon, A. Martucci, C. Cantalini, ZnO Thin Films Containing Aliovalent ions for NO2 Gas Sensor activated by Visible Light. Ceram. Int. 47, 25017–25028 (2021).CrossRef V. Paolucci, J. De Santis, L. Lozzi, M. Rigon, A. Martucci, C. Cantalini, ZnO Thin Films Containing Aliovalent ions for NO2 Gas Sensor activated by Visible Light. Ceram. Int. 47, 25017–25028 (2021).CrossRef
Metadata
Title
Novel Synthesis of a PANI/ZnO Nanohybrid for Enhanced NO2 Gas Sensing Performance at Low Temperatures
Authors
To Thi Nguyet
Lai Van Duy
Quan Thi Minh Nguyet
Chu Thi Xuan
Dang Thi Thanh Le
Chu Manh Hung
Nguyen Van Duy
Nguyen Duc Hoa
Publication date
27-10-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09990-0

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue