Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

27-10-2022 | Original Research Article

Mn-Incorporated α-Fe2O3 Nanostructured Thin Films: Facile Synthesis and Application as a High-Performance Supercapacitor

Authors: Sujit A. Kadam, Yuan-Ron Ma, Yan-Ruei Chen, Yuvraj H. Navale, Amol S. Salunkhe, Vikas B. Patil, Sachin D. Ralegankar, Pravin D. More

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Among all the transition metal oxides, iron oxide-based materials are excellent for supercapacitor performance. Here, Mn-incorporated α-Fe2O3 (Mn:α-Fe2O3) nanostructured thin films (with 3%, 5%, and 7% Mn) are prepared via spray pyrolysis. All the synthesized nanostructured thin films are characterized by x-ray diffraction (XRD), optical study, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and contact angle for the structural, optical, morphological and wettability analysis, respectively. The band gap of Mn:α-Fe2O3 nanostructured thin films is tuned by changing Mn concentration. The increasing Mn concentration shifts the valance band edge towards the conduction band edge, reducing the band gap. The linear band gap decrease of 0.44 eV with the addition of Mn concentration, along with the band gap reduction, affects supercapacitive performance. The prepared 7% Mn:α-Fe2O3 nanostructured electrode exhibits excellent specific capacitance of 688.6 F g−1 at a scan rate of 5 mV s−1 in 1 M Na2SO4 electrolyte, energy density (6 Wh kg−1), and power density (12 kW kg−1) at a current density of 5 mA g−1.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference R. Garg, A. Agarwal, and M. Agarwal, A Review on MXene for Energy Storage Application: Effect of Interlayer Distance. Mater. Res. Exp. 7, 022001 (2020).CrossRef R. Garg, A. Agarwal, and M. Agarwal, A Review on MXene for Energy Storage Application: Effect of Interlayer Distance. Mater. Res. Exp. 7, 022001 (2020).CrossRef
2.
go back to reference A. Ray, A. Roy, S. Saha, and S. Das, Transition Metal Oxide-Based Nano-Materials for Energy Storage Application, Science Technology and Advanced Application of Supercapacitors. 5th Ed, (2018). A. Ray, A. Roy, S. Saha, and S. Das, Transition Metal Oxide-Based Nano-Materials for Energy Storage Application, Science Technology and Advanced Application of Supercapacitors. 5th Ed, (2018).
3.
go back to reference A. Teli, S. Beknalkar, S. Pawar, D. Dubal, T. Dongale, D. Patil, P. Patil, and J.C. Shin, Effect of Concentration on the Charge Storage Kinetics of Nanostructured MnO2 Thin Film Supercapacitors Synthesiszed by the Hydrothermal Method. Energies 13, 6124 (2020).CrossRef A. Teli, S. Beknalkar, S. Pawar, D. Dubal, T. Dongale, D. Patil, P. Patil, and J.C. Shin, Effect of Concentration on the Charge Storage Kinetics of Nanostructured MnO2 Thin Film Supercapacitors Synthesiszed by the Hydrothermal Method. Energies 13, 6124 (2020).CrossRef
4.
go back to reference S.S. Karade, D.P. Dubal, and B.R. Sankapal, Decoration of Ultrathin MoS2Nanoflakes Over MWCNTs: Enhanced Supercapacitive Performance Through Electrode to Symmetric All-Solid-State Device. Chem. Select 2, 10405 (2017). S.S. Karade, D.P. Dubal, and B.R. Sankapal, Decoration of Ultrathin MoS2Nanoflakes Over MWCNTs: Enhanced Supercapacitive Performance Through Electrode to Symmetric All-Solid-State Device. Chem. Select 2, 10405 (2017).
5.
go back to reference A. Soam, K. Parida, R. Kumar, P. Kavle, and R.O. Dusane, Silicon-MnO2 Core-Shell Nanowires as Electrodes for Micro-Supercapacitor Application. Ceram. Int. 45, 18914 (2019).CrossRef A. Soam, K. Parida, R. Kumar, P. Kavle, and R.O. Dusane, Silicon-MnO2 Core-Shell Nanowires as Electrodes for Micro-Supercapacitor Application. Ceram. Int. 45, 18914 (2019).CrossRef
6.
go back to reference P.D. More, P.R. Jadhav, A.A. Ghanwat, I.A. Dhole, Y.H. Navale, and V.B. Patil, Spray Synthesized Hydrophobic α-Fe2O3 Thin Film Electrodes for Supercapacitor Application. J. Mater. Sci.: Mater. Electron. 28, 17839 (2017). P.D. More, P.R. Jadhav, A.A. Ghanwat, I.A. Dhole, Y.H. Navale, and V.B. Patil, Spray Synthesized Hydrophobic α-Fe2O3 Thin Film Electrodes for Supercapacitor Application. J. Mater. Sci.: Mater. Electron. 28, 17839 (2017).
7.
go back to reference R. Nikam, S. Rayaprol, S. Mukherjee, S.D. Kaushik, P.S. Goyal, P.D. Babu, S. Radha, and V. Siruguri, Structure and Magnetic Properties of Mn Doped α-Fe2O3. Phys. B 574, 411663 (2019).CrossRef R. Nikam, S. Rayaprol, S. Mukherjee, S.D. Kaushik, P.S. Goyal, P.D. Babu, S. Radha, and V. Siruguri, Structure and Magnetic Properties of Mn Doped α-Fe2O3. Phys. B 574, 411663 (2019).CrossRef
8.
go back to reference G. Zhao, J. Li, X. Niu, S. Ke Tang, W. Wang, X. Zhu, MRu. Ma, and Y.H. Yang, Facile Synthesis of Mn-Doped Fe2O3 Nanostructures: Enhanced CO Catalytic Performance Induced by Manganese Doping. New J. Chem. 40, 3491 (2016).CrossRef G. Zhao, J. Li, X. Niu, S. Ke Tang, W. Wang, X. Zhu, MRu. Ma, and Y.H. Yang, Facile Synthesis of Mn-Doped Fe2O3 Nanostructures: Enhanced CO Catalytic Performance Induced by Manganese Doping. New J. Chem. 40, 3491 (2016).CrossRef
9.
go back to reference J. Zhang, Y. Wang, H.J. Liao, T.Y. Yang, Z. Chen, X. Yan, Z. Zhou, W.W. Liu, and Y.L. Chueh, Hierachical Mn-Doped Fe2O3@rGO Hollow Core-Shell Sphere for High-Performance Hybrid Capacitor. Mater. Today Energy 17, 1003388 (2020). J. Zhang, Y. Wang, H.J. Liao, T.Y. Yang, Z. Chen, X. Yan, Z. Zhou, W.W. Liu, and Y.L. Chueh, Hierachical Mn-Doped Fe2O3@rGO Hollow Core-Shell Sphere for High-Performance Hybrid Capacitor. Mater. Today Energy 17, 1003388 (2020).
10.
go back to reference D. Sarkar, M. Mandal, and K. Mandal, Design and Synthesis of High Performance Multifunctional Ultrathin Hematite Nanoribbons. ACS Appl. Mater. Interfaces 5, 11995 (2013).CrossRef D. Sarkar, M. Mandal, and K. Mandal, Design and Synthesis of High Performance Multifunctional Ultrathin Hematite Nanoribbons. ACS Appl. Mater. Interfaces 5, 11995 (2013).CrossRef
11.
go back to reference G. Wang, L. Zhang, and J. Zhang, A Review of Electrode Materials for Electrochemical Supercapacitors. Chem. Soc. Rev. 41, 797 (2012).CrossRef G. Wang, L. Zhang, and J. Zhang, A Review of Electrode Materials for Electrochemical Supercapacitors. Chem. Soc. Rev. 41, 797 (2012).CrossRef
12.
go back to reference T. Liu, Y. Ling, L. Yi Yang, E. Finn, T. Collazo, Y.T. Zhai, and Y. Li, Investigation of Hematite Nanorod-Nanoflake Morphological Transformation and the Application of Ultrathin Nanoflakes for Electrochemical Devices. Nano Energy 12, 169 (2015).CrossRef T. Liu, Y. Ling, L. Yi Yang, E. Finn, T. Collazo, Y.T. Zhai, and Y. Li, Investigation of Hematite Nanorod-Nanoflake Morphological Transformation and the Application of Ultrathin Nanoflakes for Electrochemical Devices. Nano Energy 12, 169 (2015).CrossRef
13.
go back to reference S.D. Bhattacharjya, and J.-S. Yu, 1-Dimensional Porous α-Fe2O3 Nanorods as High Performance Electrode Material for Supercapacitors. RSC Adv. 3, 25120 (2013).CrossRef S.D. Bhattacharjya, and J.-S. Yu, 1-Dimensional Porous α-Fe2O3 Nanorods as High Performance Electrode Material for Supercapacitors. RSC Adv. 3, 25120 (2013).CrossRef
14.
go back to reference M.T. Tung, H.T.B. Thuy, and Le. T.. T. Hang, Metal Doped Manganese Oxide Thin Films for Supercapacitor Application. J. Nanosci. Nanotechnol. 15, 6949 (2015).CrossRef M.T. Tung, H.T.B. Thuy, and Le. T.. T. Hang, Metal Doped Manganese Oxide Thin Films for Supercapacitor Application. J. Nanosci. Nanotechnol. 15, 6949 (2015).CrossRef
15.
go back to reference S.K. Shinde, M.B. Jalak, S.Y. Kim, H.M. Yadav, G.S. Ghodake, A.A. Kadam, and D.-Y. Kim, Effect of Mn Doping on the Chemical Synthesis of Interconnected Nanoflakes Like CoS Thin Films for High Performance Supercapacitor Application. Ceram. Int. 44, 23102 (2018).CrossRef S.K. Shinde, M.B. Jalak, S.Y. Kim, H.M. Yadav, G.S. Ghodake, A.A. Kadam, and D.-Y. Kim, Effect of Mn Doping on the Chemical Synthesis of Interconnected Nanoflakes Like CoS Thin Films for High Performance Supercapacitor Application. Ceram. Int. 44, 23102 (2018).CrossRef
16.
go back to reference A.L. Yarin, E. Zussman, J.H. Wendorff, and A. Greiner, Material Encapsulation and Transport in Core–Shell Micro/Nanofibers, Polymer and Carbon Nanotubes and Micro/Nanochannels. J. Mater. Chem. 17, 2585 (2007).CrossRef A.L. Yarin, E. Zussman, J.H. Wendorff, and A. Greiner, Material Encapsulation and Transport in Core–Shell Micro/Nanofibers, Polymer and Carbon Nanotubes and Micro/Nanochannels. J. Mater. Chem. 17, 2585 (2007).CrossRef
17.
go back to reference J. Singh, A. Rathi, M. Rawat, V. Kumar, and Ki-Hyun Kim (2019) The Effect of Manganese Doping on Structural, Optical, and Photocatalytic Activity of Zinc Oxide Nanoparticles. Compos. Part B: Eng. 166, 361 J. Singh, A. Rathi, M. Rawat, V. Kumar, and Ki-Hyun Kim (2019) The Effect of Manganese Doping on Structural, Optical, and Photocatalytic Activity of Zinc Oxide Nanoparticles. Compos. Part B: Eng. 166, 361
18.
go back to reference J. Lee and S.-Y. Kwak, Mn-Doped Maghemite (γ-Fe2O3) from Metal−Organic Framework Accompanying Redox Reaction in a Bimetallic System: The Structural Phase Transitions and Catalytic Activity Toward NOx Removal. ACS Omega 3, 2634 (2018).CrossRef J. Lee and S.-Y. Kwak, Mn-Doped Maghemite (γ-Fe2O3) from Metal−Organic Framework Accompanying Redox Reaction in a Bimetallic System: The Structural Phase Transitions and Catalytic Activity Toward NOx Removal. ACS Omega 3, 2634 (2018).CrossRef
19.
go back to reference T. Li, H. Yu, L. Zhi, W. Zhang, L. Dang, Z. Liu, and Z. Lei, Facile Electrochemical Fabrication of Porous Fe2O3 Nanosheets for Flexible Asymmetric Supercapacitors. J. Phys. Chem. C 121, 18982 (2017).CrossRef T. Li, H. Yu, L. Zhi, W. Zhang, L. Dang, Z. Liu, and Z. Lei, Facile Electrochemical Fabrication of Porous Fe2O3 Nanosheets for Flexible Asymmetric Supercapacitors. J. Phys. Chem. C 121, 18982 (2017).CrossRef
20.
go back to reference M.K. Racik, A. Manikandan, M. Mahendiran, J. Madhavan, M.V.A. Raj, M.M. Gulam, and T. Maiyalagan, Hydrothermal Synthesis and Characterization Studies of α-Fe2O3/MnO2 Nanocomposites for Energy Storage Supercapacitor Application. Ceram. Int. 46, 6222 (2020).CrossRef M.K. Racik, A. Manikandan, M. Mahendiran, J. Madhavan, M.V.A. Raj, M.M. Gulam, and T. Maiyalagan, Hydrothermal Synthesis and Characterization Studies of α-Fe2O3/MnO2 Nanocomposites for Energy Storage Supercapacitor Application. Ceram. Int. 46, 6222 (2020).CrossRef
21.
go back to reference S.A. Kadam, G.T. Phan, D.V. Pham, R.A. Patil, C.-C. Lai, Y.-R. Chen, Y. Liou, and Y.-R. Ma, Doping-Free Bandgap Tunability in Fe2O3 Nanostructured Films. Nanoscale Adv. 3, 5581 (2021).CrossRef S.A. Kadam, G.T. Phan, D.V. Pham, R.A. Patil, C.-C. Lai, Y.-R. Chen, Y. Liou, and Y.-R. Ma, Doping-Free Bandgap Tunability in Fe2O3 Nanostructured Films. Nanoscale Adv. 3, 5581 (2021).CrossRef
22.
go back to reference Q. Yuan, P. Li, J. Liu, Y. Lin, Y. Cai, Y. Ye, and C. Liang, Facet-Dependent Selective Adsorption of Mn-Doped α-Fe2O3 Nanocrystals Toward Heavy-Metal Ions. Chem. Mater. 29, 10198 (2017).CrossRef Q. Yuan, P. Li, J. Liu, Y. Lin, Y. Cai, Y. Ye, and C. Liang, Facet-Dependent Selective Adsorption of Mn-Doped α-Fe2O3 Nanocrystals Toward Heavy-Metal Ions. Chem. Mater. 29, 10198 (2017).CrossRef
23.
go back to reference D. Liu, C. Zhang, Y. Yu, Y. Shi, Y. Yu, Z. Niu, and B. Zhang, Hydrogen Evolution Activity Enhancement by Tuning the Oxygen Vacancies in Self-Supported Mesoporous Spinel Oxide Nanowire Arrays. Nano Res. 11, 603 (2018).CrossRef D. Liu, C. Zhang, Y. Yu, Y. Shi, Y. Yu, Z. Niu, and B. Zhang, Hydrogen Evolution Activity Enhancement by Tuning the Oxygen Vacancies in Self-Supported Mesoporous Spinel Oxide Nanowire Arrays. Nano Res. 11, 603 (2018).CrossRef
24.
go back to reference P. Liang, H. Zhang, Y. Su, Z. Huang, C.-A. Wang, and M. Zhong, In Situ Preparation of a Binder-Free Nano-Cotton-Like CuO–Cu Integrated Anode on a Current Collector by Laser Ablation Oxidation for Long Cycle Life Li-ion Batteries. J. Mater. Chem. A 5, 19781 (2017).CrossRef P. Liang, H. Zhang, Y. Su, Z. Huang, C.-A. Wang, and M. Zhong, In Situ Preparation of a Binder-Free Nano-Cotton-Like CuO–Cu Integrated Anode on a Current Collector by Laser Ablation Oxidation for Long Cycle Life Li-ion Batteries. J. Mater. Chem. A 5, 19781 (2017).CrossRef
25.
go back to reference S.A. Kadam, S.A. Thomas, Y.-R. Ma, L.M. Jose, D. Sajan, and A. Aravind, Investigation of Adsorption and Photocatalytic Behavior of Manganese Doped Zinc Oxide Nanostructures. Inorg. Chem. Commun. 134, 108981 (2021).CrossRef S.A. Kadam, S.A. Thomas, Y.-R. Ma, L.M. Jose, D. Sajan, and A. Aravind, Investigation of Adsorption and Photocatalytic Behavior of Manganese Doped Zinc Oxide Nanostructures. Inorg. Chem. Commun. 134, 108981 (2021).CrossRef
26.
go back to reference J. Wang, Y. Wu, Y. Cao, G. Li, and Y. Liao, Influence of Surface Roughness on Contact Angle Hysteresis and Spreading Work. Colloid Polym. Sci. 298, 1107 (2020).CrossRef J. Wang, Y. Wu, Y. Cao, G. Li, and Y. Liao, Influence of Surface Roughness on Contact Angle Hysteresis and Spreading Work. Colloid Polym. Sci. 298, 1107 (2020).CrossRef
27.
go back to reference L. Wang, H. Yang, X. Liu, R. Zeng, M. Li, Y. Huang, and X. Hu, Constructing Hierachical Tectorum-Like α-Fe2O3 PPy Nanoarrays on Carbon Cloth for Solid–State Asymmetric Supercpacitor. Angew. Chem. Int. Ed 55, 1 (2016). L. Wang, H. Yang, X. Liu, R. Zeng, M. Li, Y. Huang, and X. Hu, Constructing Hierachical Tectorum-Like α-Fe2O3 PPy Nanoarrays on Carbon Cloth for Solid–State Asymmetric Supercpacitor. Angew. Chem. Int. Ed 55, 1 (2016).
28.
go back to reference A. Agarwal and B.R. Sankapal, Ultrathin Cu2P2O7 Nanoflakes on Stainless Steel Substrate for Flexible Symmetric Solid-State Supercapacitors. Chem. Eng. J. 422, 130131 (2021).CrossRef A. Agarwal and B.R. Sankapal, Ultrathin Cu2P2O7 Nanoflakes on Stainless Steel Substrate for Flexible Symmetric Solid-State Supercapacitors. Chem. Eng. J. 422, 130131 (2021).CrossRef
29.
go back to reference V.D. Nithya and N.S. Arul, Review on α- Fe2O3 based Negative Electrode for High Performance Supercapacitorrs. J. Power Sources 327, 297 (2016).CrossRef V.D. Nithya and N.S. Arul, Review on α- Fe2O3 based Negative Electrode for High Performance Supercapacitorrs. J. Power Sources 327, 297 (2016).CrossRef
30.
go back to reference P.D. More, I.A. Dhole, Y.H. Navale, S.T. Navale, and V.B. Patil, Impact of Electrolyte Concentration on the Supercapacitive Properties of Spray Pyrolyzed CdO Thin Film Electrode. Solid State Ionics 334, 56 (2019).CrossRef P.D. More, I.A. Dhole, Y.H. Navale, S.T. Navale, and V.B. Patil, Impact of Electrolyte Concentration on the Supercapacitive Properties of Spray Pyrolyzed CdO Thin Film Electrode. Solid State Ionics 334, 56 (2019).CrossRef
31.
go back to reference R. Palanisamy, D. Karuppiah, S. Venkatesan, S. Mani, M. Kuppusamy, S. Marimuthu, A. Karuppanan, R. Govindaraju, S. Marimuthu, S. Rengapillai, M. Abdollahifar, A. Kumar, and A.R. Perumalsamy, High-Performance Asymmetric Supercapacitor Fabricated with a Novel MoS2/Fe2O3/Graphene Composite Electrode. Coll. Interface Sci. Commun. 46, 10057 (2022). R. Palanisamy, D. Karuppiah, S. Venkatesan, S. Mani, M. Kuppusamy, S. Marimuthu, A. Karuppanan, R. Govindaraju, S. Marimuthu, S. Rengapillai, M. Abdollahifar, A. Kumar, and A.R. Perumalsamy, High-Performance Asymmetric Supercapacitor Fabricated with a Novel MoS2/Fe2O3/Graphene Composite Electrode. Coll. Interface Sci. Commun. 46, 10057 (2022).
32.
go back to reference Y. Tian, L. Lin, S. Chen, S. Zhu., H. Zhang., W. Yu., H. Ning, and N. Hu, Defects Engineering of Fe2O3@Sn2O3 Nanosheet Arrays for High-Performance Hybrid Supercapacitor. J. Energy Storage 42, 103123 (2021).CrossRef Y. Tian, L. Lin, S. Chen, S. Zhu., H. Zhang., W. Yu., H. Ning, and N. Hu, Defects Engineering of Fe2O3@Sn2O3 Nanosheet Arrays for High-Performance Hybrid Supercapacitor. J. Energy Storage 42, 103123 (2021).CrossRef
33.
go back to reference S. Xie, M. Zhang, P. Liu, S. Wang, H. Si Liu, H.Z. Feng, and F. Cheng, Advanced Negative Electrode of Fe2O3/Graphene Oxide Paper for High Energy Supercapacitors. Mater. Res. Bull. 96, 413 (2017).CrossRef S. Xie, M. Zhang, P. Liu, S. Wang, H. Si Liu, H.Z. Feng, and F. Cheng, Advanced Negative Electrode of Fe2O3/Graphene Oxide Paper for High Energy Supercapacitors. Mater. Res. Bull. 96, 413 (2017).CrossRef
34.
go back to reference M.K. Racik, A. Manikandan, M. Mahendiran, P. Prabakaran, J. Madhavan, and M.V.A. Raj, Fabrication of Manganese Oxide Decorated Copper Oxide (MnO2/CuO) Nanocomposite Electrodes for Energy Storage Supercapacitor Devices. Phys. E 119, 114033 (2020).CrossRef M.K. Racik, A. Manikandan, M. Mahendiran, P. Prabakaran, J. Madhavan, and M.V.A. Raj, Fabrication of Manganese Oxide Decorated Copper Oxide (MnO2/CuO) Nanocomposite Electrodes for Energy Storage Supercapacitor Devices. Phys. E 119, 114033 (2020).CrossRef
35.
go back to reference H. Kuzhandaivel, Y. Selvaraj, M.C. Franklin, S. Manickam, and K.S. Nallathambi, Low-Temperature-Synthesized Mn-Doped Bi2Fe4O9 as an Efficient Electrode Material for Supercapacitor Applications. New J Chem. 45, 15223 (2021).CrossRef H. Kuzhandaivel, Y. Selvaraj, M.C. Franklin, S. Manickam, and K.S. Nallathambi, Low-Temperature-Synthesized Mn-Doped Bi2Fe4O9 as an Efficient Electrode Material for Supercapacitor Applications. New J Chem. 45, 15223 (2021).CrossRef
36.
go back to reference A.R. Rashid, A.G. Abid, S. Manzoor, A. Mera, T.I. Al-Muhimeed, A.A. Al-Obaid, S.N.B. Shah, M.N. Ashiq, M. Imran, and M.N. Ul-Haq, Inductive Effect in Mn-Doped ZnO Nanoribon Arrays Grown on Ni Foam: A Promising Key for Boosted Capacitive and High Specific Energy Supercapacitors. Ceramic Int. 47, 28338 (2021).CrossRef A.R. Rashid, A.G. Abid, S. Manzoor, A. Mera, T.I. Al-Muhimeed, A.A. Al-Obaid, S.N.B. Shah, M.N. Ashiq, M. Imran, and M.N. Ul-Haq, Inductive Effect in Mn-Doped ZnO Nanoribon Arrays Grown on Ni Foam: A Promising Key for Boosted Capacitive and High Specific Energy Supercapacitors. Ceramic Int. 47, 28338 (2021).CrossRef
37.
go back to reference R.S. Ray, B. Sarma, A.L. Jurovitzki, and M. Misra, Fabrication and Characterization of Titania Nanotube/Cobalt Sulfide Supercapcitor Electrode in Various Electrolytes. Chem. Eng. J. 60, 671 (2015).CrossRef R.S. Ray, B. Sarma, A.L. Jurovitzki, and M. Misra, Fabrication and Characterization of Titania Nanotube/Cobalt Sulfide Supercapcitor Electrode in Various Electrolytes. Chem. Eng. J. 60, 671 (2015).CrossRef
38.
go back to reference A.S. Salunkhe, Y.H. Navale, S.T. Navale, D.Y. Nadargiand, and V.B. Patil, Electrospun Flexible 1D-MnO2 Nanofibres: A Versatile Material for Energy Storage Application. J Mater Sci: Mater Electron. 32, 18028 (2021). A.S. Salunkhe, Y.H. Navale, S.T. Navale, D.Y. Nadargiand, and V.B. Patil, Electrospun Flexible 1D-MnO2 Nanofibres: A Versatile Material for Energy Storage Application. J Mater Sci: Mater Electron. 32, 18028 (2021).
Metadata
Title
Mn-Incorporated α-Fe2O3 Nanostructured Thin Films: Facile Synthesis and Application as a High-Performance Supercapacitor
Authors
Sujit A. Kadam
Yuan-Ron Ma
Yan-Ruei Chen
Yuvraj H. Navale
Amol S. Salunkhe
Vikas B. Patil
Sachin D. Ralegankar
Pravin D. More
Publication date
27-10-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-10019-9

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue