Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

25-10-2022 | Review Article

Advances in Supercapacitor Development: Materials, Processes, and Applications

Authors: Kabir O. Oyedotun, Joshua O. Ighalo, James F. Amaku, Chijioke Olisah, Adedapo O. Adeola, Kingsley O. Iwuozor, Kovo G. Akpomie, Jeanet Conradie, Kayode A. Adegoke

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Global carbon reduction targets can be facilitated via energy storage enhancements. Energy derived from solar and wind sources requires effective storage to guarantee supply consistency due to the characteristic changeability of its sources. Supercapacitors (SCs), also known as electrochemical capacitors, have been identified as a key part of solving the problem. In addition, SCs can provide solutions to charging electric vehicles much faster than is possible using lithium-ion batteries. Nevertheless, further research into high-performance supercapacitor development is urgently needed to enable their use for effective large electricity storage. In general, energy utilization will subsequently depend on consumers/industries that are generating, storing and utilizing energy more effectively, with SCs being identified as one of the emerging technologies for intermittent energy storage, harvesting and high-power delivery. In this review, we have highlighted the historical information concerning the evolution of supercapacitor technology and its application as an energy storage device. A detailed account of the device’s electrode materials/electrolytes, processes, designs, and various applications is discussed. The primary characteristics of the energy storage system, such as capacitance/capacity, operating temperature, energy/power density, operating potential, kinetic storage mechanism, cycling lifetime, self-discharge, voltage holding/floating test, and the makeup of the electrode materials, are also briefly discussed. In addition, based on the current research scenario, the potential, challenges, and development patterns for SCs are summarized.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference F. Béguin, V. Presser, A. Balducci, and E. Frackowiak, Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014).CrossRef F. Béguin, V. Presser, A. Balducci, and E. Frackowiak, Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014).CrossRef
3.
go back to reference C.A. McGill, A brief History of A Brief History. Pop. Sci. 235, 70–72 (2010). C.A. McGill, A brief History of A Brief History. Pop. Sci. 235, 70–72 (2010).
4.
go back to reference Miller, A brief history of supercapacitors, Batter. + Energy. ISSN: 521452 (2007) 61–78. Miller, A brief history of supercapacitors, Batter. + Energy. ISSN: 521452 (2007) 61–78.
5.
go back to reference K.O. Oyedotun, M.J. Madito, D.Y. Momodu, A.A. Mirghni, T.M. Masikhwa, and N. Manyala, Synthesis of Ternary NiCo-MnO2 Nanocomposite and its Application as a Novel High Energy Supercapattery Device. Chem. Eng. J. 335, 416–433 (2018).CrossRef K.O. Oyedotun, M.J. Madito, D.Y. Momodu, A.A. Mirghni, T.M. Masikhwa, and N. Manyala, Synthesis of Ternary NiCo-MnO2 Nanocomposite and its Application as a Novel High Energy Supercapattery Device. Chem. Eng. J. 335, 416–433 (2018).CrossRef
6.
go back to reference N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, and J. Thomas, Asymmetric Supercapacitor Electrodes and Devices. Adv. Mater. 29, 1605336 (2017).CrossRef N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, and J. Thomas, Asymmetric Supercapacitor Electrodes and Devices. Adv. Mater. 29, 1605336 (2017).CrossRef
7.
go back to reference G. Xiong, A. Kundu, and T.S. Fisher, Thermal Management in Electrochemical Energy Storage Systems. Springerbriefs Appl. Sci. Technol. 25, 1–10 (2015). G. Xiong, A. Kundu, and T.S. Fisher, Thermal Management in Electrochemical Energy Storage Systems. Springerbriefs Appl. Sci. Technol. 25, 1–10 (2015).
8.
go back to reference D. Institute of Fuel (Great Britain), Elsevier Science Ltd., Fuel and energy abstracts., [Published on behalf of the Institute of Fuel by IPC Science and Technology Press], (1995) D. Institute of Fuel (Great Britain), Elsevier Science Ltd., Fuel and energy abstracts., [Published on behalf of the Institute of Fuel by IPC Science and Technology Press], (1995)
9.
go back to reference T.L. Floyd and D. Buchla, Electronics Fundamentals: Circuits, Devices & Applications, 2009th ed., (NJ: Prentice Hall Press, 2009). T.L. Floyd and D. Buchla, Electronics Fundamentals: Circuits, Devices & Applications, 2009th ed., (NJ: Prentice Hall Press, 2009).
10.
go back to reference E. Frackowiak and F. Beguin, Carbon Materials for the Electrochemical Storage of Energy in Capacitors. Carbon 39, 937–950 (2001).CrossRef E. Frackowiak and F. Beguin, Carbon Materials for the Electrochemical Storage of Energy in Capacitors. Carbon 39, 937–950 (2001).CrossRef
11.
go back to reference B.E. Conway, Electrochemical Supercapacitors - Scientific Fundamentals (Berlin: Springer, 1999).CrossRef B.E. Conway, Electrochemical Supercapacitors - Scientific Fundamentals (Berlin: Springer, 1999).CrossRef
12.
go back to reference A. Lahyani, P. Venet, A. Guermazi, and A. Troudi, Battery/Supercapacitors Combination in Uninterruptible Power Supply (UPS). IEEE Trans. Power Electron. 28, 1509–1522 (2013).CrossRef A. Lahyani, P. Venet, A. Guermazi, and A. Troudi, Battery/Supercapacitors Combination in Uninterruptible Power Supply (UPS). IEEE Trans. Power Electron. 28, 1509–1522 (2013).CrossRef
13.
go back to reference Y.B. Tan and J.M. Lee, Graphene for Supercapacitor Applications. J. Mater. Chem. A 1, 14814–14843 (2013).CrossRef Y.B. Tan and J.M. Lee, Graphene for Supercapacitor Applications. J. Mater. Chem. A 1, 14814–14843 (2013).CrossRef
14.
go back to reference F. Béguin, E. Raymundo-Piñero, and E. Frackowiak, Electrical Double-Layer Capacitors and Pseudocapacitors (Cambridge: CRC Press, 2009). F. Béguin, E. Raymundo-Piñero, and E. Frackowiak, Electrical Double-Layer Capacitors and Pseudocapacitors (Cambridge: CRC Press, 2009).
16.
go back to reference A. Bard, L. Faulkner, J. Leddy, and C. Zoski, Electrochemical Methods: Fundamentals and Applications, Vol. 2 (NY: Wiley, 1980). A. Bard, L. Faulkner, J. Leddy, and C. Zoski, Electrochemical Methods: Fundamentals and Applications, Vol. 2 (NY: Wiley, 1980).
17.
go back to reference L.L. Zhang and X.S. Zhao, Carbon-Based Materials as Supercapacitor Electrodes. Chem. Soc. Rev. 38, 2520 (2009).CrossRef L.L. Zhang and X.S. Zhao, Carbon-Based Materials as Supercapacitor Electrodes. Chem. Soc. Rev. 38, 2520 (2009).CrossRef
18.
go back to reference A.G.G. Pandolfo and A.F.F. Hollenkamp, Carbon Properties and Their Role in Supercapacitors. J. Power Sources. 157, 11–27 (2006).CrossRef A.G.G. Pandolfo and A.F.F. Hollenkamp, Carbon Properties and Their Role in Supercapacitors. J. Power Sources. 157, 11–27 (2006).CrossRef
19.
go back to reference M.A. Brown, Z. Abbas, A. Kleibert, R.G. Green, A. Goel, S. May, and T.M. Squires, Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle Interface. Phys. Rev. X. 6, 011007 (2016). M.A. Brown, Z. Abbas, A. Kleibert, R.G. Green, A. Goel, S. May, and T.M. Squires, Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle Interface. Phys. Rev. X. 6, 011007 (2016).
20.
go back to reference Z. Wang, Y. Zhong, C. Wei, L. Jiang, and H. Liu, Review—Metal-Organic Framework-Based Supercapacitors. J. Electrochem. Soc. 169, 010516 (2022).CrossRef Z. Wang, Y. Zhong, C. Wei, L. Jiang, and H. Liu, Review—Metal-Organic Framework-Based Supercapacitors. J. Electrochem. Soc. 169, 010516 (2022).CrossRef
21.
go back to reference P. Simon and Y. Gogotsi, Materials for Electrochemical Capacitors. Nat. Mater. 7, 845–854 (2008).CrossRef P. Simon and Y. Gogotsi, Materials for Electrochemical Capacitors. Nat. Mater. 7, 845–854 (2008).CrossRef
22.
go back to reference D.P. Dubal, O. Ayyad, V. Ruiz, and P. Gómez-Romero, Hybrid Energy Storage: The MERGING of Battery and Supercapacitor Chemistries. Chem. Soc. Rev. 44, 1777–1790 (2015).CrossRef D.P. Dubal, O. Ayyad, V. Ruiz, and P. Gómez-Romero, Hybrid Energy Storage: The MERGING of Battery and Supercapacitor Chemistries. Chem. Soc. Rev. 44, 1777–1790 (2015).CrossRef
23.
go back to reference G.G. Amatucci, F. Badway, A. Du Pasquier, and T. Zheng, An Asymmetric Hybrid Nonaqueous Energy Storage Cell. J. Electrochem. Soc. 148, A930 (2001).CrossRef G.G. Amatucci, F. Badway, A. Du Pasquier, and T. Zheng, An Asymmetric Hybrid Nonaqueous Energy Storage Cell. J. Electrochem. Soc. 148, A930 (2001).CrossRef
24.
go back to reference P. Forouzandeh, V. Kumaravel, and S.C. Pillai, Electrode Materials for Supercapacitors: A Review of Recent Advances. Catalysts 10, 1–73 (2020).CrossRef P. Forouzandeh, V. Kumaravel, and S.C. Pillai, Electrode Materials for Supercapacitors: A Review of Recent Advances. Catalysts 10, 1–73 (2020).CrossRef
25.
go back to reference V. Khomenko, E. Raymundo-Piñero, and F. Béguin, High-Energy Density Graphite/AC Capacitor in Organic Electrolyte. J. Power Sources. 177, 643–651 (2008).CrossRef V. Khomenko, E. Raymundo-Piñero, and F. Béguin, High-Energy Density Graphite/AC Capacitor in Organic Electrolyte. J. Power Sources. 177, 643–651 (2008).CrossRef
26.
go back to reference T. Brousse, M. Toupin, and D. Bélanger, A Hybrid Activated Carbon-Manganese Dioxide Capacitor Using A Mild Aqueous Electrolyte. J. Electrochem. Soc. 151, A614 (2004).CrossRef T. Brousse, M. Toupin, and D. Bélanger, A Hybrid Activated Carbon-Manganese Dioxide Capacitor Using A Mild Aqueous Electrolyte. J. Electrochem. Soc. 151, A614 (2004).CrossRef
27.
go back to reference A.J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, and P.L. Taberna, Anomalous Capacitance Less Than INCREASE in Carbon at Pore Sizes. Science 313, 1760–1763 (2015).CrossRef A.J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, and P.L. Taberna, Anomalous Capacitance Less Than INCREASE in Carbon at Pore Sizes. Science 313, 1760–1763 (2015).CrossRef
28.
go back to reference X. Zhang, X. Wang, L. Jiang, H. Wu, C. Wu, and J. Su, Effect of Aqueous Electrolytes on the Electrochemical Behaviors of Supercapacitors Based on Hierarchically Porous Carbons. J. Power Sources. 216, 290–296 (2012).CrossRef X. Zhang, X. Wang, L. Jiang, H. Wu, C. Wu, and J. Su, Effect of Aqueous Electrolytes on the Electrochemical Behaviors of Supercapacitors Based on Hierarchically Porous Carbons. J. Power Sources. 216, 290–296 (2012).CrossRef
29.
go back to reference Q. Pan, W. Tu, L. Ding, and G. Mi, Characteristics of Electric Double Layer in Different Aqueous Electrolyte Solutions for Supercapacitors. Wuhan Univ. J Nat. Sci. 17, 200–204 (2012).CrossRef Q. Pan, W. Tu, L. Ding, and G. Mi, Characteristics of Electric Double Layer in Different Aqueous Electrolyte Solutions for Supercapacitors. Wuhan Univ. J Nat. Sci. 17, 200–204 (2012).CrossRef
30.
go back to reference K. Fic, G. Lota, and E. Frackowiak, Electrochemical Properties of Supercapacitors Operating in Aqueous Electrolyte with Surfactants. Electrochim. Acta. 55, 7484–7488 (2010).CrossRef K. Fic, G. Lota, and E. Frackowiak, Electrochemical Properties of Supercapacitors Operating in Aqueous Electrolyte with Surfactants. Electrochim. Acta. 55, 7484–7488 (2010).CrossRef
31.
go back to reference K. Fic, G. Lota, and E. Frackowiak, Effect of Surfactants on Capacitance Properties of Carbon Electrodes. Electrochim. Acta. 60, 206–212 (2012).CrossRef K. Fic, G. Lota, and E. Frackowiak, Effect of Surfactants on Capacitance Properties of Carbon Electrodes. Electrochim. Acta. 60, 206–212 (2012).CrossRef
32.
go back to reference P.W. Ruch, D. Cericola, A. Foelske-Schmitz, R. Kötz, and A. Wokaun, Aging of Electrochemical Double Layer Capacitors with Acetonitrile-Based Electrolyte at Elevated Voltages. Electrochim. Acta. 55, 4412–4420 (2010).CrossRef P.W. Ruch, D. Cericola, A. Foelske-Schmitz, R. Kötz, and A. Wokaun, Aging of Electrochemical Double Layer Capacitors with Acetonitrile-Based Electrolyte at Elevated Voltages. Electrochim. Acta. 55, 4412–4420 (2010).CrossRef
33.
go back to reference E. Raymundo-Piñero, K. Kierzek, J. Machnikowski, and F. Béguin, Relationship Between the Nanoporous Texture of Activated Carbons and Their Capacitance Properties in Different Electrolytes. Carbon N. Y. 44, 2498–2507 (2006).CrossRef E. Raymundo-Piñero, K. Kierzek, J. Machnikowski, and F. Béguin, Relationship Between the Nanoporous Texture of Activated Carbons and Their Capacitance Properties in Different Electrolytes. Carbon N. Y. 44, 2498–2507 (2006).CrossRef
34.
go back to reference T. Abdallah, D. Lemordant, and B. Claude-Montigny, Are Room Temperature Ionic Liquids Able to Improve the Safety of Supercapacitors Organic Electrolytes Without Degrading the Performances? J. Power Sources. 201, 353–359 (2012).CrossRef T. Abdallah, D. Lemordant, and B. Claude-Montigny, Are Room Temperature Ionic Liquids Able to Improve the Safety of Supercapacitors Organic Electrolytes Without Degrading the Performances? J. Power Sources. 201, 353–359 (2012).CrossRef
35.
go back to reference T. Sato, G. Masuda, and K. Takagi, Electrochemical Properties of Novel Ionic Liquids for Electric Double Layer Capacitor Applications. Electrochim. Acta. 49, 3603–3611 (2004).CrossRef T. Sato, G. Masuda, and K. Takagi, Electrochemical Properties of Novel Ionic Liquids for Electric Double Layer Capacitor Applications. Electrochim. Acta. 49, 3603–3611 (2004).CrossRef
36.
go back to reference C.A. Angell, Y. Ansari, and Z. Zhao, Ionic Liquids: Past, Present and Future. Faraday Discuss. 154, 9–27 (2012).CrossRef C.A. Angell, Y. Ansari, and Z. Zhao, Ionic Liquids: Past, Present and Future. Faraday Discuss. 154, 9–27 (2012).CrossRef
37.
go back to reference M. Galiński, A. Lewandowski, and I. Stepniak, Ionic Liquids as Electrolytes. Electrochim. Acta. 51, 5567–5580 (2006).CrossRef M. Galiński, A. Lewandowski, and I. Stepniak, Ionic Liquids as Electrolytes. Electrochim. Acta. 51, 5567–5580 (2006).CrossRef
38.
go back to reference A. Lewandowski and A. Świderska-Mocek, Ionic Liquids As Electrolytes for Li-ion Batteries—An Overview of Electrochemical Studies. J. Power Sources. 194, 601–609 (2009).CrossRef A. Lewandowski and A. Świderska-Mocek, Ionic Liquids As Electrolytes for Li-ion Batteries—An Overview of Electrochemical Studies. J. Power Sources. 194, 601–609 (2009).CrossRef
39.
go back to reference K. Perzyna, R. Borkowska, J. Syzdek, A. Zalewska, and W. Wieczorek, The Effect of Additive of Lewis Acid Type on Lithium-Gel Electrolyte Characteristics. Electrochim. Acta. 57, 58–65 (2011).CrossRef K. Perzyna, R. Borkowska, J. Syzdek, A. Zalewska, and W. Wieczorek, The Effect of Additive of Lewis Acid Type on Lithium-Gel Electrolyte Characteristics. Electrochim. Acta. 57, 58–65 (2011).CrossRef
40.
go back to reference J. Syzdek, R. Borkowska, K. Perzyna, J.M. Tarascon, and W. Wieczorek, Novel Composite Polymeric Electrolytes with Surface-Modified Inorganic Fillers. J. Power Sources. 173, 712–720 (2007).CrossRef J. Syzdek, R. Borkowska, K. Perzyna, J.M. Tarascon, and W. Wieczorek, Novel Composite Polymeric Electrolytes with Surface-Modified Inorganic Fillers. J. Power Sources. 173, 712–720 (2007).CrossRef
41.
go back to reference J. Luo, A.H. Jensen, N.R. Brooks, J. Sniekers, M. Knipper, D. Aili, Q. Li, B. Vanroy, M. Wübbenhorst, F. Yan, L. Van Meervelt, Z. Shao, J. Fang, Z.H. Luo, D.E. De Vos, K. Binnemans, and J. Fransaer, 1,2,4-Triazolium Perfluorobutanesulfonate as an Archetypal Pure Protic Organic Ionic Plastic Crystal Electrolyte for All-Solid-State Fuel Cells. Energy Environ. Sci. 8, 1276–1291 (2015).CrossRef J. Luo, A.H. Jensen, N.R. Brooks, J. Sniekers, M. Knipper, D. Aili, Q. Li, B. Vanroy, M. Wübbenhorst, F. Yan, L. Van Meervelt, Z. Shao, J. Fang, Z.H. Luo, D.E. De Vos, K. Binnemans, and J. Fransaer, 1,2,4-Triazolium Perfluorobutanesulfonate as an Archetypal Pure Protic Organic Ionic Plastic Crystal Electrolyte for All-Solid-State Fuel Cells. Energy Environ. Sci. 8, 1276–1291 (2015).CrossRef
42.
go back to reference J. Luo, O. Conrad, and I.F.J. Vankelecom, Imidazolium Methanesulfonate As A High Temperature Proton Conductor. J. Mater. Chem. A. 1, 2238–2247 (2013).CrossRef J. Luo, O. Conrad, and I.F.J. Vankelecom, Imidazolium Methanesulfonate As A High Temperature Proton Conductor. J. Mater. Chem. A. 1, 2238–2247 (2013).CrossRef
43.
go back to reference S. Wu, Y. Xue, Q. Yang, Q. Hu, T. Cui, Q. Su, F. Yin, Y. Wang, and H. Zhan, Conductive Carbon Spheres-Supported Nickel-Cobalt Selenide Nanoparticles as A High-Performance and Long-Life Electrode for Supercapacitors. Diam. Relat. Mater. 111, 108187 (2021).CrossRef S. Wu, Y. Xue, Q. Yang, Q. Hu, T. Cui, Q. Su, F. Yin, Y. Wang, and H. Zhan, Conductive Carbon Spheres-Supported Nickel-Cobalt Selenide Nanoparticles as A High-Performance and Long-Life Electrode for Supercapacitors. Diam. Relat. Mater. 111, 108187 (2021).CrossRef
44.
go back to reference J. Yu, J. Wu, H. Wang, A. Zhou, C. Huang, H. Bai, and L. Li, Metallic Fabrics As the Current Collector for High-Performance Graphene-Based Flexible Solid-State Supercapacitor. ACS Appl. Mater. Interfaces. 8, 4724–4729 (2016).CrossRef J. Yu, J. Wu, H. Wang, A. Zhou, C. Huang, H. Bai, and L. Li, Metallic Fabrics As the Current Collector for High-Performance Graphene-Based Flexible Solid-State Supercapacitor. ACS Appl. Mater. Interfaces. 8, 4724–4729 (2016).CrossRef
45.
go back to reference K.O. Oyedotun, T.M. Masikhwa, S. Lindberg, A. Matic, P. Johansson, and N. Manyala, Comparison of Ionic Liquid Electrolyte to Aqueous Electrolytes on Carbon Nanofibres Supercapacitor Electrode Derived from Oxygen-Functionalized Graphene. Chem. Eng. J. 375, 121906 (2019).CrossRef K.O. Oyedotun, T.M. Masikhwa, S. Lindberg, A. Matic, P. Johansson, and N. Manyala, Comparison of Ionic Liquid Electrolyte to Aqueous Electrolytes on Carbon Nanofibres Supercapacitor Electrode Derived from Oxygen-Functionalized Graphene. Chem. Eng. J. 375, 121906 (2019).CrossRef
46.
go back to reference Q. Wang, J. Xu, X. Wang, B. Liu, X. Hou, G. Yu, P. Wang, D. Chen, and G. Shen, Core-Shell CuCo2O4@MnO2 Nanowires on Carbon Fabrics as High-Performance Materials for Flexible All-Solid-State, Electrochemical Capacitors. ChemElectroChem. 1, 559–564 (2014).CrossRef Q. Wang, J. Xu, X. Wang, B. Liu, X. Hou, G. Yu, P. Wang, D. Chen, and G. Shen, Core-Shell CuCo2O4@MnO2 Nanowires on Carbon Fabrics as High-Performance Materials for Flexible All-Solid-State, Electrochemical Capacitors. ChemElectroChem. 1, 559–564 (2014).CrossRef
47.
go back to reference G.P. Pandey, T. Liu, C. Hancock, Y. Li, X.S. Sun, and J. Li, Thermostable Gel Polymer Electrolyte Based on Succinonitrile and Ionic Liquid for High-Performance Solid-State Supercapacitors. J. Power Sources. 328, 510–519 (2016).CrossRef G.P. Pandey, T. Liu, C. Hancock, Y. Li, X.S. Sun, and J. Li, Thermostable Gel Polymer Electrolyte Based on Succinonitrile and Ionic Liquid for High-Performance Solid-State Supercapacitors. J. Power Sources. 328, 510–519 (2016).CrossRef
48.
go back to reference L. Han, H. Huang, X. Fu, J. Li, Z. Yang, X. Liu, L. Pan, and M. Xu, A Flexible, High-Voltage and Safe Zwitterionic Natural Polymer Hydrogel Electrolyte for High-Energy-Density Zinc-Ion Hybrid Supercapacitor. Chem. Eng. J. 392, 123733 (2020).CrossRef L. Han, H. Huang, X. Fu, J. Li, Z. Yang, X. Liu, L. Pan, and M. Xu, A Flexible, High-Voltage and Safe Zwitterionic Natural Polymer Hydrogel Electrolyte for High-Energy-Density Zinc-Ion Hybrid Supercapacitor. Chem. Eng. J. 392, 123733 (2020).CrossRef
49.
go back to reference A.M. Patil, N. Kitiphatpiboon, X. An, X. Hao, S. Li, X. Hao, A. Abudula, and G. Guan, Fabrication of a High-Energy Flexible all-Solid-State Supercapacitor Using Pseudocapacitive 2D-Ti3C2T x-MXene and Battery-Type Reduced Graphene Oxide/Nickel-Cobalt Bimetal Oxide Electrode Materials. ACS Appl. Mater. Interfaces 12, 52749–52762 (2020).CrossRef A.M. Patil, N. Kitiphatpiboon, X. An, X. Hao, S. Li, X. Hao, A. Abudula, and G. Guan, Fabrication of a High-Energy Flexible all-Solid-State Supercapacitor Using Pseudocapacitive 2D-Ti3C2T x-MXene and Battery-Type Reduced Graphene Oxide/Nickel-Cobalt Bimetal Oxide Electrode Materials. ACS Appl. Mater. Interfaces 12, 52749–52762 (2020).CrossRef
50.
go back to reference N.R. Chodankar, D.P. Dubal, A.C. Lokhande, and C.D. Lokhande, Ionically Conducting PVA–LiClO4 Gel Electrolyte for High Performance Flexible Solid-State Supercapacitors. J. Colloid Interface Sci. 460, 370–376 (2015).CrossRef N.R. Chodankar, D.P. Dubal, A.C. Lokhande, and C.D. Lokhande, Ionically Conducting PVA–LiClO4 Gel Electrolyte for High Performance Flexible Solid-State Supercapacitors. J. Colloid Interface Sci. 460, 370–376 (2015).CrossRef
51.
go back to reference Y. Lv, L. Li, Y. Zhou, M. Yu, J. Wang, J. Liu, J. Zhou, Z. Fan, and Z. Shao, A Cellulose-Based Hybrid 2D Material Aerogel for a Flexible All-Solid-State Supercapacitor with High Specific Capacitance. RSC Adv. 7, 43512–43520 (2017).CrossRef Y. Lv, L. Li, Y. Zhou, M. Yu, J. Wang, J. Liu, J. Zhou, Z. Fan, and Z. Shao, A Cellulose-Based Hybrid 2D Material Aerogel for a Flexible All-Solid-State Supercapacitor with High Specific Capacitance. RSC Adv. 7, 43512–43520 (2017).CrossRef
52.
go back to reference P. Du, X. Hu, C. Yi, H.C. Liu, P. Liu, H.-L. Zhang, X. Gong, P.C. Du, X. Hu, C. Yi, H.C. Liu, X. Gong, P. Liu, and H. Zhang, Self-Powered Electronics by Integration of Flexible Solid-State Graphene-Based Supercapacitors with High Performance Perovskite Hybrid Solar Cells. Adv. Funct. Mater. 25, 2420–2427 (2015).CrossRef P. Du, X. Hu, C. Yi, H.C. Liu, P. Liu, H.-L. Zhang, X. Gong, P.C. Du, X. Hu, C. Yi, H.C. Liu, X. Gong, P. Liu, and H. Zhang, Self-Powered Electronics by Integration of Flexible Solid-State Graphene-Based Supercapacitors with High Performance Perovskite Hybrid Solar Cells. Adv. Funct. Mater. 25, 2420–2427 (2015).CrossRef
53.
go back to reference P. Arora and Z. Zhang, Battery Separators. Chem. Rev. 104, 4419–4462 (2004).CrossRef P. Arora and Z. Zhang, Battery Separators. Chem. Rev. 104, 4419–4462 (2004).CrossRef
54.
go back to reference S.S. Zhang, A review on the Separators of Liquid Electrolyte Li-ion Batteries. J. Power Sources. 164, 351–364 (2007).CrossRef S.S. Zhang, A review on the Separators of Liquid Electrolyte Li-ion Batteries. J. Power Sources. 164, 351–364 (2007).CrossRef
55.
go back to reference K.D. Verma, Characteristics of separator materials for supercapacitors, Handbook Nanocomposite Supercapacitor Materials I. (Cham: Springer, 2020), pp. 315–326.CrossRef K.D. Verma, Characteristics of separator materials for supercapacitors, Handbook Nanocomposite Supercapacitor Materials I. (Cham: Springer, 2020), pp. 315–326.CrossRef
57.
go back to reference A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, and W. van Schalkwijk, Nanostructured Materials for Advanced Energy Conversion and Storage Devices. Nat. Mater. 4, 366–377 (2005).CrossRef A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, and W. van Schalkwijk, Nanostructured Materials for Advanced Energy Conversion and Storage Devices. Nat. Mater. 4, 366–377 (2005).CrossRef
58.
go back to reference O. Barbieri, M. Hahn, A. Herzog, and R. Kötz, Capacitance Limits of High Surface Area Activated Carbons for Double Layer Capacitors. Carbon N. Y. 43, 1303–1310 (2005).CrossRef O. Barbieri, M. Hahn, A. Herzog, and R. Kötz, Capacitance Limits of High Surface Area Activated Carbons for Double Layer Capacitors. Carbon N. Y. 43, 1303–1310 (2005).CrossRef
59.
go back to reference S. Rajagopal, R. Pulapparambil Vallikkattil, M. Mohamed Ibrahim, and D.G. Velev, Electrode Materials for Supercapacitors in Hybrid Electric Vehicles: Challenges and Current Progress. Condens. Matter 7, 6 (2022).CrossRef S. Rajagopal, R. Pulapparambil Vallikkattil, M. Mohamed Ibrahim, and D.G. Velev, Electrode Materials for Supercapacitors in Hybrid Electric Vehicles: Challenges and Current Progress. Condens. Matter 7, 6 (2022).CrossRef
60.
go back to reference C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi, and P. Simon, Relation Between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. J. Am. Chem. Soc. 130, 2730–2731 (2008).CrossRef C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi, and P. Simon, Relation Between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. J. Am. Chem. Soc. 130, 2730–2731 (2008).CrossRef
61.
go back to reference H. Lee, M.S. Cho, I.H. Kim, J. Do Nam, and Y. Lee, RuOx/Polypyrrole Nanocomposite Electrode for Electrochemical Capacitors. Synth. Met. 160, 1055–1059 (2010).CrossRef H. Lee, M.S. Cho, I.H. Kim, J. Do Nam, and Y. Lee, RuOx/Polypyrrole Nanocomposite Electrode for Electrochemical Capacitors. Synth. Met. 160, 1055–1059 (2010).CrossRef
62.
go back to reference D. Deng, Li-Ion Batteries: Basics, Progress, and Challenges. Energy Sci. Eng. 3, 385–418 (2015).CrossRef D. Deng, Li-Ion Batteries: Basics, Progress, and Challenges. Energy Sci. Eng. 3, 385–418 (2015).CrossRef
64.
go back to reference H. Pan, J. Li, and Y.P. Feng, Carbon Nanotubes for Supercapacitor. Nanoscale Res. Lett. 5, 654–668 (2010).CrossRef H. Pan, J. Li, and Y.P. Feng, Carbon Nanotubes for Supercapacitor. Nanoscale Res. Lett. 5, 654–668 (2010).CrossRef
65.
go back to reference H. Zhang, G. Cao, and Y. Yang, Carbon Nanotube Arrays and Their Composites for Electrochemical Capacitors and Lithium-Ion Batteries. Energy Environ. Sci. 2, 932–943 (2009).CrossRef H. Zhang, G. Cao, and Y. Yang, Carbon Nanotube Arrays and Their Composites for Electrochemical Capacitors and Lithium-Ion Batteries. Energy Environ. Sci. 2, 932–943 (2009).CrossRef
66.
go back to reference G. Wang, L. Zhang, and J. Zhang, A Review of Electrode Materials for Electrochemical Supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012).CrossRef G. Wang, L. Zhang, and J. Zhang, A Review of Electrode Materials for Electrochemical Supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012).CrossRef
67.
go back to reference Y. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J.E. Fischer, B. Yi, H.C. Foley, and M.W. Barsoum, Nanoporous Carbide-Derived Carbon with Tunable Pore Size. Nat. Mater. 2, 591–594 (2003).CrossRef Y. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J.E. Fischer, B. Yi, H.C. Foley, and M.W. Barsoum, Nanoporous Carbide-Derived Carbon with Tunable Pore Size. Nat. Mater. 2, 591–594 (2003).CrossRef
68.
go back to reference V. Presser, M. Heon, and Y. Gogotsi, Carbide-Derived Carbons - from Porous Networks to Nanotubes and Graphene. Adv. Funct. Mater. 21, 810–833 (2011).CrossRef V. Presser, M. Heon, and Y. Gogotsi, Carbide-Derived Carbons - from Porous Networks to Nanotubes and Graphene. Adv. Funct. Mater. 21, 810–833 (2011).CrossRef
69.
go back to reference G.N. Yushin, E.N. Hoffman, A. Nikitin, H. Ye, M.W. Barsoum, and Y. Gogotsi, Synthesis of Nanoporous Carbide-Derived Carbon by Chlorination of Titanium Silicon Carbide. Carbon N. Y. 43, 2075–2082 (2005).CrossRef G.N. Yushin, E.N. Hoffman, A. Nikitin, H. Ye, M.W. Barsoum, and Y. Gogotsi, Synthesis of Nanoporous Carbide-Derived Carbon by Chlorination of Titanium Silicon Carbide. Carbon N. Y. 43, 2075–2082 (2005).CrossRef
70.
go back to reference K.O. Oyedotun and N. Manyala, Graphene Foam–Based Electrochemical Capacitors. Curr. Opin. Electrochem. 21, 125–131 (2020).CrossRef K.O. Oyedotun and N. Manyala, Graphene Foam–Based Electrochemical Capacitors. Curr. Opin. Electrochem. 21, 125–131 (2020).CrossRef
71.
go back to reference C. Peng, J. Jin, and G.Z. Chen, A Comparative Study on Electrochemical co-Deposition and Capacitance of Composite Films of Conducting Polymers and Carbon Nanotubes. Electrochim. Acta. 53, 525–537 (2007).CrossRef C. Peng, J. Jin, and G.Z. Chen, A Comparative Study on Electrochemical co-Deposition and Capacitance of Composite Films of Conducting Polymers and Carbon Nanotubes. Electrochim. Acta. 53, 525–537 (2007).CrossRef
72.
go back to reference C. Arbizzani, M. Mastragostino, and L. Meneghello, Polymer-Based Redox Supercapacitors: A Comparative Study. Electrochimica. Acta. 41, 21–26 (1996).CrossRef C. Arbizzani, M. Mastragostino, and L. Meneghello, Polymer-Based Redox Supercapacitors: A Comparative Study. Electrochimica. Acta. 41, 21–26 (1996).CrossRef
73.
go back to reference M. Kalaji, P.J. Murphy, and G.O. Williams, The Study of Conducting Polymers for Use as Redox Supercapacitors. Synth. Met. 102, 1360–1361 (1999).CrossRef M. Kalaji, P.J. Murphy, and G.O. Williams, The Study of Conducting Polymers for Use as Redox Supercapacitors. Synth. Met. 102, 1360–1361 (1999).CrossRef
74.
go back to reference W. Li, J. Chen, J. Zhao, J. Zhang, and J. Zhu, Application of Ultrasonic Irradiation in Preparing Conducting Polymer as Active Materials for Supercapacitor. Mater. Lett. 59, 800–803 (2005).CrossRef W. Li, J. Chen, J. Zhao, J. Zhang, and J. Zhu, Application of Ultrasonic Irradiation in Preparing Conducting Polymer as Active Materials for Supercapacitor. Mater. Lett. 59, 800–803 (2005).CrossRef
75.
go back to reference H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, and S. Wang, Theoretical and Experimental Specific Capacitance of Polyaniline in Sulfuric Acid. J. Power Sources. 190, 578–586 (2009).CrossRef H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, and S. Wang, Theoretical and Experimental Specific Capacitance of Polyaniline in Sulfuric Acid. J. Power Sources. 190, 578–586 (2009).CrossRef
76.
go back to reference M. Deschamps, E. Gilbert, P. Azais, E. Raymundo-Piñero, M.R. Ammar, P. Simon, D. Massiot, and F. Béguin, Exploring Electrolyte Organization in Supercapacitor Electrodes with Solid-State NMR. Nat. Mater. 12, 351–358 (2013).CrossRef M. Deschamps, E. Gilbert, P. Azais, E. Raymundo-Piñero, M.R. Ammar, P. Simon, D. Massiot, and F. Béguin, Exploring Electrolyte Organization in Supercapacitor Electrodes with Solid-State NMR. Nat. Mater. 12, 351–358 (2013).CrossRef
77.
go back to reference J.P. Zheng, The Limitations of Energy Density for Electrochemical Capacitors. J. Electrochem. Soc. 144, 2026 (1997).CrossRef J.P. Zheng, The Limitations of Energy Density for Electrochemical Capacitors. J. Electrochem. Soc. 144, 2026 (1997).CrossRef
78.
go back to reference T. Liu, W.G. Pell, and B.E. Conway, Self-Discharge and Potential Recovery Phenomena at Thermally and Electrochemically Prepared RuO2 Supercapacitor Electrodes. Electrochim. Acta. 42, 3541–3552 (1997).CrossRef T. Liu, W.G. Pell, and B.E. Conway, Self-Discharge and Potential Recovery Phenomena at Thermally and Electrochemically Prepared RuO2 Supercapacitor Electrodes. Electrochim. Acta. 42, 3541–3552 (1997).CrossRef
79.
go back to reference Y.R. Ahn, M.Y. Song, S.M. Jo, C.R. Park, and D.Y. Kim, Electrochemical Capacitors Based on Electrodeposited Ruthenium Oxide on Nanofibre Substrates. Nanotechnology 17, 2865–2869 (2006).CrossRef Y.R. Ahn, M.Y. Song, S.M. Jo, C.R. Park, and D.Y. Kim, Electrochemical Capacitors Based on Electrodeposited Ruthenium Oxide on Nanofibre Substrates. Nanotechnology 17, 2865–2869 (2006).CrossRef
80.
go back to reference M. Toupin, T. Brousse, and D. Bélanger, Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor. Chem. Mater. 16, 3184–3190 (2004).CrossRef M. Toupin, T. Brousse, and D. Bélanger, Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor. Chem. Mater. 16, 3184–3190 (2004).CrossRef
81.
go back to reference K.-C. Liu, Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors. J. Electrochem. Soc. 143, 124 (1996).CrossRef K.-C. Liu, Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors. J. Electrochem. Soc. 143, 124 (1996).CrossRef
82.
go back to reference Y. Gao, S. Chen, D. Cao, G. Wang, and J. Yin, Electrochemical Capacitance of Co3O4 Nanowire Arrays Supported on Nickel Foam. J. Power Sources. 195, 1757–1760 (2010).CrossRef Y. Gao, S. Chen, D. Cao, G. Wang, and J. Yin, Electrochemical Capacitance of Co3O4 Nanowire Arrays Supported on Nickel Foam. J. Power Sources. 195, 1757–1760 (2010).CrossRef
83.
go back to reference N. Miura, S. Oonishi, and K.R. Prasad, Indium Tin Oxide/Carbon Composite Electrode Material for Electrochemical Supercapacitors. Electrochem. Solid-State Lett. 7, A247 (2004).CrossRef N. Miura, S. Oonishi, and K.R. Prasad, Indium Tin Oxide/Carbon Composite Electrode Material for Electrochemical Supercapacitors. Electrochem. Solid-State Lett. 7, A247 (2004).CrossRef
84.
go back to reference X. Zhou, H. Chen, D. Shu, C. He, and J. Nan, Study on the Electrochemical Behavior of Vanadium Nitride as a Promising Supercapacitor Material. J. Phys. Chem. Solids 70, 495–500 (2009).CrossRef X. Zhou, H. Chen, D. Shu, C. He, and J. Nan, Study on the Electrochemical Behavior of Vanadium Nitride as a Promising Supercapacitor Material. J. Phys. Chem. Solids 70, 495–500 (2009).CrossRef
85.
go back to reference J.P. Cheng, J. Zhang, and F. Liu, Recent Development of Metal Hydroxides as Electrode Material of Electrochemical Capacitors. RSC Adv. 4, 38893–38917 (2014).CrossRef J.P. Cheng, J. Zhang, and F. Liu, Recent Development of Metal Hydroxides as Electrode Material of Electrochemical Capacitors. RSC Adv. 4, 38893–38917 (2014).CrossRef
86.
go back to reference W. Zhang, F. Liu, Q. Li, Q. Shou, J. Cheng, L. Zhang, B.J. Nelson, and X. Zhang, Transition Metal Oxide and Graphene Nanocomposites for High-Performance Electrochemical Capacitors. Phys. Chem. Chem. Phys. 14, 16331 (2012).CrossRef W. Zhang, F. Liu, Q. Li, Q. Shou, J. Cheng, L. Zhang, B.J. Nelson, and X. Zhang, Transition Metal Oxide and Graphene Nanocomposites for High-Performance Electrochemical Capacitors. Phys. Chem. Chem. Phys. 14, 16331 (2012).CrossRef
87.
go back to reference H. Chen, L. Hu, Y. Yan, R. Che, M. Chen, and L. Wu, One-Step Fabrication of Ultrathin Porous Nickel Hydroxide-Manganese Dioxide Hybrid Nanosheets for Supercapacitor Electrodes with Excellent Capacitive Performance. Adv. Energy Mater. 3, 1636–1646 (2013).CrossRef H. Chen, L. Hu, Y. Yan, R. Che, M. Chen, and L. Wu, One-Step Fabrication of Ultrathin Porous Nickel Hydroxide-Manganese Dioxide Hybrid Nanosheets for Supercapacitor Electrodes with Excellent Capacitive Performance. Adv. Energy Mater. 3, 1636–1646 (2013).CrossRef
88.
go back to reference L. Feng, Y. Zhu, H. Ding, and C. Ni, Recent Progress in Nickel Based Materials for High Performance Pseudocapacitor Electrodes. J. Power Sources. 267, 430–444 (2014).CrossRef L. Feng, Y. Zhu, H. Ding, and C. Ni, Recent Progress in Nickel Based Materials for High Performance Pseudocapacitor Electrodes. J. Power Sources. 267, 430–444 (2014).CrossRef
89.
go back to reference A.A. Grupioni, E. Arashiro, and T.A. Lassali, Voltammetric Characterization of an Iridium Oxide-Based System: The Pseudocapacitive Nature of the Ir0.3Mn0.7O2 Electrode. Electrochim. Acta. 48, 407–418 (2002).CrossRef A.A. Grupioni, E. Arashiro, and T.A. Lassali, Voltammetric Characterization of an Iridium Oxide-Based System: The Pseudocapacitive Nature of the Ir0.3Mn0.7O2 Electrode. Electrochim. Acta. 48, 407–418 (2002).CrossRef
90.
go back to reference A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, and D. Aurbach, Carbon-Based Composite Materials for Supercapacitor Electrodes: A Review. J. Mater. Chem. A. 5, 12653–12672 (2017).CrossRef A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, and D. Aurbach, Carbon-Based Composite Materials for Supercapacitor Electrodes: A Review. J. Mater. Chem. A. 5, 12653–12672 (2017).CrossRef
91.
go back to reference R. Sahoo, T.H. Lee, D.T. Pham, T.H.T. Luu, and Y.H. Lee, Fast-Charging High-Energy Battery-Supercapacitor Hybrid: Anodic Reduced Graphene Oxide-VANADIUM(IV) Oxide Sheet-on-Sheet Heterostructure. ACS Nano. 13, 10776–10786 (2019).CrossRef R. Sahoo, T.H. Lee, D.T. Pham, T.H.T. Luu, and Y.H. Lee, Fast-Charging High-Energy Battery-Supercapacitor Hybrid: Anodic Reduced Graphene Oxide-VANADIUM(IV) Oxide Sheet-on-Sheet Heterostructure. ACS Nano. 13, 10776–10786 (2019).CrossRef
92.
go back to reference Y. Zhou, K. Maleski, B. Anasori, J.O. Thostenson, Y. Pang, Y. Feng, K. Zeng, C.B. Parker, S. Zauscher, Y. Gogotsi, J.T. Glass, and C. Cao, Ti3C2Tx MXene-Reduced Graphene Oxide Composite Electrodes for Stretchable Supercapacitors. ACS Nano. 14, 3576–3586 (2020).CrossRef Y. Zhou, K. Maleski, B. Anasori, J.O. Thostenson, Y. Pang, Y. Feng, K. Zeng, C.B. Parker, S. Zauscher, Y. Gogotsi, J.T. Glass, and C. Cao, Ti3C2Tx MXene-Reduced Graphene Oxide Composite Electrodes for Stretchable Supercapacitors. ACS Nano. 14, 3576–3586 (2020).CrossRef
93.
go back to reference J. Li, X. Cheng, A. Shashurin, M. Keidar, J. Li, X. Cheng, A. Shashurin, and M. Keidar, Review of Electrochemical Capacitors Based on Carbon Nanotubes and Graphene. Graphene 1, 1–13 (2012).CrossRef J. Li, X. Cheng, A. Shashurin, M. Keidar, J. Li, X. Cheng, A. Shashurin, and M. Keidar, Review of Electrochemical Capacitors Based on Carbon Nanotubes and Graphene. Graphene 1, 1–13 (2012).CrossRef
94.
go back to reference M. Toupin, T. Brousse, and D. Bélanger, Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide. Chem. Mater. 14, 3946–3952 (2002).CrossRef M. Toupin, T. Brousse, and D. Bélanger, Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide. Chem. Mater. 14, 3946–3952 (2002).CrossRef
95.
go back to reference T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, and D. Bélanger, Nanostructured Transition Metal Oxides for Aqueous Hybrid Electrochemical Supercapacitors. Appl. Phys. A Mater. Sci. Process. 82, 599–606 (2006).CrossRef T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, and D. Bélanger, Nanostructured Transition Metal Oxides for Aqueous Hybrid Electrochemical Supercapacitors. Appl. Phys. A Mater. Sci. Process. 82, 599–606 (2006).CrossRef
96.
go back to reference T. Brousse, D. Belanger, and J.W. Long, To Be or Not To Be Pseudocapacitive? J. Electrochem. Soc. 162, A5185–A5189 (2015).CrossRef T. Brousse, D. Belanger, and J.W. Long, To Be or Not To Be Pseudocapacitive? J. Electrochem. Soc. 162, A5185–A5189 (2015).CrossRef
97.
go back to reference W. Deng, X. Ji, Q. Chen, and C.E. Banks, Electrochemical Capacitors Utilising Transition Metal Oxides: an Update of Recent Developments. RSC Adv. 1, 1171–1178 (2011).CrossRef W. Deng, X. Ji, Q. Chen, and C.E. Banks, Electrochemical Capacitors Utilising Transition Metal Oxides: an Update of Recent Developments. RSC Adv. 1, 1171–1178 (2011).CrossRef
98.
go back to reference M.Y. Ho, P.S. Khiew, D. Isa, T.K. Tan, W.S. Chiu, and C.H. Chia, A Review of Metal Oxide Composite Electrode Materials for Electrochemical Capacitors. NANO 9, 1–25 (2014).CrossRef M.Y. Ho, P.S. Khiew, D. Isa, T.K. Tan, W.S. Chiu, and C.H. Chia, A Review of Metal Oxide Composite Electrode Materials for Electrochemical Capacitors. NANO 9, 1–25 (2014).CrossRef
99.
go back to reference C.Q. Yi, J.P. Zou, H.Z. Yang, and L. Xian, Recent Advances in Pseudocapacitor Electrode Materials: Transition Metal Oxides and Nitrides. Trans. Nonferrous Metals Soc. Chin. 28, 1980–2001 (2018).CrossRef C.Q. Yi, J.P. Zou, H.Z. Yang, and L. Xian, Recent Advances in Pseudocapacitor Electrode Materials: Transition Metal Oxides and Nitrides. Trans. Nonferrous Metals Soc. Chin. 28, 1980–2001 (2018).CrossRef
100.
go back to reference B. Anasori, M.R. Lukatskaya, and Y. Gogotsi, 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nat. Rev. Mater. 2, 1–17 (2017).CrossRef B. Anasori, M.R. Lukatskaya, and Y. Gogotsi, 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nat. Rev. Mater. 2, 1–17 (2017).CrossRef
101.
go back to reference A. Djire, A. Bos, J. Liu, H. Zhang, E.M. Miller, and N.R. Neale, Pseudocapacitive Storage in Nanolayered Ti2NTx MXene Using Mg-Ion Electrolyte. ACS Appl. Nano Mater. 2, 2785–2795 (2019).CrossRef A. Djire, A. Bos, J. Liu, H. Zhang, E.M. Miller, and N.R. Neale, Pseudocapacitive Storage in Nanolayered Ti2NTx MXene Using Mg-Ion Electrolyte. ACS Appl. Nano Mater. 2, 2785–2795 (2019).CrossRef
102.
go back to reference B. Anasori, M.R. Lukatskaya, and Y. Gogotsi, 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nat. Rev. Mater. 2, 16098 (2017).CrossRef B. Anasori, M.R. Lukatskaya, and Y. Gogotsi, 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nat. Rev. Mater. 2, 16098 (2017).CrossRef
103.
go back to reference B. Das, M. Behm, G. Lindbergh, M.V. Reddy, and B.V.R. Chowdari, High Performance Metal Nitrides, MN (M = Cr, Co) Nanoparticles for Non-Aqueous Hybrid Supercapacitors. Adv. Powder Technol. 26, 783–788 (2015).CrossRef B. Das, M. Behm, G. Lindbergh, M.V. Reddy, and B.V.R. Chowdari, High Performance Metal Nitrides, MN (M = Cr, Co) Nanoparticles for Non-Aqueous Hybrid Supercapacitors. Adv. Powder Technol. 26, 783–788 (2015).CrossRef
104.
go back to reference C. Zhu, P. Yang, D. Chao, X. Wang, X. Zhang, S. Chen, and H.J. Fan, All Metal Nitrides Solid-State Asymmetric Supercapacitors. Adv. Mater. 27, 4566–4571 (2015).CrossRef C. Zhu, P. Yang, D. Chao, X. Wang, X. Zhang, S. Chen, and H.J. Fan, All Metal Nitrides Solid-State Asymmetric Supercapacitors. Adv. Mater. 27, 4566–4571 (2015).CrossRef
105.
go back to reference O. Sahnoun, H. Bouhani-Benziane, M. Sahnoun, and M. Driz, Magnetic and Thermoelectric Properties of Ordered Double Perovskite Ba2FeMoO6. J. Alloys Compd. 714, 704–708 (2017).CrossRef O. Sahnoun, H. Bouhani-Benziane, M. Sahnoun, and M. Driz, Magnetic and Thermoelectric Properties of Ordered Double Perovskite Ba2FeMoO6. J. Alloys Compd. 714, 704–708 (2017).CrossRef
106.
go back to reference I. Sfifir, A. Ezaami, W. Cheikhrouhou-Koubaa, and A. Cheikhrouhou, Critical Properties in Dy-doped La0.7−xDyxSr0.3MnO.3 (x=0.00, 0.03) Manganites. Ceram. Int. 43, 8784–8791 (2017).CrossRef I. Sfifir, A. Ezaami, W. Cheikhrouhou-Koubaa, and A. Cheikhrouhou, Critical Properties in Dy-doped La0.7−xDyxSr0.3MnO.3 (x=0.00, 0.03) Manganites. Ceram. Int. 43, 8784–8791 (2017).CrossRef
107.
go back to reference P. Forouzandeh and S.C. Pillai, Two-Dimensional (2D) Electrode Materials for Supercapacitors. Mater. Today Proc. 41, 498–505 (2020).CrossRef P. Forouzandeh and S.C. Pillai, Two-Dimensional (2D) Electrode Materials for Supercapacitors. Mater. Today Proc. 41, 498–505 (2020).CrossRef
108.
go back to reference G. Kim, S. Wang, A.J. Jacobson, L. Reimus, P. Brodersen, and C.A. Mims, Rapid Oxygen ion Diffusion and Surface Exchange Kinetics in PrBaCo2O5+x with a Perovskite Related Structure and Ordered A Cations. J. Mater. Chem. 17, 2500–2505 (2007).CrossRef G. Kim, S. Wang, A.J. Jacobson, L. Reimus, P. Brodersen, and C.A. Mims, Rapid Oxygen ion Diffusion and Surface Exchange Kinetics in PrBaCo2O5+x with a Perovskite Related Structure and Ordered A Cations. J. Mater. Chem. 17, 2500–2505 (2007).CrossRef
109.
go back to reference G. George, S.L. Jackson, C.Q. Luo, D. Fang, D. Luo, D. Hu, J. Wen, and Z. Luo, Effect of Doping on the Performance of High-Crystalline SrMnO3 Perovskite Nanofibers as a Supercapacitor Electrode. Ceram. Int. 44, 21982–21992 (2018).CrossRef G. George, S.L. Jackson, C.Q. Luo, D. Fang, D. Luo, D. Hu, J. Wen, and Z. Luo, Effect of Doping on the Performance of High-Crystalline SrMnO3 Perovskite Nanofibers as a Supercapacitor Electrode. Ceram. Int. 44, 21982–21992 (2018).CrossRef
110.
go back to reference P.P. Ma, B. Zhu, N. Lei, Y.K. Liu, B. Yu, Q.L. Lu, J.M. Dai, S.H. Li, and G.H. Jiang, Effect of Sr Substitution on Structure and Electrochemical Properties of Perovskite-Type LaMn0.9Ni0.1O3 Nanofibers. Mater. Lett. 252, 23–26 (2019).CrossRef P.P. Ma, B. Zhu, N. Lei, Y.K. Liu, B. Yu, Q.L. Lu, J.M. Dai, S.H. Li, and G.H. Jiang, Effect of Sr Substitution on Structure and Electrochemical Properties of Perovskite-Type LaMn0.9Ni0.1O3 Nanofibers. Mater. Lett. 252, 23–26 (2019).CrossRef
111.
go back to reference A. Navrotsky, Energetics and Crystal Chemical Systematic Among Ilmenite, Lithium Niobate, and Perovskite Structures. Chem. Mater. 10, 2787–2793 (1998).CrossRef A. Navrotsky, Energetics and Crystal Chemical Systematic Among Ilmenite, Lithium Niobate, and Perovskite Structures. Chem. Mater. 10, 2787–2793 (1998).CrossRef
112.
go back to reference X. Li and H. Zhu, Two-Dimensional MoS2: Properties, Preparation, and Applications. J. Mater. 1, 33–44 (2015). X. Li and H. Zhu, Two-Dimensional MoS2: Properties, Preparation, and Applications. J. Mater. 1, 33–44 (2015).
113.
go back to reference H. Zhang, Ultrathin Two-Dimensional Nanomaterials. ACS Nano Lecturesh. Award. 9, 9451–9469 (2015).CrossRef H. Zhang, Ultrathin Two-Dimensional Nanomaterials. ACS Nano Lecturesh. Award. 9, 9451–9469 (2015).CrossRef
115.
go back to reference X. Huang, Z. Zeng, and H. Zhang, Metal Dichalcogenide Nanosheets: Preparation, Properties and Applications. Chem. Soc. Rev. 42, 1934–1946 (2013).CrossRef X. Huang, Z. Zeng, and H. Zhang, Metal Dichalcogenide Nanosheets: Preparation, Properties and Applications. Chem. Soc. Rev. 42, 1934–1946 (2013).CrossRef
116.
go back to reference J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, J. Yang, and Y. Xie, Metallic Few-Layered VS2 Ultrathin Nanosheets: High Two-Dimensional Conductivity for in-Plane Supercapacitors. J. Am. Chem. Soc. 133, 17832–17838 (2011).CrossRef J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, J. Yang, and Y. Xie, Metallic Few-Layered VS2 Ultrathin Nanosheets: High Two-Dimensional Conductivity for in-Plane Supercapacitors. J. Am. Chem. Soc. 133, 17832–17838 (2011).CrossRef
117.
go back to reference A.P. Cote, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger, and O.M. Yaghi, Porous Crystalline Covalent Organic Frameworks. Science 310, 1166–1170 (2005).CrossRef A.P. Cote, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger, and O.M. Yaghi, Porous Crystalline Covalent Organic Frameworks. Science 310, 1166–1170 (2005).CrossRef
118.
go back to reference H. Ding, A. Mal, and C. Wang, Tailored Covalent Organic Frameworks by Post-Synthetic Modification. Mater. Chem. Front. 4, 113–127 (2019).CrossRef H. Ding, A. Mal, and C. Wang, Tailored Covalent Organic Frameworks by Post-Synthetic Modification. Mater. Chem. Front. 4, 113–127 (2019).CrossRef
119.
go back to reference C. Krishnaraj, H. Sekhar Jena, L. Bourda, A. Laemont, P. Pachfule, J. Roeser, and P. Van Der Voort, Strongly Reducing (diarylamino) Benzene-Based Covalent Organic Framework for Metal-Free Visible light Photocatalytic H2O2 Generation. J. Am. Chem. Soc. 142, 20107–20116 (2020).CrossRef C. Krishnaraj, H. Sekhar Jena, L. Bourda, A. Laemont, P. Pachfule, J. Roeser, and P. Van Der Voort, Strongly Reducing (diarylamino) Benzene-Based Covalent Organic Framework for Metal-Free Visible light Photocatalytic H2O2 Generation. J. Am. Chem. Soc. 142, 20107–20116 (2020).CrossRef
120.
go back to reference S. Chandra, D. Roy Chowdhury, M. Addicoat, T. Heine, A. Paul, and R. Banerjee, Molecular Level Control of the Capacitance of Two-Dimensional Covalent Organic Frameworks: Role of Hydrogen Bonding in Energy Storage Materials. Chem. Mater. 29, 2074–2080 (2017).CrossRef S. Chandra, D. Roy Chowdhury, M. Addicoat, T. Heine, A. Paul, and R. Banerjee, Molecular Level Control of the Capacitance of Two-Dimensional Covalent Organic Frameworks: Role of Hydrogen Bonding in Energy Storage Materials. Chem. Mater. 29, 2074–2080 (2017).CrossRef
123.
go back to reference W. Yang, Z. Gao, J. Wang, J. Ma, M. Zhang, and L. Liu, Solvothermal One-Step Synthesis of Ni − Al Layered Double Hydroxide / Carbon Nanotube / Reduced Graphene Oxide Sheet Ternary Nanocomposite with Ultrahigh Capacitance for Supercapacitors. ACS Appl. Mater. Interfaces 5, 5443–5454 (2013).CrossRef W. Yang, Z. Gao, J. Wang, J. Ma, M. Zhang, and L. Liu, Solvothermal One-Step Synthesis of Ni − Al Layered Double Hydroxide / Carbon Nanotube / Reduced Graphene Oxide Sheet Ternary Nanocomposite with Ultrahigh Capacitance for Supercapacitors. ACS Appl. Mater. Interfaces 5, 5443–5454 (2013).CrossRef
126.
go back to reference B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W.D. Lou, and X. Wang, A Metal–Organic Framework-Derived Bifunctional Oxygen Electrocatalyst. Nat. Energy 1, 1–8 (2016).CrossRef B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W.D. Lou, and X. Wang, A Metal–Organic Framework-Derived Bifunctional Oxygen Electrocatalyst. Nat. Energy 1, 1–8 (2016).CrossRef
127.
go back to reference R.R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J.H. Kim, and Y. Yamauchi, Asymmetric Supercapacitors Using 3D Nanoporous carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal-Organic Framework. ACS Nano 9, 6288–6296 (2015).CrossRef R.R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J.H. Kim, and Y. Yamauchi, Asymmetric Supercapacitors Using 3D Nanoporous carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal-Organic Framework. ACS Nano 9, 6288–6296 (2015).CrossRef
128.
go back to reference G. Huang, F. Zhang, X. Du, Y. Qin, D. Yin, and L. Wang, Metal Organic Frameworks Route to in Situ Insertion of Multiwalled Carbon Nanotubes in Co3o4polyhedra as Anode Materials for Lithium-Ion Batteries. ACS Nano 9, 1592–1599 (2015).CrossRef G. Huang, F. Zhang, X. Du, Y. Qin, D. Yin, and L. Wang, Metal Organic Frameworks Route to in Situ Insertion of Multiwalled Carbon Nanotubes in Co3o4polyhedra as Anode Materials for Lithium-Ion Batteries. ACS Nano 9, 1592–1599 (2015).CrossRef
129.
go back to reference L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi, and B. Wang, Metal–Organic Frameworks for Energy Storage: Batteries and Supercapacitors. Coord. Chem. Rev. 307, 361–381 (2016).CrossRef L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi, and B. Wang, Metal–Organic Frameworks for Energy Storage: Batteries and Supercapacitors. Coord. Chem. Rev. 307, 361–381 (2016).CrossRef
130.
go back to reference M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, and M.W. Barsoum, New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries. J. Am. Chem. Soc. 135, 15966–15969 (2013).CrossRef M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, and M.W. Barsoum, New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries. J. Am. Chem. Soc. 135, 15966–15969 (2013).CrossRef
131.
go back to reference M. Ghidiu, M. Naguib, C. Shi, O. Mashtalir, L.M. Pan, B. Zhang, J. Yang, Y. Gogotsi, S.J.L. Billinge, and M.W. Barsoum, Synthesis and Characterization of Two-Dimensional Nb4C3 (MXene). Chem. Commun. 50, 9517–9520 (2014).CrossRef M. Ghidiu, M. Naguib, C. Shi, O. Mashtalir, L.M. Pan, B. Zhang, J. Yang, Y. Gogotsi, S.J.L. Billinge, and M.W. Barsoum, Synthesis and Characterization of Two-Dimensional Nb4C3 (MXene). Chem. Commun. 50, 9517–9520 (2014).CrossRef
132.
go back to reference J.C. Gui, L. Han, and W.Y. Cao, Lamellar MXene: A Novel 2D Nanomaterial for Electrochemical Sensors. J. Appl. Electrochem. 51, 1509–1522 (2021).CrossRef J.C. Gui, L. Han, and W.Y. Cao, Lamellar MXene: A Novel 2D Nanomaterial for Electrochemical Sensors. J. Appl. Electrochem. 51, 1509–1522 (2021).CrossRef
133.
go back to reference B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, and M.W. Barsoum, Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). ACS Nano 9, 9507–9516 (2015).CrossRef B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, and M.W. Barsoum, Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). ACS Nano 9, 9507–9516 (2015).CrossRef
134.
go back to reference M. Naguib, V.N. Mochalin, M.W. Barsoum, and Y. Gogotsi, 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv. Mater. 26, 992–1005 (2014).CrossRef M. Naguib, V.N. Mochalin, M.W. Barsoum, and Y. Gogotsi, 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv. Mater. 26, 992–1005 (2014).CrossRef
135.
go back to reference J. Chen, W. Yan, E.J. Townsend, J. Feng, L. Pan, V. Del Angel Hernandez, and C.F. Faul, Tunable Surface Area, Porosity, and Function in Conjugated Microporous Polymers. Angewandte Chemie Int. Ed. 58, 11715–11719 (2019).CrossRef J. Chen, W. Yan, E.J. Townsend, J. Feng, L. Pan, V. Del Angel Hernandez, and C.F. Faul, Tunable Surface Area, Porosity, and Function in Conjugated Microporous Polymers. Angewandte Chemie Int. Ed. 58, 11715–11719 (2019).CrossRef
136.
go back to reference J. Chen, T. Qiu, W. Yan, and C.F.J. Faul, Exploiting Hansen Solubility Parameters to Tune Porosity and Function in Conjugated Microporous Polymers. J. Mater. Chem. A 8, 22657–22665 (2020).CrossRef J. Chen, T. Qiu, W. Yan, and C.F.J. Faul, Exploiting Hansen Solubility Parameters to Tune Porosity and Function in Conjugated Microporous Polymers. J. Mater. Chem. A 8, 22657–22665 (2020).CrossRef
137.
go back to reference K. Amin, N. Ashraf, L. Mao, C.F.J. Faul, and Z. Wei, Conjugated Microporous Polymers for Energy Storage: Recent Progress and Challenges. Nano Energy 85, 105958 (2021).CrossRef K. Amin, N. Ashraf, L. Mao, C.F.J. Faul, and Z. Wei, Conjugated Microporous Polymers for Energy Storage: Recent Progress and Challenges. Nano Energy 85, 105958 (2021).CrossRef
138.
go back to reference F. Xu, X. Chen, Z. Tang, D. Wu, R. Fu, and D. Jiang, Redox-Active Conjugated Microporous Polymers: A New Organic Platform for Highly Efficient Energy Storage. Chem. Commun. 50, 4788–4790 (2014).CrossRef F. Xu, X. Chen, Z. Tang, D. Wu, R. Fu, and D. Jiang, Redox-Active Conjugated Microporous Polymers: A New Organic Platform for Highly Efficient Energy Storage. Chem. Commun. 50, 4788–4790 (2014).CrossRef
139.
go back to reference J.S.M. Lee and A.I. Cooper, Advances in Conjugated Microporous Polymers. Chem. Rev. 120, 2171–2214 (2020).CrossRef J.S.M. Lee and A.I. Cooper, Advances in Conjugated Microporous Polymers. Chem. Rev. 120, 2171–2214 (2020).CrossRef
140.
go back to reference A.I. Cooper, Conjugated Microporous Polymers. Adv. Mater. 21, 1291–1295 (2009).CrossRef A.I. Cooper, Conjugated Microporous Polymers. Adv. Mater. 21, 1291–1295 (2009).CrossRef
141.
go back to reference K.O. Oyedotun, F. Barzegar, A.A. Mirghni, A.A. Khaleed, T.M. Masikhwa, and N. Manyala, Examination of High-Porosity Activated Carbon Obtained from Dehydration of White Sugar for Electrochemical Capacitor Applications. ACS Sustain. Chem. Eng. 7, 537–546 (2019).CrossRef K.O. Oyedotun, F. Barzegar, A.A. Mirghni, A.A. Khaleed, T.M. Masikhwa, and N. Manyala, Examination of High-Porosity Activated Carbon Obtained from Dehydration of White Sugar for Electrochemical Capacitor Applications. ACS Sustain. Chem. Eng. 7, 537–546 (2019).CrossRef
142.
go back to reference K.O. Oyedotun, A.A. Mirghni, O. Fasakin, D.J. Tarimo, V.N. Kitenge, and N. Manyala, High-Energy Asymmetric Supercapacitor Based on the Nickel Cobalt Oxide (NiCo2O4) Nanostructure Material and Activated Carbon Derived from Cocoa Pods. Energy Fuels 35, 20309–20319 (2021).CrossRef K.O. Oyedotun, A.A. Mirghni, O. Fasakin, D.J. Tarimo, V.N. Kitenge, and N. Manyala, High-Energy Asymmetric Supercapacitor Based on the Nickel Cobalt Oxide (NiCo2O4) Nanostructure Material and Activated Carbon Derived from Cocoa Pods. Energy Fuels 35, 20309–20319 (2021).CrossRef
143.
go back to reference R.B. Choudhary, S. Ansari, and B. Purty, Robust Electrochemical Performance of Polypyrrole (PPy) and Polyindole (PIn) Based Hybrid Electrode Materials for Supercapacitor Application: A Review. J. Energy Storage. 29, 101302 (2020).CrossRef R.B. Choudhary, S. Ansari, and B. Purty, Robust Electrochemical Performance of Polypyrrole (PPy) and Polyindole (PIn) Based Hybrid Electrode Materials for Supercapacitor Application: A Review. J. Energy Storage. 29, 101302 (2020).CrossRef
144.
go back to reference N.M. Soudagar, V.K. Pandit, R.B. Pujari, K.B. Chorghade, C.D. Lokhande, and S.S. Joshi, Chemically Synthesized Polyaniline Supercapacitor. Int. J. Eng. Res. Technol. 10, 587–594 (2017). N.M. Soudagar, V.K. Pandit, R.B. Pujari, K.B. Chorghade, C.D. Lokhande, and S.S. Joshi, Chemically Synthesized Polyaniline Supercapacitor. Int. J. Eng. Res. Technol. 10, 587–594 (2017).
145.
go back to reference M. Rajesh, C.J. Raj, R. Manikandan, B.C. Kim, S.Y. Park, and K.H. Yu, A High Performance PEDOT/PEDOT Symmetric Supercapacitor by Facile In-Situ Hydrothermal Polymerization of PEDOT Nanostructures on Flexible Carbon Fibre Cloth Electrodes. Mater. Today Energy 6, 96–104 (2017).CrossRef M. Rajesh, C.J. Raj, R. Manikandan, B.C. Kim, S.Y. Park, and K.H. Yu, A High Performance PEDOT/PEDOT Symmetric Supercapacitor by Facile In-Situ Hydrothermal Polymerization of PEDOT Nanostructures on Flexible Carbon Fibre Cloth Electrodes. Mater. Today Energy 6, 96–104 (2017).CrossRef
146.
go back to reference C. Zhao, X. Wang, S. Wang, H. Wang, Y. Yang, and W. Zheng, Pseudocapacitive Properties of Cobalt Hydroxide Electrodeposited on Ni-Foam-Supported Carbon Nanomaterial. Mater. Res. Bull. 48, 3189–3195 (2013).CrossRef C. Zhao, X. Wang, S. Wang, H. Wang, Y. Yang, and W. Zheng, Pseudocapacitive Properties of Cobalt Hydroxide Electrodeposited on Ni-Foam-Supported Carbon Nanomaterial. Mater. Res. Bull. 48, 3189–3195 (2013).CrossRef
147.
go back to reference H.B. Li, M.H. Yu, F.X. Wang, P. Liu, Y. Liang, J. Xiao, C.X. Wang, Y.X. Tong, and G.W. Yang, Amorphous Nickel Hydroxide Nanospheres with Ultrahigh Capacitance and Energy Density as Electrochemical Pseudocapacitor Materials. Nat. Commun. 4, 1894 (2013).CrossRef H.B. Li, M.H. Yu, F.X. Wang, P. Liu, Y. Liang, J. Xiao, C.X. Wang, Y.X. Tong, and G.W. Yang, Amorphous Nickel Hydroxide Nanospheres with Ultrahigh Capacitance and Energy Density as Electrochemical Pseudocapacitor Materials. Nat. Commun. 4, 1894 (2013).CrossRef
148.
go back to reference C. Han, H. Si, S. Sang, K. Liu, H. Liu, and Q. Wu, Carbon Dots Doped with Ni(OH)2as Thin-Film Electrodes for Supercapacitors. ACS Appl. Nano Mater. 3, 12106–12114 (2020).CrossRef C. Han, H. Si, S. Sang, K. Liu, H. Liu, and Q. Wu, Carbon Dots Doped with Ni(OH)2as Thin-Film Electrodes for Supercapacitors. ACS Appl. Nano Mater. 3, 12106–12114 (2020).CrossRef
149.
go back to reference Y. Song, X. Cai, X. Xu, and X.X. Liu, Integration of Nickel–Cobalt Double Hydroxide Nanosheets and Polypyrrole Films with Functionalized Partially Exfoliated Graphite for Asymmetric Supercapacitors with Improved Rate Capability. J. Mater. Chem. A. 3, 14712–14720 (2015).CrossRef Y. Song, X. Cai, X. Xu, and X.X. Liu, Integration of Nickel–Cobalt Double Hydroxide Nanosheets and Polypyrrole Films with Functionalized Partially Exfoliated Graphite for Asymmetric Supercapacitors with Improved Rate Capability. J. Mater. Chem. A. 3, 14712–14720 (2015).CrossRef
150.
go back to reference S. Ramesh, K. Karuppasamy, H.M. Yadav, J.J. Lee, H.S. Kim, H.S. Kim, and J.H. Kim, Ni (OH) 2-Decorated Nitrogen Doped MWCNT Nanosheets as An Efficient Electrode for High Performance Supercapacitors. Sci. Rep. 9, 1–10 (2019).CrossRef S. Ramesh, K. Karuppasamy, H.M. Yadav, J.J. Lee, H.S. Kim, H.S. Kim, and J.H. Kim, Ni (OH) 2-Decorated Nitrogen Doped MWCNT Nanosheets as An Efficient Electrode for High Performance Supercapacitors. Sci. Rep. 9, 1–10 (2019).CrossRef
151.
go back to reference X. He, W. Yang, X. Mao, L. Xu, Y. Zhou, Y. Chen, Y. Zhao, Y. Yang, and J. Xu, All-Solid State Symmetric Supercapacitors Based on Compressible and Flexible Free-Standing 3D Carbon Nanotubes (CNTs)/Poly(3,4-ethylenedioxythiophene) (PEDOT) Sponge Electrodes. J. Power Sources. 376, 138–146 (2018).CrossRef X. He, W. Yang, X. Mao, L. Xu, Y. Zhou, Y. Chen, Y. Zhao, Y. Yang, and J. Xu, All-Solid State Symmetric Supercapacitors Based on Compressible and Flexible Free-Standing 3D Carbon Nanotubes (CNTs)/Poly(3,4-ethylenedioxythiophene) (PEDOT) Sponge Electrodes. J. Power Sources. 376, 138–146 (2018).CrossRef
152.
go back to reference G. Wu, P. Tan, D. Wang, Z. Li, L. Peng, Y. Hu, C. Wang, W. Zhu, S. Chen, and W. Chen, High-Performance Supercapacitors Based on Electrochemical-Induced Vertical-Aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes. Sci. Rep. 7, 1–8 (2017). G. Wu, P. Tan, D. Wang, Z. Li, L. Peng, Y. Hu, C. Wang, W. Zhu, S. Chen, and W. Chen, High-Performance Supercapacitors Based on Electrochemical-Induced Vertical-Aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes. Sci. Rep. 7, 1–8 (2017).
153.
go back to reference R. Xue, Y.P. Zheng, D.Q. Qian, D.Y. Xu, Y.S. Liu, S.L. Huang, and G.Y. Yang, A 2-D Microporous Covalent Organic Framework for High-Performance Supercapacitor Electrode. Mater. Lett. 308, 131229 (2022).CrossRef R. Xue, Y.P. Zheng, D.Q. Qian, D.Y. Xu, Y.S. Liu, S.L. Huang, and G.Y. Yang, A 2-D Microporous Covalent Organic Framework for High-Performance Supercapacitor Electrode. Mater. Lett. 308, 131229 (2022).CrossRef
154.
go back to reference R. Iqbal, A. Badshah, Y.J. Ma, and L.J. Zhi, An Electrochemically Stable 2D Covalent Organic Framework for High-Performance Organic Supercapacitors. Chin. J. Polym. Sci. 38, 558–564 (2020).CrossRef R. Iqbal, A. Badshah, Y.J. Ma, and L.J. Zhi, An Electrochemically Stable 2D Covalent Organic Framework for High-Performance Organic Supercapacitors. Chin. J. Polym. Sci. 38, 558–564 (2020).CrossRef
155.
go back to reference N. An, Z. Guo, J. Xin, Y. He, K. Xie, D. Sun, X. Dong, and Z. Hu, Hierarchical Porous Covalent Organic Framework/Graphene Aerogel Electrode for High-Performance Supercapacitors. J. Mater. Chem. A 9, 16824–16833 (2021).CrossRef N. An, Z. Guo, J. Xin, Y. He, K. Xie, D. Sun, X. Dong, and Z. Hu, Hierarchical Porous Covalent Organic Framework/Graphene Aerogel Electrode for High-Performance Supercapacitors. J. Mater. Chem. A 9, 16824–16833 (2021).CrossRef
156.
go back to reference D.J. Li, S. Lei, Y.Y. Wang, S. Chen, Y. Kang, Z.G. Gu, and J. Zhang, Helical Carbon Tubes Derived from Epitaxial Cu-MOF Coating on Textile for Enhanced Supercapacitor Performance. Dalt. Trans. 47, 5558–5563 (2018).CrossRef D.J. Li, S. Lei, Y.Y. Wang, S. Chen, Y. Kang, Z.G. Gu, and J. Zhang, Helical Carbon Tubes Derived from Epitaxial Cu-MOF Coating on Textile for Enhanced Supercapacitor Performance. Dalt. Trans. 47, 5558–5563 (2018).CrossRef
157.
go back to reference C. Qu, Y. Jiao, B. Zhao, D. Chen, R. Zou, K.S. Walton, and M. Liu, Nickel-Based Pillared MOFs for High-Performance Supercapacitors: Design, Synthesis and Stability Study. Nano Energy 26, 66–73 (2016).CrossRef C. Qu, Y. Jiao, B. Zhao, D. Chen, R. Zou, K.S. Walton, and M. Liu, Nickel-Based Pillared MOFs for High-Performance Supercapacitors: Design, Synthesis and Stability Study. Nano Energy 26, 66–73 (2016).CrossRef
158.
go back to reference S. Venkateshalu, J. Cherusseri, M. Karnan, K.S. Kumar, P. Kollu, M. Sathish, J. Thomas, S.K. Jeong, and A.N. Grace, New Method for the Synthesis of 2D Vanadium Nitride (MXene) and its Application as a Supercapacitor Electrode. ACS Omega 5, 17983–17992 (2020).CrossRef S. Venkateshalu, J. Cherusseri, M. Karnan, K.S. Kumar, P. Kollu, M. Sathish, J. Thomas, S.K. Jeong, and A.N. Grace, New Method for the Synthesis of 2D Vanadium Nitride (MXene) and its Application as a Supercapacitor Electrode. ACS Omega 5, 17983–17992 (2020).CrossRef
159.
go back to reference K.O. Oyedotun, D.Y. Momodu, M. Naguib, A.A. Mirghni, T.M. Masikhwa, A.A. Khaleed, and N. Manyala, Electrochemical Performance of Two-Dimensional Ti3C2-Mn3O4 Nanocomposites and Carbonized Iron Cations for Hybrid Supercapacitor Electrodes. Electrochimica. Acta. 301, 487–499 (2019).CrossRef K.O. Oyedotun, D.Y. Momodu, M. Naguib, A.A. Mirghni, T.M. Masikhwa, A.A. Khaleed, and N. Manyala, Electrochemical Performance of Two-Dimensional Ti3C2-Mn3O4 Nanocomposites and Carbonized Iron Cations for Hybrid Supercapacitor Electrodes. Electrochimica. Acta. 301, 487–499 (2019).CrossRef
160.
go back to reference Q. Shan, X. Mu, M. Alhabeb, C.E. Shuck, D. Pang, X. Zhao, and Y. Dall’Agnese, Two-Dimensional Vanadium Carbide (V2C) MXene as Electrode for Supercapacitors with Aqueous Electrolytes. Electrochem. Commun. 96, 103–107 (2018).CrossRef Q. Shan, X. Mu, M. Alhabeb, C.E. Shuck, D. Pang, X. Zhao, and Y. Dall’Agnese, Two-Dimensional Vanadium Carbide (V2C) MXene as Electrode for Supercapacitors with Aqueous Electrolytes. Electrochem. Commun. 96, 103–107 (2018).CrossRef
161.
go back to reference W. Lyu, W. Zhang, H. Liu, Y. Liu, H. Zuo, C. Yan, C.F.J. Faul, A. Thomas, M. Zhu, and Y. Liao, Conjugated Microporous Polymer Network Grafted Carbon Nanotube Fibers with Tunable Redox Activity for Efficient Flexible Wearable Energy Storage. Chem. Mater. 32, 8276–8285 (2020).CrossRef W. Lyu, W. Zhang, H. Liu, Y. Liu, H. Zuo, C. Yan, C.F.J. Faul, A. Thomas, M. Zhu, and Y. Liao, Conjugated Microporous Polymer Network Grafted Carbon Nanotube Fibers with Tunable Redox Activity for Efficient Flexible Wearable Energy Storage. Chem. Mater. 32, 8276–8285 (2020).CrossRef
162.
go back to reference Y. Kou, Y. Xu, Z. Guo, and D. Jiang, Supercapacitive Energy Storage and Electric Power Supply Using an aza-Fused π-Conjugated Microporous Framework. Angew. Chemie. 123, 8912–8916 (2011).CrossRef Y. Kou, Y. Xu, Z. Guo, and D. Jiang, Supercapacitive Energy Storage and Electric Power Supply Using an aza-Fused π-Conjugated Microporous Framework. Angew. Chemie. 123, 8912–8916 (2011).CrossRef
163.
go back to reference Y. Liao, H. Wang, M. Zhu, A. Thomas, Y. Liao, H. Wang, M. Zhu, and A. Thomas, Efficient Supercapacitor Energy Storage Using Conjugated Microporous Polymer Networks Synthesized from Buchwald-Hartwig Coupling. Adv. Mater. 30, 1705710 (2018).CrossRef Y. Liao, H. Wang, M. Zhu, A. Thomas, Y. Liao, H. Wang, M. Zhu, and A. Thomas, Efficient Supercapacitor Energy Storage Using Conjugated Microporous Polymer Networks Synthesized from Buchwald-Hartwig Coupling. Adv. Mater. 30, 1705710 (2018).CrossRef
164.
go back to reference J. Fischer, K. Thümmler, S. Fischer, I.G. Gonzalez Martinez, S. Oswald, and D. Mikhailova, Activated Carbon Derived from Cellulose and Cellulose Acetate Microspheres as Electrode Materials for Symmetric Supercapacitors in Aqueous Electrolytes. Energy Fuels 35, 12653–12665 (2021).CrossRef J. Fischer, K. Thümmler, S. Fischer, I.G. Gonzalez Martinez, S. Oswald, and D. Mikhailova, Activated Carbon Derived from Cellulose and Cellulose Acetate Microspheres as Electrode Materials for Symmetric Supercapacitors in Aqueous Electrolytes. Energy Fuels 35, 12653–12665 (2021).CrossRef
165.
go back to reference M.N. Rantho, M.J. Madito, and N. Manyala, Symmetric Supercapacitor with Supercapattery Behavior Based on Carbonized Iron Cations Adsorbed Onto Polyaniline. Electrochim. Acta. 262, 82–96 (2018).CrossRef M.N. Rantho, M.J. Madito, and N. Manyala, Symmetric Supercapacitor with Supercapattery Behavior Based on Carbonized Iron Cations Adsorbed Onto Polyaniline. Electrochim. Acta. 262, 82–96 (2018).CrossRef
166.
go back to reference A. Bello, F. Barzegar, M.J. Madito, D.Y. Momodu, A.A. Khaleed, T.M. Masikhwa, J.K. Dangbegnon, and N. Manyala, Electrochemical Performance of Polypyrrole Derived Porous Activated Carbon-Based Symmetric Supercapacitors in Various Electrolytes. RSC Adv. 6, 68141–68149 (2016).CrossRef A. Bello, F. Barzegar, M.J. Madito, D.Y. Momodu, A.A. Khaleed, T.M. Masikhwa, J.K. Dangbegnon, and N. Manyala, Electrochemical Performance of Polypyrrole Derived Porous Activated Carbon-Based Symmetric Supercapacitors in Various Electrolytes. RSC Adv. 6, 68141–68149 (2016).CrossRef
167.
go back to reference Y. Zhou, P. Jin, Y. Zhou, and Y. Zhu, High-Performance Symmetric Supercapacitors Based on Carbon Nanotube/Graphite Nanofiber Nanocomposites. Sci. Rep. 8, 1–8 (2018). Y. Zhou, P. Jin, Y. Zhou, and Y. Zhu, High-Performance Symmetric Supercapacitors Based on Carbon Nanotube/Graphite Nanofiber Nanocomposites. Sci. Rep. 8, 1–8 (2018).
168.
go back to reference Y. Ma, D. Chen, Z. Fang, Y. Zheng, W. Li, S. Xu, X. Lu, G. Shao, Q. Liu, and W. Yang, High Energy Density and Extremely Stable Supercapacitors Based on Carbon Aerogels with 100% Capacitance Retention up to 65,000 Cycles. Proc. Natl. Acad. Sci. U. S. A. 118, 1–8 (2021).CrossRef Y. Ma, D. Chen, Z. Fang, Y. Zheng, W. Li, S. Xu, X. Lu, G. Shao, Q. Liu, and W. Yang, High Energy Density and Extremely Stable Supercapacitors Based on Carbon Aerogels with 100% Capacitance Retention up to 65,000 Cycles. Proc. Natl. Acad. Sci. U. S. A. 118, 1–8 (2021).CrossRef
169.
go back to reference M. Ibrahim, H.N. Abdelhamid, A.M. Abuelftooh, S.G. Mohamed, Z. Wen, and X. Sun, Covalent Organic Frameworks (COFs)-Derived Nitrogen-Doped Carbon/Reduced Graphene Oxide Nanocomposite as Electrodes Materials for Supercapacitors. J. Energy Storage 55, 105375 (2022).CrossRef M. Ibrahim, H.N. Abdelhamid, A.M. Abuelftooh, S.G. Mohamed, Z. Wen, and X. Sun, Covalent Organic Frameworks (COFs)-Derived Nitrogen-Doped Carbon/Reduced Graphene Oxide Nanocomposite as Electrodes Materials for Supercapacitors. J. Energy Storage 55, 105375 (2022).CrossRef
170.
go back to reference M.G. Mohamed, S.V. Chaganti, S.U. Sharma, M.M. Samy, M. Ejaz, J.T. Lee, and S.W. Kuo, Constructing Conjugated Microporous Polymers Containing the Pyrene-4, 5, 9, 10-Tetraone Unit for Energy Storage. ACS Appl. Energy Mater. 5, 10130–10140 (2022).CrossRef M.G. Mohamed, S.V. Chaganti, S.U. Sharma, M.M. Samy, M. Ejaz, J.T. Lee, and S.W. Kuo, Constructing Conjugated Microporous Polymers Containing the Pyrene-4, 5, 9, 10-Tetraone Unit for Energy Storage. ACS Appl. Energy Mater. 5, 10130–10140 (2022).CrossRef
171.
go back to reference M.G. Mohamed, T.H. Mansoure, M.M. Samy, Y. Takashi, A.A.K. Mohammed, T. Ahamad, S.M. Alshehri, J. Kim, B.M. Matsagar, K.C.W. Wu, and S.W. Kuo, Ultrastable Conjugated Microporous Polymers Containing Benzobisthiadiazole and Pyrene Building Blocks for Energy Storage Applications. Molecules 27, 2025 (2022).CrossRef M.G. Mohamed, T.H. Mansoure, M.M. Samy, Y. Takashi, A.A.K. Mohammed, T. Ahamad, S.M. Alshehri, J. Kim, B.M. Matsagar, K.C.W. Wu, and S.W. Kuo, Ultrastable Conjugated Microporous Polymers Containing Benzobisthiadiazole and Pyrene Building Blocks for Energy Storage Applications. Molecules 27, 2025 (2022).CrossRef
172.
go back to reference A. Bello, F. Barzegar, M.J. Madito, D.Y. Momodu, A.A. Khaleed, T.M. Masikhwa, J.K. Dangbegnon, and N. Manyala, Stability Studies of Polypyrole- Derived Carbon Based Symmetric Supercapacitor Via Potentiostatic Floating Test. Electrochim. Acta. 213, 107–114 (2016).CrossRef A. Bello, F. Barzegar, M.J. Madito, D.Y. Momodu, A.A. Khaleed, T.M. Masikhwa, J.K. Dangbegnon, and N. Manyala, Stability Studies of Polypyrole- Derived Carbon Based Symmetric Supercapacitor Via Potentiostatic Floating Test. Electrochim. Acta. 213, 107–114 (2016).CrossRef
173.
go back to reference A. Bello, K. Makgopa, M. Fabiane, D. Dodoo-Ahrin, K.I. Ozoemena, and N. Manyala, Chemical Adsorption of NiO Nanostructures on Nickel Foam-Graphene for Supercapacitor Applications. J. Mater. Sci. 48, 6707–6712 (2013).CrossRef A. Bello, K. Makgopa, M. Fabiane, D. Dodoo-Ahrin, K.I. Ozoemena, and N. Manyala, Chemical Adsorption of NiO Nanostructures on Nickel Foam-Graphene for Supercapacitor Applications. J. Mater. Sci. 48, 6707–6712 (2013).CrossRef
174.
go back to reference M. Inagaki, H. Konno, and O. Tanaike, Carbon Materials for Electrochemical Capacitors. J. Power Sources. 195, 7880–7903 (2010).CrossRef M. Inagaki, H. Konno, and O. Tanaike, Carbon Materials for Electrochemical Capacitors. J. Power Sources. 195, 7880–7903 (2010).CrossRef
175.
go back to reference D. Weingarth, A. Foelske-Schmitz, A. Wokaun, and R. Kötz, PTFE Bound Activated Carbon - A Quasi-Reference Electrode for Ionic Liquids. Electrochem. Commun. 18, 116–118 (2012).CrossRef D. Weingarth, A. Foelske-Schmitz, A. Wokaun, and R. Kötz, PTFE Bound Activated Carbon - A Quasi-Reference Electrode for Ionic Liquids. Electrochem. Commun. 18, 116–118 (2012).CrossRef
176.
go back to reference D. Weingarth, A. Foelske-Schmitz, A. Wokaun, and R. Kotz, PTFE Bound Activated Carbon - A Quasi Reference Electrode for Ionic Liquids and its Application. ECS Trans. 50, 111–117 (2013).CrossRef D. Weingarth, A. Foelske-Schmitz, A. Wokaun, and R. Kotz, PTFE Bound Activated Carbon - A Quasi Reference Electrode for Ionic Liquids and its Application. ECS Trans. 50, 111–117 (2013).CrossRef
178.
go back to reference J.R. Miller, A.F. Burke, Electric vehicle capacitor test procedures manual, Idaho Natl. Eng. Lab. (1994). J.R. Miller, A.F. Burke, Electric vehicle capacitor test procedures manual, Idaho Natl. Eng. Lab. (1994).
179.
go back to reference M.D. Stoller and R.S. Ruoff, Best Practice Methods for Determining an Electrode Material’s Performance for Ultracapacitors. Energy Environ. Sci. 3, 1294–1301 (2010).CrossRef M.D. Stoller and R.S. Ruoff, Best Practice Methods for Determining an Electrode Material’s Performance for Ultracapacitors. Energy Environ. Sci. 3, 1294–1301 (2010).CrossRef
180.
go back to reference S. Shivakumara, B. Kishore, T.R. Penki, and N. Munichandraiah, Symmetric Supercapacitor Based on Partially Exfoliated and Reduced Graphite Oxide in Neutral Aqueous Electrolyte. Solid State Commun. 199, 26–32 (2014).CrossRef S. Shivakumara, B. Kishore, T.R. Penki, and N. Munichandraiah, Symmetric Supercapacitor Based on Partially Exfoliated and Reduced Graphite Oxide in Neutral Aqueous Electrolyte. Solid State Commun. 199, 26–32 (2014).CrossRef
181.
go back to reference W. Zhang, C. Ma, J. Fang, J. Cheng, X. Zhang, S. Dong, and L. Zhang, Asymmetric Electrochemical Capacitors with High Energy and Power Density Based on Graphene/CoAl-LDH and Activated Carbon Electrodes. RSC Adv. 3, 2483 (2013).CrossRef W. Zhang, C. Ma, J. Fang, J. Cheng, X. Zhang, S. Dong, and L. Zhang, Asymmetric Electrochemical Capacitors with High Energy and Power Density Based on Graphene/CoAl-LDH and Activated Carbon Electrodes. RSC Adv. 3, 2483 (2013).CrossRef
182.
go back to reference K.O. Oyedotun, M.J. Madito, A. Bello, D.Y. Momodu, A.A. Mirghni, and N. Manyala, Investigation of Graphene Oxide Nanogel and Carbon Nanorods as Electrode for Electrochemical Supercapacitor. Electrochim. Acta. 245, 268–278 (2017).CrossRef K.O. Oyedotun, M.J. Madito, A. Bello, D.Y. Momodu, A.A. Mirghni, and N. Manyala, Investigation of Graphene Oxide Nanogel and Carbon Nanorods as Electrode for Electrochemical Supercapacitor. Electrochim. Acta. 245, 268–278 (2017).CrossRef
183.
go back to reference P.L. Taberna, P. Simon, and J.F. Fauvarque, Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors. J. Electrochem. Soc. 150, A292 (2003).CrossRef P.L. Taberna, P. Simon, and J.F. Fauvarque, Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors. J. Electrochem. Soc. 150, A292 (2003).CrossRef
184.
go back to reference B. Akinwolemiwa, C. Peng, and G.Z. Chen, Redox Electrolytes in Supercapacitors. J. Electrochem. Soc. 162, A5054–A5059 (2015).CrossRef B. Akinwolemiwa, C. Peng, and G.Z. Chen, Redox Electrolytes in Supercapacitors. J. Electrochem. Soc. 162, A5054–A5059 (2015).CrossRef
185.
go back to reference C. Chukwuka, K.A. Folly, (2012). Batteries and super-capacitors. In IEEE Power and Energy Society Conference and Exposition in Africa: Intelligent Grid Integration of Renewable Energy Resources (PowerAfrica) C. Chukwuka, K.A. Folly, (2012). Batteries and super-capacitors. In IEEE Power and Energy Society Conference and Exposition in Africa: Intelligent Grid Integration of Renewable Energy Resources (PowerAfrica)
186.
go back to reference A. Lasia, Electrochemical impedance spectroscopy and its applications, Modern Aspects of Electrochemistry. (Boston: Springer, 2002), pp. 143–248.CrossRef A. Lasia, Electrochemical impedance spectroscopy and its applications, Modern Aspects of Electrochemistry. (Boston: Springer, 2002), pp. 143–248.CrossRef
187.
go back to reference S. Trasatti, Relative and Absolute Electrochemical Quantities. Components of the Potential Difference Across the Electrode/Solution Interface. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 70, 1752 (1974). S. Trasatti, Relative and Absolute Electrochemical Quantities. Components of the Potential Difference Across the Electrode/Solution Interface. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 70, 1752 (1974).
188.
go back to reference D.G. Grahame, The Electrical Double Layer and the Theory of Electrocapillarity. Chem. Rev. 41, 441–501 (1947).CrossRef D.G. Grahame, The Electrical Double Layer and the Theory of Electrocapillarity. Chem. Rev. 41, 441–501 (1947).CrossRef
189.
go back to reference W. Sun, R. Zheng, and X. Chen, Symmetric Redox Supercapacitor Based on Micro-Fabrication with Three-Dimensional Polypyrrole Electrodes. J. Power Sources. 195, 7120–7125 (2010).CrossRef W. Sun, R. Zheng, and X. Chen, Symmetric Redox Supercapacitor Based on Micro-Fabrication with Three-Dimensional Polypyrrole Electrodes. J. Power Sources. 195, 7120–7125 (2010).CrossRef
190.
go back to reference J. Kowal, E. Avaroglu, F. Chamekh, A. Šenfelds, T. Thien, D. Wijaya, and D.U. Sauer, Detailed Analysis of the Self-Discharge of Supercapacitors. J. Power Sources. 196, 573–579 (2011).CrossRef J. Kowal, E. Avaroglu, F. Chamekh, A. Šenfelds, T. Thien, D. Wijaya, and D.U. Sauer, Detailed Analysis of the Self-Discharge of Supercapacitors. J. Power Sources. 196, 573–579 (2011).CrossRef
192.
go back to reference B.E. Conway, Similarities and differences between supercapacitors and batteries for storing electrical energy. In: Electrochemical Supercapacitors. (1999) 11–31. B.E. Conway, Similarities and differences between supercapacitors and batteries for storing electrical energy. In: Electrochemical Supercapacitors. (1999) 11–31.
193.
go back to reference A.G. Olabi, Q. Abbas, A. Al Makky, and M.A. Abdelkareem, Supercapacitors as Next Generation Energy Storage Devices: Properties and Applications. Energy 248, 123617 (2022).CrossRef A.G. Olabi, Q. Abbas, A. Al Makky, and M.A. Abdelkareem, Supercapacitors as Next Generation Energy Storage Devices: Properties and Applications. Energy 248, 123617 (2022).CrossRef
194.
go back to reference J. Libich, J. Máca, J. Vondrák, O. Čech, and M. Sedlaříková, Supercapacitors: Properties and Applications. J. Energy Storage. 17, 224–227 (2018).CrossRef J. Libich, J. Máca, J. Vondrák, O. Čech, and M. Sedlaříková, Supercapacitors: Properties and Applications. J. Energy Storage. 17, 224–227 (2018).CrossRef
195.
go back to reference F. Bu, W. Zhou, Y. Xu, Y. Du, C. Guan, and W. Huang, Recent Developments of Advanced Micro-Supercapacitors: Design, Fabrication and Applications. Npj Flex. Electron. 4, 1–16 (2020).CrossRef F. Bu, W. Zhou, Y. Xu, Y. Du, C. Guan, and W. Huang, Recent Developments of Advanced Micro-Supercapacitors: Design, Fabrication and Applications. Npj Flex. Electron. 4, 1–16 (2020).CrossRef
196.
go back to reference T. Mesbahi, P. Bartholomeus, N. Rizoug, R. Sadoun, F. Khenfri, and P. Le Moigne, Advanced Model of Hybrid Energy Storage System Integrating Lithium-Ion Battery and Supercapacitor for Electric Vehicle Applications. IEEE Trans. Ind. Electron. 68, 3962–3972 (2021).CrossRef T. Mesbahi, P. Bartholomeus, N. Rizoug, R. Sadoun, F. Khenfri, and P. Le Moigne, Advanced Model of Hybrid Energy Storage System Integrating Lithium-Ion Battery and Supercapacitor for Electric Vehicle Applications. IEEE Trans. Ind. Electron. 68, 3962–3972 (2021).CrossRef
197.
go back to reference A.H.M. Aman, N. Shaari, and R. Ibrahim, Internet of Things Energy System: Smart Applications, Technology Advancement, and Open Issues. Int. J. Energy Res. 45, 8389–8419 (2021).CrossRef A.H.M. Aman, N. Shaari, and R. Ibrahim, Internet of Things Energy System: Smart Applications, Technology Advancement, and Open Issues. Int. J. Energy Res. 45, 8389–8419 (2021).CrossRef
198.
go back to reference S. Ghosh, S.S. Withanage, B. Chamlagain, S.I. Khondaker, S. Harish, and B.B. Saha, Low Pressure Sulfurization and Characterization of Multilayer MoS2 for Potential Applications in Supercapacitors. Energy 203, 117918 (2020).CrossRef S. Ghosh, S.S. Withanage, B. Chamlagain, S.I. Khondaker, S. Harish, and B.B. Saha, Low Pressure Sulfurization and Characterization of Multilayer MoS2 for Potential Applications in Supercapacitors. Energy 203, 117918 (2020).CrossRef
199.
go back to reference C.Y. Hsieh, P. Pei, Q. Bai, A. Su, F.B. Weng, and C.Y. Lee, Results of a 200 HOURS Lifetime Test of a 7 kW Hybrid-Power Fuel Cell System on Electric Forklifts. Energy 214, 118941 (2021).CrossRef C.Y. Hsieh, P. Pei, Q. Bai, A. Su, F.B. Weng, and C.Y. Lee, Results of a 200 HOURS Lifetime Test of a 7 kW Hybrid-Power Fuel Cell System on Electric Forklifts. Energy 214, 118941 (2021).CrossRef
200.
go back to reference A. Al-Zubaidi, X. Ji, and J. Yu, Thermal Charging of Supercapacitors: A Perspective, Sustain. Energy Fuels 1, 1457–1474 (2017). A. Al-Zubaidi, X. Ji, and J. Yu, Thermal Charging of Supercapacitors: A Perspective, Sustain. Energy Fuels 1, 1457–1474 (2017).
201.
go back to reference K.V.G. Raghavendra, R. Vinoth, K. Zeb, C.V.M. Gopi, S. Sambasivam, M.R. Kummara, and H.J. Kim, An Intuitive Review of Supercapacitors with Recent Progress and Novel Device Applications. J. Energy Storage 31, 101652 (2020).CrossRef K.V.G. Raghavendra, R. Vinoth, K. Zeb, C.V.M. Gopi, S. Sambasivam, M.R. Kummara, and H.J. Kim, An Intuitive Review of Supercapacitors with Recent Progress and Novel Device Applications. J. Energy Storage 31, 101652 (2020).CrossRef
202.
go back to reference L. Wang, L. Wen, Y. Tong, S. Wang, X. Hou, X. An, S.X. Dou, and J. Liang, Photo-Rechargeable Batteries and Supercapacitors: Critical Roles of Carbon-Based Functional Materials. Carbon Energy 3, 225–252 (2021).CrossRef L. Wang, L. Wen, Y. Tong, S. Wang, X. Hou, X. An, S.X. Dou, and J. Liang, Photo-Rechargeable Batteries and Supercapacitors: Critical Roles of Carbon-Based Functional Materials. Carbon Energy 3, 225–252 (2021).CrossRef
203.
go back to reference J.O. Ighalo, J.F. Amaku, C. Olisah, A.O. Adeola, K.O. Iwuozor, K.G. Akpomie, J. Conradie, K.A. Adegoke, and K.O. Oyedotun, Utilisation of Adsorption as a Resource Recovery Technique for Lithium in Geothermal Water. J. Mol. Liquids. 365, 120107 (2022).CrossRef J.O. Ighalo, J.F. Amaku, C. Olisah, A.O. Adeola, K.O. Iwuozor, K.G. Akpomie, J. Conradie, K.A. Adegoke, and K.O. Oyedotun, Utilisation of Adsorption as a Resource Recovery Technique for Lithium in Geothermal Water. J. Mol. Liquids. 365, 120107 (2022).CrossRef
204.
go back to reference A.O. Adeola, K.O. Iwuozor, K.G. Akpomie, K.A. Adegoke, K.O. Oyedotun, J.O. Ighalo, J.F. Amaku, C. Olisah, and J. Conradie, Advances in the Management of Radioactive Wastes and Radionuclide Contamination in Environmental Compartments: A Review. Environ. Geochem. Health. (2022). https://doi.org/10.1007/s10653-022-01378-7.CrossRef A.O. Adeola, K.O. Iwuozor, K.G. Akpomie, K.A. Adegoke, K.O. Oyedotun, J.O. Ighalo, J.F. Amaku, C. Olisah, and J. Conradie, Advances in the Management of Radioactive Wastes and Radionuclide Contamination in Environmental Compartments: A Review. Environ. Geochem. Health. (2022). https://​doi.​org/​10.​1007/​s10653-022-01378-7.CrossRef
Metadata
Title
Advances in Supercapacitor Development: Materials, Processes, and Applications
Authors
Kabir O. Oyedotun
Joshua O. Ighalo
James F. Amaku
Chijioke Olisah
Adedapo O. Adeola
Kingsley O. Iwuozor
Kovo G. Akpomie
Jeanet Conradie
Kayode A. Adegoke
Publication date
25-10-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09987-9

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue