Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

08-11-2022 | Review Article

High-Gain Low-Profile EBG Resonator Antenna Based on Quasi-Icosahedral Shapes

Authors: Mustapha Hadj Sadok, Youssef Lamhene, Samir Berkani

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Studying the geometry of electromagnetic band gap (EBG) structures in 1 and 3 dimensions is useful for achieving effective directional radiation, high gain, and side-lobe attenuation of antennae. This paper presents an EBG antenna, whose radiating source is a rectangular notched patch, which can be used for applications around 20 GHz. Two conventional woodpile dielectric structures with a triangular lattice are presented in a comparative study to extract the best physical and electromagnetic performance in terms of directivity, bandwidth, and gain; these are the square and the cylindrical rods. These two structures’ electromagnetic and geometrical limits allow the design of a 3D EBG structure called an icosahedral structure. The proposed antenna is composed of different ceramic substrates (the Arlon AR 450, (h = 0.48 mm, ɛr = 4.5, El Tand = 0.0035) on which the radiating element is placed, the Rogers TMM 13i, (ɛr = 12.85, El Tand = 0.0019) for the 3D icosahedral structure; and the Taconic TLY-5A, (ɛr = 2.17, El Tand = 0.0009) for the 1D lateral walls). With a substrate-plated radiation source coupled with a 3D icosahedral structure and surrounded by a vertically mounted 1D structure, a directivity of 19 dBi was obtained with a realized gain of 17.7 dB and an optimal coupling (antenna–EBG material) at 19.8 GHz. These results are encouraging given the antenna size of 33.41 × 27.87 × 37.36 mm3.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.N. Elsheakh, A. Dalia, Hala Elsadek, A. Esmat Abdallah, Antenna designs with electromagnetic band gap structures, Metamaterial. Retrieved from November. 8:p. 2015. (2012) M.N. Elsheakh, A. Dalia, Hala Elsadek, A. Esmat Abdallah, Antenna designs with electromagnetic band gap structures, Metamaterial. Retrieved from November. 8:p. 2015. (2012)
2.
go back to reference Faruque, Mohammad Rashed I., Mohammad Tariqul Islam, and Norbahiah Misran, Evaluation of EM absorption in human head with metamaterial attachment. The Applied Computational Electromagnetics Society Journal (ACES): p. 1097. (2010). Faruque, Mohammad Rashed I., Mohammad Tariqul Islam, and Norbahiah Misran, Evaluation of EM absorption in human head with metamaterial attachment. The Applied Computational Electromagnetics Society Journal (ACES): p. 1097. (2010).
3.
go back to reference Yang Fan, Yahya Rahmat Samii (2009) Electromagnetic band gap structures in antenna engineering. Cambridge University Press, Cambridge Yang Fan, Yahya Rahmat Samii (2009) Electromagnetic band gap structures in antenna engineering. Cambridge University Press, Cambridge
4.
go back to reference Ziolkowski, W. Richard and Nader Engheta, Introduction, history, and selected topics in fundamental theories of metamaterials. Metamaterials: Physics and Engineering Explorations: p. 1. (2006). Ziolkowski, W. Richard and Nader Engheta, Introduction, history, and selected topics in fundamental theories of metamaterials. Metamaterials: Physics and Engineering Explorations: p. 1. (2006).
5.
go back to reference Salah Toubeh, Moustapha, Etude d’antennes BIE planaires de hauteur très inférieure à la longueur d’onde dite: The ULP EBG Antennas. (2011). Salah Toubeh, Moustapha, Etude d’antennes BIE planaires de hauteur très inférieure à la longueur d’onde dite: The ULP EBG Antennas. (2011).
6.
go back to reference E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987).CrossRef E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987).CrossRef
7.
go back to reference E. Yablonovitch, Photonic band-gap crystals. J. Phys.: Condensed Matter 5, 2443 (1993). E. Yablonovitch, Photonic band-gap crystals. J. Phys.: Condensed Matter 5, 2443 (1993).
8.
go back to reference A. Polman, and P. Wiltzius, Materials science aspects of photonic crystals. MRS Bull. 26, 608 (2001).CrossRef A. Polman, and P. Wiltzius, Materials science aspects of photonic crystals. MRS Bull. 26, 608 (2001).CrossRef
9.
10.
go back to reference P.R. Villeneuve, and M. Piché, Photonic band gaps in two-dimensional square lattices: square and circular rods. Phys. Rev. B 46, 4973 (1992).CrossRef P.R. Villeneuve, and M. Piché, Photonic band gaps in two-dimensional square lattices: square and circular rods. Phys. Rev. B 46, 4973 (1992).CrossRef
11.
go back to reference K.M. Ho, C.T. Chan, M. Costas Soukoulis, R. Biswas, and M. Sigalas, Photonic band gaps in three dimensions: New layer-by-layer periodic structures. Solid State Commun. 89, 413 (1994).CrossRef K.M. Ho, C.T. Chan, M. Costas Soukoulis, R. Biswas, and M. Sigalas, Photonic band gaps in three dimensions: New layer-by-layer periodic structures. Solid State Commun. 89, 413 (1994).CrossRef
12.
go back to reference A. Raveendran, Mailadil Thomas Sebastian, and Sujith Raman, Applications of microwave materials: a review. J. Electron. Mater. 48, 2601 (2019).CrossRef A. Raveendran, Mailadil Thomas Sebastian, and Sujith Raman, Applications of microwave materials: a review. J. Electron. Mater. 48, 2601 (2019).CrossRef
13.
go back to reference P. Maagt de, R. Gonzalo, C.Y. Vardaxoglou, J.M. Baracco (2003) Electromagnetic bandgap antennas and components for microwave and sub millimeter wave applications. IEEE Trans. Antennas Propag. 51(10):2667 P. Maagt de, R. Gonzalo, C.Y. Vardaxoglou, J.M. Baracco (2003) Electromagnetic bandgap antennas and components for microwave and sub millimeter wave applications. IEEE Trans. Antennas Propag. 51(10):2667
14.
go back to reference M. Abdel-Rahman, M. Osama Haraz, N. Ashraf, M.F. Zia, U. Khaled, I. Elsahfiey, S. Alshebeili, and A.R. Sebak, Properties of silica-based aerogel substrates and application to c-band circular patch antenna. J. Electron. Mater. 47, 2025 (2018).CrossRef M. Abdel-Rahman, M. Osama Haraz, N. Ashraf, M.F. Zia, U. Khaled, I. Elsahfiey, S. Alshebeili, and A.R. Sebak, Properties of silica-based aerogel substrates and application to c-band circular patch antenna. J. Electron. Mater. 47, 2025 (2018).CrossRef
15.
go back to reference Aggarwal, Ishita, Sujata Pandey, Malay Ranjan Tripathy, and Ashok Mittal, A compact high gain metamaterial-based antenna for terahertz applications. Journal of Electronic Materials: p. 1. (2022). Aggarwal, Ishita, Sujata Pandey, Malay Ranjan Tripathy, and Ashok Mittal, A compact high gain metamaterial-based antenna for terahertz applications. Journal of Electronic Materials: p. 1. (2022).
16.
go back to reference S. Pandit, Low-profile high-gain slot antenna using polarization-and incident-angle-insensitive metamaterial. J. Electron. Mater. 51, 1322 (2022).CrossRef S. Pandit, Low-profile high-gain slot antenna using polarization-and incident-angle-insensitive metamaterial. J. Electron. Mater. 51, 1322 (2022).CrossRef
17.
go back to reference J.P.D. Abboud and A. Papiernik, Rectangular microstrip antenna for CAD. IEEE Proceedings. 135. (1988). J.P.D. Abboud and A. Papiernik, Rectangular microstrip antenna for CAD. IEEE Proceedings. 135. (1988).
18.
go back to reference E. Newman, and P. Tulyathan, Analysis of microstrip antennas using moment methods. IEEE Trans. Anten. Propag. 29, 47 (1981).CrossRef E. Newman, and P. Tulyathan, Analysis of microstrip antennas using moment methods. IEEE Trans. Anten. Propag. 29, 47 (1981).CrossRef
19.
go back to reference H. Yi, and K. Boyle, Antennas: From Theory to Practice (Hoboken: Wiley, 2008). H. Yi, and K. Boyle, Antennas: From Theory to Practice (Hoboken: Wiley, 2008).
20.
go back to reference Yi. Huang, Antennas: From Theory to Practice (Hoboken: Wiley, 2021). Yi. Huang, Antennas: From Theory to Practice (Hoboken: Wiley, 2021).
21.
go back to reference A. Balanis, Constantine, Antenna Theory: Analysis and Design (Hoboken: Wiley, 2015). A. Balanis, Constantine, Antenna Theory: Analysis and Design (Hoboken: Wiley, 2015).
22.
go back to reference R. Ludwig, and P. Bretchko, RF Circuit Design Theory and Applications (US: Prentice-Hall, 2000). R. Ludwig, and P. Bretchko, RF Circuit Design Theory and Applications (US: Prentice-Hall, 2000).
23.
go back to reference A. Balanis, Constantine (Wiley, Hoboken: Advanced engineering electromagnetics, 1999). A. Balanis, Constantine (Wiley, Hoboken: Advanced engineering electromagnetics, 1999).
24.
go back to reference P. Bhartia, K.V.S. Rao, and R.S. Tomar, Millimeter-wave microstrip and printed circuit antennas (New York: Artech House Antenna Library, 1991). P. Bhartia, K.V.S. Rao, and R.S. Tomar, Millimeter-wave microstrip and printed circuit antennas (New York: Artech House Antenna Library, 1991).
25.
go back to reference T.C. Edwards, and M.B. Steer, Foundations of interconnect and microstrip design (Hoboken: Wiley, 2000).CrossRef T.C. Edwards, and M.B. Steer, Foundations of interconnect and microstrip design (Hoboken: Wiley, 2000).CrossRef
26.
go back to reference R. Garg, J. Prakash Bhartia, I. Bahl, and A. Ittipiboon, Microstrip antenna design handbook (New York: Artech house, 2001). R. Garg, J. Prakash Bhartia, I. Bahl, and A. Ittipiboon, Microstrip antenna design handbook (New York: Artech house, 2001).
27.
go back to reference Wu, Te-Kao, Frequency selective surfaces. Encyclopedia RF Microwave Engineering. (1995). Wu, Te-Kao, Frequency selective surfaces. Encyclopedia RF Microwave Engineering. (1995).
28.
go back to reference P. Kamphikul, P. Krachodnok, and R. Wongsan, High-gain antenna for base station using MSA and triangular EBG cavity. (2012). P. Kamphikul, P. Krachodnok, and R. Wongsan, High-gain antenna for base station using MSA and triangular EBG cavity. (2012).
29.
go back to reference Lee, Yoonjae, Xuesong Lu, Yang Hao, Shoufeng Yang, R. G. Julian Evans, and G. Clive Parini, Directive millimetrewave antennas using freeformed ceramic metamaterials in planar and cylindrical forms. IEEE Antennas and Propagation Society International Symposium. (2008). Lee, Yoonjae, Xuesong Lu, Yang Hao, Shoufeng Yang, R. G. Julian Evans, and G. Clive Parini, Directive millimetrewave antennas using freeformed ceramic metamaterials in planar and cylindrical forms. IEEE Antennas and Propagation Society International Symposium. (2008).
30.
go back to reference F. Frezza, L. Pajewski, and G. Schettini, Full-wave characterization of three-dimensional photonic bandgap structures. IEEE Trans. Nanotechnol. 5, 545 (2006).CrossRef F. Frezza, L. Pajewski, and G. Schettini, Full-wave characterization of three-dimensional photonic bandgap structures. IEEE Trans. Nanotechnol. 5, 545 (2006).CrossRef
31.
go back to reference F. Frezza, L. Pajewski, and G. Schettini, Characterization and design of two-dimensional electromagnetic band-gap structures by use of a full-wave method for diffraction gratings. IEEE Trans. Microw. Theory Tech. 51, 941 (2003).CrossRef F. Frezza, L. Pajewski, and G. Schettini, Characterization and design of two-dimensional electromagnetic band-gap structures by use of a full-wave method for diffraction gratings. IEEE Trans. Microw. Theory Tech. 51, 941 (2003).CrossRef
32.
go back to reference A. Yariv, and P. Yeh, Optical waves in crystals, Vol. 5 (New York: Wiley, 1984). A. Yariv, and P. Yeh, Optical waves in crystals, Vol. 5 (New York: Wiley, 1984).
33.
go back to reference M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, Directive photonic-bandgap antennas. IEEE Trans. Microw. Theory Tech. 47, 2115 (1999).CrossRef M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, Directive photonic-bandgap antennas. IEEE Trans. Microw. Theory Tech. 47, 2115 (1999).CrossRef
34.
go back to reference Thévenot, Marc, Analyse comportementale et conception des matériaux diélectriques à Bande Interdite Photonique: Application à l'étude et à la conception de nouveaux types d'antennes. (1999). Thévenot, Marc, Analyse comportementale et conception des matériaux diélectriques à Bande Interdite Photonique: Application à l'étude et à la conception de nouveaux types d'antennes. (1999).
35.
go back to reference J.S. Colburn, and Y. Rahmat-Samii, Patch antennas on externally perforated high dielectric constant substrates IEEE Trans. Antennas Propag. 47, 1785 (1999).CrossRef J.S. Colburn, and Y. Rahmat-Samii, Patch antennas on externally perforated high dielectric constant substrates IEEE Trans. Antennas Propag. 47, 1785 (1999).CrossRef
36.
go back to reference Huitema, Laure, Conception d’antennes miniatures à base de matériaux innovants pour systèmes de communications mobiles. (2011). Huitema, Laure, Conception d’antennes miniatures à base de matériaux innovants pour systèmes de communications mobiles. (2011).
37.
go back to reference Chantalat, Régis, Optimisation d'un réflecteur spatial à couverture cellulaire par l'utilisation d'une antenne à bande interdite électromagnétique multisources. (2003). Chantalat, Régis, Optimisation d'un réflecteur spatial à couverture cellulaire par l'utilisation d'une antenne à bande interdite électromagnétique multisources. (2003).
38.
go back to reference C. Cheype, C. Serier, M. Thèvenot, T. Monédière, A. Reineix, and B. Jecko, An electromagnetic bandgap resonator antenna. IEEE Trans. Antennas Propag. 50, 1285 (2002).CrossRef C. Cheype, C. Serier, M. Thèvenot, T. Monédière, A. Reineix, and B. Jecko, An electromagnetic bandgap resonator antenna. IEEE Trans. Antennas Propag. 50, 1285 (2002).CrossRef
39.
go back to reference C. Serier, C. Cheype, R. Chantalat, M. Thevenot, T. Monediere, A. Reineix, and B. Jecko, 1-D photonic bandgap resonator antenna. Microw. Opt. Technol. Lett. 29, 312 (2001).CrossRef C. Serier, C. Cheype, R. Chantalat, M. Thevenot, T. Monediere, A. Reineix, and B. Jecko, 1-D photonic bandgap resonator antenna. Microw. Opt. Technol. Lett. 29, 312 (2001).CrossRef
40.
go back to reference R. Sauleau, Fabry-Perot resonators (Hoboken: Encyclopedia of RF and microwave engineering. Wiley, 2005).CrossRef R. Sauleau, Fabry-Perot resonators (Hoboken: Encyclopedia of RF and microwave engineering. Wiley, 2005).CrossRef
41.
go back to reference R. Lian, Z. Tang, and Y. Yin, Design of a broadband polarization-reconfigurable Fabry-Perot resonator antenna. IEEE Antennas Wirel. Propag. Lett. 17, 122 (2017).CrossRef R. Lian, Z. Tang, and Y. Yin, Design of a broadband polarization-reconfigurable Fabry-Perot resonator antenna. IEEE Antennas Wirel. Propag. Lett. 17, 122 (2017).CrossRef
42.
go back to reference Q. Scrantom, Charles LTCC Technology: Where we are and where we’re Going, in MCM C/Mixed Technologies and Thick Film Sensors (Berlin: Springer, 1995). Q. Scrantom, Charles LTCC Technology: Where we are and where we’re Going, in MCM C/Mixed Technologies and Thick Film Sensors (Berlin: Springer, 1995).
Metadata
Title
High-Gain Low-Profile EBG Resonator Antenna Based on Quasi-Icosahedral Shapes
Authors
Mustapha Hadj Sadok
Youssef Lamhene
Samir Berkani
Publication date
08-11-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-10046-6

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue