Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

28-10-2022 | Review Article

Al-Diffused ZnO Transparent Conducting Oxide Thin Films for Cadmium Telluride Superstrate Solar Cells: A Comprehensive Study

Authors: Riza Paul, S. Arulkumar, K. Jenifer, S. Parthiban

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fluorine-doped tin oxide (FTO) or tin-doped indium oxide (ITO) thin films are widely used and commercialized as the transparent conducting oxide window layer in conventional CdTe thin-film solar cells. However, scarcity of indium (In) has led to an increase in the cost of ITO, while the lower transmittance (80%) of FTO decreases the efficiency of CdTe solar cells. To overcome these limitations, and to reduce the manufacturing cost, earth-abundant aluminum-doped zinc oxide (AZO) is being studied as a promising candidate to replace ITO and FTO. Nevertheless, the deterioration of the electrical properties of AZO under thermal treatment and environmental exposure conditions limits the processing conditions of CdTe thin-film solar cells, thereby decreasing their efficiency. In this review, we propose that AZO thin films with a thin layer of Al would have high thermal stability without deterioration in the electrical and optical properties, and is therefore suitable for use in the superstrate configuration of CdTe thin-film solar cells. The properties and deposition methodology of ultra-thin-layer Al-capped AZO thin films are discussed in this review, and the possibility of replacing ITO and FTO by using Al-capped AZO is analyzed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.A. Islam, M.U. Khandaker, and N. Amin, Effect of Deposition Power in Fabrication of Highly Efficient CdS:O/CdTe Thin Film Solar Cell by the Magnetron Sputtering Technique. Mater. Sci. Semicond. Process 40, 90 (2015).CrossRef M.A. Islam, M.U. Khandaker, and N. Amin, Effect of Deposition Power in Fabrication of Highly Efficient CdS:O/CdTe Thin Film Solar Cell by the Magnetron Sputtering Technique. Mater. Sci. Semicond. Process 40, 90 (2015).CrossRef
2.
go back to reference S. S. Hegedus and A. Luque, And the Bright Future of Solar Electricity from Photovoltaics (2014). S. S. Hegedus and A. Luque, And the Bright Future of Solar Electricity from Photovoltaics (2014).
3.
go back to reference X. Wu, High-Efficiency Polycrystalline CdTe Thin-Film Solar Cells. Sol. Energy 77, 803 (2004).CrossRef X. Wu, High-Efficiency Polycrystalline CdTe Thin-Film Solar Cells. Sol. Energy 77, 803 (2004).CrossRef
4.
go back to reference E. Colegrove et al., High-Efficiency Polycrystalline CdS/CdTe Solar Cells on Buffered Commercial TCO-Coated Glass. J. Electron. Mater. 41, 2833 (2012).CrossRef E. Colegrove et al., High-Efficiency Polycrystalline CdS/CdTe Solar Cells on Buffered Commercial TCO-Coated Glass. J. Electron. Mater. 41, 2833 (2012).CrossRef
6.
go back to reference H.C. Chou, A.K. Bhat, S. Kamra, and A. Rohatgi, An Investigation of Photocurrent Loss Due to Reflectance and Absorption in CdTe/CdS Heterojunction Solar Cells. J. Electron. Matter. 23, 681 (1994).CrossRef H.C. Chou, A.K. Bhat, S. Kamra, and A. Rohatgi, An Investigation of Photocurrent Loss Due to Reflectance and Absorption in CdTe/CdS Heterojunction Solar Cells. J. Electron. Matter. 23, 681 (1994).CrossRef
7.
go back to reference D. Kc, D.K. Shah, A.M. Alanazi, and M.S. Akhtar, Impact of Different Antireflection Layers on Cadmium Telluride (CdTe) Solar Cells: A PC1D Simulation Study. J. Electron. Mater. 50, 2199 (2021).CrossRef D. Kc, D.K. Shah, A.M. Alanazi, and M.S. Akhtar, Impact of Different Antireflection Layers on Cadmium Telluride (CdTe) Solar Cells: A PC1D Simulation Study. J. Electron. Mater. 50, 2199 (2021).CrossRef
8.
go back to reference Y. Zhao, M. Boccard, S. Liu, J. Becker, X.H. Zhao, C.M. Campbell, E. Suarez, M.B. Lassise, Z. Holman, and Y.H. Zhang, Monocrystalline CdTe Solar Cells with Open-Circuit Voltage over 1 v and Efficiency of 17%. Nat. Energy 1, 1 (2016).CrossRef Y. Zhao, M. Boccard, S. Liu, J. Becker, X.H. Zhao, C.M. Campbell, E. Suarez, M.B. Lassise, Z. Holman, and Y.H. Zhang, Monocrystalline CdTe Solar Cells with Open-Circuit Voltage over 1 v and Efficiency of 17%. Nat. Energy 1, 1 (2016).CrossRef
9.
go back to reference H.C. Kim, V. Fthenakis, J.K. Choi, and D.E. Turney, Life Cycle Greenhouse Gas Emissions of Thin-Film Photovoltaic Electricity Generation: Systematic Review and Harmonization. J. Ind. Ecol. 16, S110–S121 (2012).CrossRef H.C. Kim, V. Fthenakis, J.K. Choi, and D.E. Turney, Life Cycle Greenhouse Gas Emissions of Thin-Film Photovoltaic Electricity Generation: Systematic Review and Harmonization. J. Ind. Ecol. 16, S110–S121 (2012).CrossRef
10.
go back to reference K. Durose, P.R. Edwards, and D.P. Halliday, Materials Aspects of CdTe/CdS Solar Cells. J. Cryst. Growth 197, 733 (1999).CrossRef K. Durose, P.R. Edwards, and D.P. Halliday, Materials Aspects of CdTe/CdS Solar Cells. J. Cryst. Growth 197, 733 (1999).CrossRef
11.
go back to reference D. Bonnet, and P. Meyers, Cadmium-Telluride-Material for Thin Film Solar Cells. J. Mater. Res. 13, 2740 (1998).CrossRef D. Bonnet, and P. Meyers, Cadmium-Telluride-Material for Thin Film Solar Cells. J. Mater. Res. 13, 2740 (1998).CrossRef
12.
go back to reference M. Green, K. Emery, Y. Hishikawa, W. Warta, E. Dunlop, D. Barkhouse, O. Gunawan, T. Gokmen, T. Todorov, and D. Mitzi, Solar Cell Efficiency Tables (Version 40). IEEE Trans. Fuzzy Syst. 20, 1114 (2012). M. Green, K. Emery, Y. Hishikawa, W. Warta, E. Dunlop, D. Barkhouse, O. Gunawan, T. Gokmen, T. Todorov, and D. Mitzi, Solar Cell Efficiency Tables (Version 40). IEEE Trans. Fuzzy Syst. 20, 1114 (2012).
13.
go back to reference N.R. Paudel, A.D. Compaan, and Y. Yan, Ultrathin CdTe Solar Cells with MoO3-x/Au Back Contacts. J. Electron. Mater. 43, 2783 (2014).CrossRef N.R. Paudel, A.D. Compaan, and Y. Yan, Ultrathin CdTe Solar Cells with MoO3-x/Au Back Contacts. J. Electron. Mater. 43, 2783 (2014).CrossRef
14.
go back to reference F. Bittau, S. Jagdale, C. Potamialis, J.W. Bowers, J.M. Walls, A.H. Munshi, K.L. Barth, and W.S. Sampath, Degradation of Mg-Doped Zinc Oxide Buffer Layers in Thin Film CdTe Solar Cells. Thin Solid Films 691, 137556 (2019).CrossRef F. Bittau, S. Jagdale, C. Potamialis, J.W. Bowers, J.M. Walls, A.H. Munshi, K.L. Barth, and W.S. Sampath, Degradation of Mg-Doped Zinc Oxide Buffer Layers in Thin Film CdTe Solar Cells. Thin Solid Films 691, 137556 (2019).CrossRef
15.
go back to reference R. Pandey, A. Shah, A. Munshi, T. Shimpi, P. Jundt, J. Guo, R.F. Klie, W. Sampath, and J.R. Sites, Mitigation of J-V Distortion in CdTe Solar Cells by Ga-Doping of MgZnO Emitter. Sol. Energy Mater. Sol. Cells. 232, 111324 (2021).CrossRef R. Pandey, A. Shah, A. Munshi, T. Shimpi, P. Jundt, J. Guo, R.F. Klie, W. Sampath, and J.R. Sites, Mitigation of J-V Distortion in CdTe Solar Cells by Ga-Doping of MgZnO Emitter. Sol. Energy Mater. Sol. Cells. 232, 111324 (2021).CrossRef
16.
go back to reference T. Ablekim et al., Tailoring MgZnO/CdSeTe Interfaces for Photovoltaics. IEEE J. Photovolt. 9, 888 (2019).CrossRef T. Ablekim et al., Tailoring MgZnO/CdSeTe Interfaces for Photovoltaics. IEEE J. Photovolt. 9, 888 (2019).CrossRef
17.
go back to reference A.H. Munshi, J. Kephart, A. Abbas, J. Raguse, J.N. Beaudry, K. Barth, J. Sites, J. Walls, and W. Sampath, Polycrystalline CdSeTe/CdTe Absorber Cells with 28 MA/cm2 Short-Circuit Current. IEEE J. Photovolt. 8, 310 (2018).CrossRef A.H. Munshi, J. Kephart, A. Abbas, J. Raguse, J.N. Beaudry, K. Barth, J. Sites, J. Walls, and W. Sampath, Polycrystalline CdSeTe/CdTe Absorber Cells with 28 MA/cm2 Short-Circuit Current. IEEE J. Photovolt. 8, 310 (2018).CrossRef
18.
go back to reference A.N. Tiwari, A. Romeo, D. Baetzner, and H. Zogg, Flexible CdTe Solar Cells on Polymer Films. Prog. Photovolt. Res. Appl. 9, 211 (2001).CrossRef A.N. Tiwari, A. Romeo, D. Baetzner, and H. Zogg, Flexible CdTe Solar Cells on Polymer Films. Prog. Photovolt. Res. Appl. 9, 211 (2001).CrossRef
19.
go back to reference H.P. Mahabaduge et al., High-Efficiency, Flexible CdTe Solar Cells on Ultra-Thin Glass Substrates. Appl. Phys. Lett. 106, 3 (2015).CrossRef H.P. Mahabaduge et al., High-Efficiency, Flexible CdTe Solar Cells on Ultra-Thin Glass Substrates. Appl. Phys. Lett. 106, 3 (2015).CrossRef
20.
go back to reference R. Safa Sultana, A. N. Bahar, M. Asaduzzaman, and K. Ahmed, Numerical Modeling of a CdS/CdTe Photovoltaic Cell Based on ZnTe BSF Layer with Optimum Thickness of Absorber Layer, Cogent. Eng. 4, 1 (2017). R. Safa Sultana, A. N. Bahar, M. Asaduzzaman, and K. Ahmed, Numerical Modeling of a CdS/CdTe Photovoltaic Cell Based on ZnTe BSF Layer with Optimum Thickness of Absorber Layer, Cogent. Eng. 4, 1 (2017).
21.
go back to reference P.Y. Su, C. Lee, G.C. Wang, T.M. Lu, and I.B. Bhat, CdTe/ZnTe/GaAs Heterostructures for Single-Crystal CdTe Solar Cells. J Electron. Mater. 43, 2895 (2014).CrossRef P.Y. Su, C. Lee, G.C. Wang, T.M. Lu, and I.B. Bhat, CdTe/ZnTe/GaAs Heterostructures for Single-Crystal CdTe Solar Cells. J Electron. Mater. 43, 2895 (2014).CrossRef
22.
go back to reference T. O. Zinchenko, Y. A. Pecherskaya, V. I. Kondrashin, A. S. Kozlyakov, and Y. V. Shepeleva, Analysis of Research Methods of Electro-Physical Properties of Transparent Conducting Coatings Received by Spray Pyrolysis, In: International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, EDM 320 (2017). T. O. Zinchenko, Y. A. Pecherskaya, V. I. Kondrashin, A. S. Kozlyakov, and Y. V. Shepeleva, Analysis of Research Methods of Electro-Physical Properties of Transparent Conducting Coatings Received by Spray Pyrolysis, In: International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, EDM 320 (2017).
23.
go back to reference M.A. Grado-Caffaro, and M. Grado-Caffaro, The Shift in the Optical Band-Gap of Cadmium Oxide as Chemical Potential Minus Optical Potential. Chem. Phys. Lett. 623, 72 (2015).CrossRef M.A. Grado-Caffaro, and M. Grado-Caffaro, The Shift in the Optical Band-Gap of Cadmium Oxide as Chemical Potential Minus Optical Potential. Chem. Phys. Lett. 623, 72 (2015).CrossRef
24.
go back to reference M. Anitha, K. Saravanakumar, N. Anitha, I. Kulandaisamy, and L. Amalraj, Influence of Annealing Temperature on Physical Properties of Sn-Doped CdO Thin Films by Nebulized Spray Pyrolysis Technique. Mater. Sci. Eng. B 243, 54 (2019).CrossRef M. Anitha, K. Saravanakumar, N. Anitha, I. Kulandaisamy, and L. Amalraj, Influence of Annealing Temperature on Physical Properties of Sn-Doped CdO Thin Films by Nebulized Spray Pyrolysis Technique. Mater. Sci. Eng. B 243, 54 (2019).CrossRef
25.
go back to reference N. Romeo, A. Bosio, V. Canevari, M. Terheggen, and L.V. Roca, Comparison of Different Conducting Oxides as Substrates for CdS/CdTe Thin Film Solar Cells. Thin Solid Films 431, 364–368 (2003).CrossRef N. Romeo, A. Bosio, V. Canevari, M. Terheggen, and L.V. Roca, Comparison of Different Conducting Oxides as Substrates for CdS/CdTe Thin Film Solar Cells. Thin Solid Films 431, 364–368 (2003).CrossRef
26.
go back to reference K. Bädeker, Über Eine Eigentümliche Form Elektrischen Leitvermögens Bei Festen Körpern. Ann. Phys. 334, 566 (1909).CrossRef K. Bädeker, Über Eine Eigentümliche Form Elektrischen Leitvermögens Bei Festen Körpern. Ann. Phys. 334, 566 (1909).CrossRef
27.
go back to reference A. Bhorde, R. Waykar, S. Nair, H. Borate, S. Pandharkar, R. Aher, A. Waghmare, P. Vairale, D. Naik, and S. Jadkar, Room Temperature Synthesis of Transparent and Conducting Indium Tin Oxide Films with High Mobility and Figure of Merit by RF-Magnetron Sputtering. J. Electron. Mater. 48, 7192 (2019).CrossRef A. Bhorde, R. Waykar, S. Nair, H. Borate, S. Pandharkar, R. Aher, A. Waghmare, P. Vairale, D. Naik, and S. Jadkar, Room Temperature Synthesis of Transparent and Conducting Indium Tin Oxide Films with High Mobility and Figure of Merit by RF-Magnetron Sputtering. J. Electron. Mater. 48, 7192 (2019).CrossRef
28.
go back to reference S. Karthik Kannan, P. Thirunavukkarasu, R. Marnadu, J. Chandrasekaran, S. Maruthamuthu, A.M. Ali, and M. Shkir, Facile Synthesis of Indium Doped Tin Oxide (ITO) Nanoparticles and Development of a p-Si/n-ITO Photodiode for Optoelectronic Applications. J. Electron. Mater. 50, 3937 (2021).CrossRef S. Karthik Kannan, P. Thirunavukkarasu, R. Marnadu, J. Chandrasekaran, S. Maruthamuthu, A.M. Ali, and M. Shkir, Facile Synthesis of Indium Doped Tin Oxide (ITO) Nanoparticles and Development of a p-Si/n-ITO Photodiode for Optoelectronic Applications. J. Electron. Mater. 50, 3937 (2021).CrossRef
29.
go back to reference T. Minami, Transparent Conducting Oxide Semiconductors for Transparent Electrodes. Semicond. Sci. Technol. 20, S35 (2005).CrossRef T. Minami, Transparent Conducting Oxide Semiconductors for Transparent Electrodes. Semicond. Sci. Technol. 20, S35 (2005).CrossRef
30.
go back to reference G. Rupprecht, Untersuchungen Der Elektrischen Und Lichtelektrischen Leitfähigkeit Dünner Indiumoxydschichten. Z. Phys. 139, 504 (1954).CrossRef G. Rupprecht, Untersuchungen Der Elektrischen Und Lichtelektrischen Leitfähigkeit Dünner Indiumoxydschichten. Z. Phys. 139, 504 (1954).CrossRef
31.
go back to reference G. M. Swain, Handbook of Electrochemistry, In: Handbook of Electrochemistry 111 (2007). G. M. Swain, Handbook of Electrochemistry, In: Handbook of Electrochemistry 111 (2007).
32.
go back to reference N.R. Armstrong, A.W.C. Lin, M. Fujihira, and T. Kuwana, Electrochemical and Surface Characteristics of Tin Oxide and Indium Oxide Electrodes. Anal. Chem. 48, 741 (1976).CrossRef N.R. Armstrong, A.W.C. Lin, M. Fujihira, and T. Kuwana, Electrochemical and Surface Characteristics of Tin Oxide and Indium Oxide Electrodes. Anal. Chem. 48, 741 (1976).CrossRef
33.
go back to reference J. Jung, J. Lee, S. Shin, and Y.T. Kim, Development of a Telemetric, Miniaturized Electrochemical Amperometric Analyzer. Sensors 17, 2416 (2017).CrossRef J. Jung, J. Lee, S. Shin, and Y.T. Kim, Development of a Telemetric, Miniaturized Electrochemical Amperometric Analyzer. Sensors 17, 2416 (2017).CrossRef
34.
go back to reference Md.R. Akanda, A.M. Osman, M.K. Nazal, and Md.A. Aziz, Review—Recent Advancements in the Utilization of Indium Tin Oxide (ITO) in Electroanalysis without Surface Modification. J Electrochem Soc 167, 037534 (2020).CrossRef Md.R. Akanda, A.M. Osman, M.K. Nazal, and Md.A. Aziz, Review—Recent Advancements in the Utilization of Indium Tin Oxide (ITO) in Electroanalysis without Surface Modification. J Electrochem Soc 167, 037534 (2020).CrossRef
35.
go back to reference J.W. Bae, S.W. Lee, and G.Y. Yeom, Doped-Fluorine on Electrical and Optical Properties of Tin Oxide Films Grown by OzoneAssisted Thermal CVD. J Electrochem Soc 154, D34 (2007).CrossRef J.W. Bae, S.W. Lee, and G.Y. Yeom, Doped-Fluorine on Electrical and Optical Properties of Tin Oxide Films Grown by OzoneAssisted Thermal CVD. J Electrochem Soc 154, D34 (2007).CrossRef
36.
go back to reference S. Arulkumar, T. Senthilkumar, S. Parthiban, G. Dharmalingam, A. Goswami, S.M. Alshehri, and M.B. Gawande, AgNWs-aTiOx: A Scalable Wire Bar Coated Core-Shell Nanocomposite as Transparent Thin Film Electrode for Flexible Electronics Applications. J. Mater. Sci. Mater. Electron. 32, 6454 (2021).CrossRef S. Arulkumar, T. Senthilkumar, S. Parthiban, G. Dharmalingam, A. Goswami, S.M. Alshehri, and M.B. Gawande, AgNWs-aTiOx: A Scalable Wire Bar Coated Core-Shell Nanocomposite as Transparent Thin Film Electrode for Flexible Electronics Applications. J. Mater. Sci. Mater. Electron. 32, 6454 (2021).CrossRef
37.
go back to reference J. Luschitz, B. Siepchen, J. Schaffner, K. Lakus-Wollny, G. Haindl, A. Klein, and W. Jaegermann, CdTe Thin Film Solar Cells: Interrelation of Nucleation, Structure, and Performance. Thin Solid Films 517, 2125–2131 (2009).CrossRef J. Luschitz, B. Siepchen, J. Schaffner, K. Lakus-Wollny, G. Haindl, A. Klein, and W. Jaegermann, CdTe Thin Film Solar Cells: Interrelation of Nucleation, Structure, and Performance. Thin Solid Films 517, 2125–2131 (2009).CrossRef
38.
go back to reference M. Emziane, K. Durose, D.P. Halliday, N. Romeo, and A. Bosio, SIMS Depth Profiling of CdTe-Based Solar Cells Grown on Sapphire Substrates. Thin Solid Films 511–512, 66 (2006).CrossRef M. Emziane, K. Durose, D.P. Halliday, N. Romeo, and A. Bosio, SIMS Depth Profiling of CdTe-Based Solar Cells Grown on Sapphire Substrates. Thin Solid Films 511–512, 66 (2006).CrossRef
39.
go back to reference V. Krishnakumar, K. Ramamurthi, A. Klein, and W. Jaegermann, Band Alignment of Differently Treated TCO/CdS Interface. Thin Solid Films 517, 2558 (2009).CrossRef V. Krishnakumar, K. Ramamurthi, A. Klein, and W. Jaegermann, Band Alignment of Differently Treated TCO/CdS Interface. Thin Solid Films 517, 2558 (2009).CrossRef
40.
go back to reference S.K. Das, Variation of Properties of Electrodeposited CdS/CdTe Solar Cells Deposited onto Different Transparent Conducting Oxide Substrates. Thin Solid Films 226, 259 (1993).CrossRef S.K. Das, Variation of Properties of Electrodeposited CdS/CdTe Solar Cells Deposited onto Different Transparent Conducting Oxide Substrates. Thin Solid Films 226, 259 (1993).CrossRef
41.
go back to reference G. Khrypunov, A. Romeo, F. Kurdesau, D.L. Bätzner, H. Zogg, and A.N. Tiwari, Recent Developments in Evaporated CdTe Solar Cells. Sol. Energy Mater. Sol. Cells 90, 664 (2006).CrossRef G. Khrypunov, A. Romeo, F. Kurdesau, D.L. Bätzner, H. Zogg, and A.N. Tiwari, Recent Developments in Evaporated CdTe Solar Cells. Sol. Energy Mater. Sol. Cells 90, 664 (2006).CrossRef
42.
go back to reference M. Oshima, Y. Takemoto, and K. Yoshino, Optical and Electrical Characterization of FTO Films Grown by Spray Pyrolysis Method. Physic. Status Solidi Curr. Topics Solid (C) State Phys. 6, 1124 (2009).CrossRef M. Oshima, Y. Takemoto, and K. Yoshino, Optical and Electrical Characterization of FTO Films Grown by Spray Pyrolysis Method. Physic. Status Solidi Curr. Topics Solid (C) State Phys. 6, 1124 (2009).CrossRef
43.
go back to reference A.G. Macedo, C.E. Cava, C.D. Canestraro, L. Contini, and L.S. Roman, Morphology Dependence on Fluorine Doped Tin Oxide Film Thickness Studied with Atomic Force Microscopy. Microsc. Microanal. 11, 118 (2005).CrossRef A.G. Macedo, C.E. Cava, C.D. Canestraro, L. Contini, and L.S. Roman, Morphology Dependence on Fluorine Doped Tin Oxide Film Thickness Studied with Atomic Force Microscopy. Microsc. Microanal. 11, 118 (2005).CrossRef
44.
go back to reference W.J. Lee, D.Y. Lee, J.S. Song, and B.K. Min, Effect of Process Parameters on the Efficiency of Dye Sensitized Solar Cells. Met. Mater. Int. 11, 465 (2005).CrossRef W.J. Lee, D.Y. Lee, J.S. Song, and B.K. Min, Effect of Process Parameters on the Efficiency of Dye Sensitized Solar Cells. Met. Mater. Int. 11, 465 (2005).CrossRef
45.
go back to reference K. Jenifer, S. Arulkumar, S. Parthiban, and J.Y. Kwon, A Review on the Recent Advancements in Tin Oxide-Based Thin-Film Transistors for Large-Area Electronics. J. Electron. Mater. 49, 7098 (2020).CrossRef K. Jenifer, S. Arulkumar, S. Parthiban, and J.Y. Kwon, A Review on the Recent Advancements in Tin Oxide-Based Thin-Film Transistors for Large-Area Electronics. J. Electron. Mater. 49, 7098 (2020).CrossRef
46.
go back to reference Y.N. Kim, H.G. Shin, J.K. Song, D.H. Cho, H.S. Lee, and Y.G. Jung, Thermal Degradation Behavior of Indium Tin Oxide Thin Films Deposited by Radio Frequency Magnetron Sputtering. J. Mater. Res. 20, 1574 (2005).CrossRef Y.N. Kim, H.G. Shin, J.K. Song, D.H. Cho, H.S. Lee, and Y.G. Jung, Thermal Degradation Behavior of Indium Tin Oxide Thin Films Deposited by Radio Frequency Magnetron Sputtering. J. Mater. Res. 20, 1574 (2005).CrossRef
47.
go back to reference W.H. Chen, C.Y. Chou, B.J. Li, C.Y. Yeh, B.R. Huang, M.F. Hsu, S.F. Chung, and C.Y. Liu, Conductive and Transparent Properties of ZnO/Cu/ZnO Sandwich Structure. J. Electron. Mater. 50, 779 (2021).CrossRef W.H. Chen, C.Y. Chou, B.J. Li, C.Y. Yeh, B.R. Huang, M.F. Hsu, S.F. Chung, and C.Y. Liu, Conductive and Transparent Properties of ZnO/Cu/ZnO Sandwich Structure. J. Electron. Mater. 50, 779 (2021).CrossRef
48.
go back to reference A. Stadler, Transparent Conducting Oxides—An Up-To-Date Overview. Materials 5, 661 (2012).CrossRef A. Stadler, Transparent Conducting Oxides—An Up-To-Date Overview. Materials 5, 661 (2012).CrossRef
49.
go back to reference L. Wen, B.B. Sahu, H.R. Kim, and J.G. Han, Study on the Electrical, Optical, Structural, and Morphological Properties of Highly Transparent and Conductive AZO Thin Films Prepared near Room Temperature. Appl. Surf. Sci. 473, 649 (2019).CrossRef L. Wen, B.B. Sahu, H.R. Kim, and J.G. Han, Study on the Electrical, Optical, Structural, and Morphological Properties of Highly Transparent and Conductive AZO Thin Films Prepared near Room Temperature. Appl. Surf. Sci. 473, 649 (2019).CrossRef
50.
go back to reference N. Selmane, A. Cheknane, and H.S. Hilal, Optimization of Al-Doped ZnO Transparent Conducting Oxide and Emitter Layers for Enhanced Performance of Si Heterojunction Solar Cells. J. Electron. Mater. 49, 2179 (2020).CrossRef N. Selmane, A. Cheknane, and H.S. Hilal, Optimization of Al-Doped ZnO Transparent Conducting Oxide and Emitter Layers for Enhanced Performance of Si Heterojunction Solar Cells. J. Electron. Mater. 49, 2179 (2020).CrossRef
51.
go back to reference S.C. Dixon, D.O. Scanlon, C.J. Carmalt, and I.P. Parkin, N-Type Doped Transparent Conducting Binary Oxides: An Overview. J. Mater. Chem. C Mater. 4, 6946 (2016).CrossRef S.C. Dixon, D.O. Scanlon, C.J. Carmalt, and I.P. Parkin, N-Type Doped Transparent Conducting Binary Oxides: An Overview. J. Mater. Chem. C Mater. 4, 6946 (2016).CrossRef
52.
go back to reference H. Peelaers, E. Kioupakis, and C.G. Van De Walle, Fundamental Limits on Optical Transparency of Transparent Conducting Oxides: Free-Carrier Absorption in SnO 2. Appl. Phys. Lett. 100, 1 (2012).CrossRef H. Peelaers, E. Kioupakis, and C.G. Van De Walle, Fundamental Limits on Optical Transparency of Transparent Conducting Oxides: Free-Carrier Absorption in SnO 2. Appl. Phys. Lett. 100, 1 (2012).CrossRef
53.
go back to reference P. Drude, Zur Elektronentheorie Der Metalle; II. Teil. Galvanomagnetische Und Thermomagnetische Effecte. Ann. Phys. 308, 369–402 (1900).CrossRef P. Drude, Zur Elektronentheorie Der Metalle; II. Teil. Galvanomagnetische Und Thermomagnetische Effecte. Ann. Phys. 308, 369–402 (1900).CrossRef
54.
go back to reference S. Parthiban, K. Ramamurthi, E. Elangovan, R. Martins, and E. Fortunato, Spray Deposited Molybdenum Doped Indium Oxide Thin Films with High near Infrared Transparency and Carrier Mobility. Appl. Phys. Lett. 94, 65 (2009).CrossRef S. Parthiban, K. Ramamurthi, E. Elangovan, R. Martins, and E. Fortunato, Spray Deposited Molybdenum Doped Indium Oxide Thin Films with High near Infrared Transparency and Carrier Mobility. Appl. Phys. Lett. 94, 65 (2009).CrossRef
55.
go back to reference H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgr, and H. Morkoç, Transparent Conducting Oxides for Electrode Applications in Light Emitting and Absorbing Devices. Superlattices Microstruct. 48, 458 (2010).CrossRef H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgr, and H. Morkoç, Transparent Conducting Oxides for Electrode Applications in Light Emitting and Absorbing Devices. Superlattices Microstruct. 48, 458 (2010).CrossRef
56.
go back to reference J.G. Lu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, L. Wang, J. Yuan, B.H. Zhao, and Q.L. Liang, Structural, Optical, and Electrical Properties of (Zn, Al)O Films over a Wide Range of Compositions. J Appl Phys 100, 073714 (2006).CrossRef J.G. Lu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, L. Wang, J. Yuan, B.H. Zhao, and Q.L. Liang, Structural, Optical, and Electrical Properties of (Zn, Al)O Films over a Wide Range of Compositions. J Appl Phys 100, 073714 (2006).CrossRef
57.
go back to reference K.L. Chopra, S. Major, and D.K. Pandya, Transparent Conductors-A Status Review. Thin Solid Films 102, 1 (1983).CrossRef K.L. Chopra, S. Major, and D.K. Pandya, Transparent Conductors-A Status Review. Thin Solid Films 102, 1 (1983).CrossRef
58.
go back to reference J.I. Nomoto, T. Hirano, T. Miyata, and T. Minami, Preparation of Al-Doped ZnO Transparent Electrodes Suitable for Thin-Film Solar Cell Applications by Various Types of Magnetron Sputtering Depositions. Thin Solid Films 520, 1400 (2011).CrossRef J.I. Nomoto, T. Hirano, T. Miyata, and T. Minami, Preparation of Al-Doped ZnO Transparent Electrodes Suitable for Thin-Film Solar Cell Applications by Various Types of Magnetron Sputtering Depositions. Thin Solid Films 520, 1400 (2011).CrossRef
59.
go back to reference M. Mickan, U. Helmersson, H. Rinnert, J. Ghanbaja, D. Muller, and D. Horwat, Room Temperature Deposition of Homogeneous, Highly Transparent and Conductive Al-Doped ZnO Films by Reactive High Power Impulse Magnetron Sputtering. Sol. Energy Mater. Sol. Cells 157, 742 (2016).CrossRef M. Mickan, U. Helmersson, H. Rinnert, J. Ghanbaja, D. Muller, and D. Horwat, Room Temperature Deposition of Homogeneous, Highly Transparent and Conductive Al-Doped ZnO Films by Reactive High Power Impulse Magnetron Sputtering. Sol. Energy Mater. Sol. Cells 157, 742 (2016).CrossRef
60.
go back to reference W.J. Jeong, S.K. Kim, and G.C. Park, Preparation and Characteristic of ZnO Thin Film with High and Low Resistivity for an Application of Solar Cell. Thin Solid Films 506–507, 180 (2006).CrossRef W.J. Jeong, S.K. Kim, and G.C. Park, Preparation and Characteristic of ZnO Thin Film with High and Low Resistivity for an Application of Solar Cell. Thin Solid Films 506–507, 180 (2006).CrossRef
61.
go back to reference P. Nunes, E. Fortunato, P. Tonello, F.B. Fernandes, P. Vilarinho, and R. Martins, Effect of Different Dopant Elements on the Properties of ZnO Thin Films. Vacuum 64, 281 (2002).CrossRef P. Nunes, E. Fortunato, P. Tonello, F.B. Fernandes, P. Vilarinho, and R. Martins, Effect of Different Dopant Elements on the Properties of ZnO Thin Films. Vacuum 64, 281 (2002).CrossRef
62.
go back to reference R.J. Hong, X. Jiang, B. Szyszka, V. Sittinger, and A. Pflug, Studies on ZnO: Al Thin Films Deposited by in-Line Reactive Mid-Frequency Magnetron Sputtering. Appl Surf Sci 207, 341 (2003).CrossRef R.J. Hong, X. Jiang, B. Szyszka, V. Sittinger, and A. Pflug, Studies on ZnO: Al Thin Films Deposited by in-Line Reactive Mid-Frequency Magnetron Sputtering. Appl Surf Sci 207, 341 (2003).CrossRef
63.
go back to reference P. Gondoni, M. Ghidelli, F. Di Fonzo, M. Carminati, V. Russo, A.L. Bassi, and C.S. Casari, Structure-Dependent Optical and Electrical Transport Properties of Nanostructured Al-Doped ZnO. Nanotechnology 23, 365706 (2012).CrossRef P. Gondoni, M. Ghidelli, F. Di Fonzo, M. Carminati, V. Russo, A.L. Bassi, and C.S. Casari, Structure-Dependent Optical and Electrical Transport Properties of Nanostructured Al-Doped ZnO. Nanotechnology 23, 365706 (2012).CrossRef
64.
go back to reference T. Minami, and T. Miyata, Present Status and Future Prospects for Development of Non- or Reduced-Indium Transparent Conducting Oxide Thin Films. Thin Solid Films 517, 1474 (2008).CrossRef T. Minami, and T. Miyata, Present Status and Future Prospects for Development of Non- or Reduced-Indium Transparent Conducting Oxide Thin Films. Thin Solid Films 517, 1474 (2008).CrossRef
65.
go back to reference A.E. Delahoy, S.Y. Guo, C. Paduraru, and A. Belkind, Reactive-Environment, Hollow Cathode Sputtering: Basic Characteristics and Application to Al2O3, Doped ZnO, and In2O3:Mo. J. Vac. Sci. Technol., A: Vac. Surf. Films 22, 1697 (2004).CrossRef A.E. Delahoy, S.Y. Guo, C. Paduraru, and A. Belkind, Reactive-Environment, Hollow Cathode Sputtering: Basic Characteristics and Application to Al2O3, Doped ZnO, and In2O3:Mo. J. Vac. Sci. Technol., A: Vac. Surf. Films 22, 1697 (2004).CrossRef
66.
go back to reference T.P. Rao, and M.S. Kumar, Physical Properties of Ga-Doped ZnO Thin Films by Spray Pyrolysis. J. Alloys Compd. 506, 788–793 (2010).CrossRef T.P. Rao, and M.S. Kumar, Physical Properties of Ga-Doped ZnO Thin Films by Spray Pyrolysis. J. Alloys Compd. 506, 788–793 (2010).CrossRef
67.
go back to reference T. Ogi, D. Hidayat, F. Iskandar, A. Purwanto, and K. Okuyama, Direct Synthesis of Highly Crystalline Transparent Conducting Oxide Nanoparticles by Low Pressure Spray Pyrolysis. Adv. Powder Technol. 20, 203 (2009).CrossRef T. Ogi, D. Hidayat, F. Iskandar, A. Purwanto, and K. Okuyama, Direct Synthesis of Highly Crystalline Transparent Conducting Oxide Nanoparticles by Low Pressure Spray Pyrolysis. Adv. Powder Technol. 20, 203 (2009).CrossRef
68.
go back to reference S.H.K. Park, J.I. Lee, C.S. Hwang, and H.Y. Chu, Characteristics of Organic Light Emitting Diodes with Al-Doped ZnO Anode Deposited by Atomic Layer Deposition. Japan. J. Appl. Phys. 44, L242 (2005).CrossRef S.H.K. Park, J.I. Lee, C.S. Hwang, and H.Y. Chu, Characteristics of Organic Light Emitting Diodes with Al-Doped ZnO Anode Deposited by Atomic Layer Deposition. Japan. J. Appl. Phys. 44, L242 (2005).CrossRef
69.
go back to reference J.P. Kar, S. Kim, B. Shin, K.I. Park, K.J. Ahn, W. Lee, J.H. Cho, and J.M. Myoung, Influence of Sputtering Pressure on Morphological, Mechanical and Electrical Properties of Al-Doped ZnO Films. Solid State Electron. 54, 1447 (2010).CrossRef J.P. Kar, S. Kim, B. Shin, K.I. Park, K.J. Ahn, W. Lee, J.H. Cho, and J.M. Myoung, Influence of Sputtering Pressure on Morphological, Mechanical and Electrical Properties of Al-Doped ZnO Films. Solid State Electron. 54, 1447 (2010).CrossRef
70.
go back to reference V.L. Kuznetsov, A.T. Vai, M. Al-Mamouri, J. Stuart Abell, M. Pepper, and P.P. Edwards, Electronic Transport in Highly Conducting Si-Doped ZnO Thin Films Prepared by Pulsed Laser Deposition. Appl. Phys. Lett. 107, 232103 (2015).CrossRef V.L. Kuznetsov, A.T. Vai, M. Al-Mamouri, J. Stuart Abell, M. Pepper, and P.P. Edwards, Electronic Transport in Highly Conducting Si-Doped ZnO Thin Films Prepared by Pulsed Laser Deposition. Appl. Phys. Lett. 107, 232103 (2015).CrossRef
71.
go back to reference C. Tong, J. Yun, Y.J. Chen, D. Ji, Q. Gan, and W.A. Anderson, Thermally Diffused Al:ZnO Thin Films for Broadband Transparent Conductor. ACS Appl. Mater. Interfac. 8, 3985 (2016).CrossRef C. Tong, J. Yun, Y.J. Chen, D. Ji, Q. Gan, and W.A. Anderson, Thermally Diffused Al:ZnO Thin Films for Broadband Transparent Conductor. ACS Appl. Mater. Interfac. 8, 3985 (2016).CrossRef
72.
go back to reference B. Sarma, D. Barman, and B.K. Sarma, AZO (Al:ZnO) Thin Films with High Figure of Merit as Stable Indium Free Transparent Conducting Oxide. Appl. Surf. Sci. 479, 786 (2019).CrossRef B. Sarma, D. Barman, and B.K. Sarma, AZO (Al:ZnO) Thin Films with High Figure of Merit as Stable Indium Free Transparent Conducting Oxide. Appl. Surf. Sci. 479, 786 (2019).CrossRef
73.
go back to reference H.T. Dao, and H. Makino, Improving Electrical Conductivity and Its Thermal Stability of Al-Doped ZnO Polycrystalline Films Using Ultrathin Al Film as a Passivation Layer. Solar Energy Mater. Solar Cells 203, 110159 (2019).CrossRef H.T. Dao, and H. Makino, Improving Electrical Conductivity and Its Thermal Stability of Al-Doped ZnO Polycrystalline Films Using Ultrathin Al Film as a Passivation Layer. Solar Energy Mater. Solar Cells 203, 110159 (2019).CrossRef
74.
go back to reference Y. Zhang, Z. Fei, H. Huang, X.A. Zhang, and R. Mu, Effect of ZnO Cap Layer Deposition Environment on Thermal Stability of the Electrical Properties of Al-Doped ZnO Films. J. Appl. Phys. 129, 195105 (2021).CrossRef Y. Zhang, Z. Fei, H. Huang, X.A. Zhang, and R. Mu, Effect of ZnO Cap Layer Deposition Environment on Thermal Stability of the Electrical Properties of Al-Doped ZnO Films. J. Appl. Phys. 129, 195105 (2021).CrossRef
75.
go back to reference H.T. Dao, and H. Makino, Effects of Substrate Temperature on Thermal Stability of Al-Doped ZnO Thin Films Capped by AlOx. Ceram. Int. 47, 8060 (2021).CrossRef H.T. Dao, and H. Makino, Effects of Substrate Temperature on Thermal Stability of Al-Doped ZnO Thin Films Capped by AlOx. Ceram. Int. 47, 8060 (2021).CrossRef
78.
go back to reference S.C. Chang, Post-Annealed Gallium and Aluminum Co-Doped Zinc Oxide Films Applied in Organic Photovoltaic Devices. Nanoscale Res. Lett. 9, 1–8 (2014).CrossRef S.C. Chang, Post-Annealed Gallium and Aluminum Co-Doped Zinc Oxide Films Applied in Organic Photovoltaic Devices. Nanoscale Res. Lett. 9, 1–8 (2014).CrossRef
79.
go back to reference V.L. Kuznetsov, A.T. Vai, M. Al-Mamouri, J. Stuart Abell, M. Pepper, and P.P. Edwards, Electronic Transport in Highly Conducting Si-Doped ZnO Thin Films Prepared by Pulsed Laser Deposition. Appl. Phys. Lett. 107, 232103 (2015).CrossRef V.L. Kuznetsov, A.T. Vai, M. Al-Mamouri, J. Stuart Abell, M. Pepper, and P.P. Edwards, Electronic Transport in Highly Conducting Si-Doped ZnO Thin Films Prepared by Pulsed Laser Deposition. Appl. Phys. Lett. 107, 232103 (2015).CrossRef
80.
go back to reference H. Qin, H.F. Liu, and Y.Z. Yuan, Si Doped ZnO Thin Films for Transparent Conducting Oxides. Surf. Eng. 29, 70 (2013).CrossRef H. Qin, H.F. Liu, and Y.Z. Yuan, Si Doped ZnO Thin Films for Transparent Conducting Oxides. Surf. Eng. 29, 70 (2013).CrossRef
81.
go back to reference J. Clatot, G. Campet, A. Zeinert, C. Labrugère, M. Nistor, and A. Rougier, Low Temperature Si Doped ZnO Thin Films for Transparent Conducting Oxides. Sol. Energy Mater. Sol. Cells 95, 2357 (2011).CrossRef J. Clatot, G. Campet, A. Zeinert, C. Labrugère, M. Nistor, and A. Rougier, Low Temperature Si Doped ZnO Thin Films for Transparent Conducting Oxides. Sol. Energy Mater. Sol. Cells 95, 2357 (2011).CrossRef
82.
go back to reference H.S. So, S.B. Hwang, D.H. Jung, and H. Lee, Optical and Electrical Properties of Sn-Doped ZnO Thin Films Studied via Spectroscopic Ellipsometry and Hall Effect Measurements. J. Korean Phys. Soc. 70, 706 (2017).CrossRef H.S. So, S.B. Hwang, D.H. Jung, and H. Lee, Optical and Electrical Properties of Sn-Doped ZnO Thin Films Studied via Spectroscopic Ellipsometry and Hall Effect Measurements. J. Korean Phys. Soc. 70, 706 (2017).CrossRef
83.
go back to reference Z.-Y. Ye, H.-L. Lu, Y. Geng, Y.-Z. Gu, Z.-Y. Xie, Y. Zhang, Q.-Q. Sun, S.-J. Ding, and D.W. Zhang, Structural Electrical, and Optical Properties of Ti-Doped ZnO Films Fabricated by Atomic Layer Deposition. Nanoscale Res. Lett. 8, 1 (2013).CrossRef Z.-Y. Ye, H.-L. Lu, Y. Geng, Y.-Z. Gu, Z.-Y. Xie, Y. Zhang, Q.-Q. Sun, S.-J. Ding, and D.W. Zhang, Structural Electrical, and Optical Properties of Ti-Doped ZnO Films Fabricated by Atomic Layer Deposition. Nanoscale Res. Lett. 8, 1 (2013).CrossRef
84.
go back to reference H. Zhang, S. Yang, H. Liu, and C. Yuan, Preparation and characterization of transparent conducting ZnO: W films by DC magnetron sputtering. J. Semicond. 32, 043002 (2011).CrossRef H. Zhang, S. Yang, H. Liu, and C. Yuan, Preparation and characterization of transparent conducting ZnO: W films by DC magnetron sputtering. J. Semicond. 32, 043002 (2011).CrossRef
85.
go back to reference M. Wu, S. Yu, G. Chen, L. He, L. Yang, and W. Zhang, Structural, Optical, and Electrical Properties of Mo-Doped ZnO Thin Films Prepared by Magnetron Sputtering. Appl. Surf. Sci. 324, 791 (2015).CrossRef M. Wu, S. Yu, G. Chen, L. He, L. Yang, and W. Zhang, Structural, Optical, and Electrical Properties of Mo-Doped ZnO Thin Films Prepared by Magnetron Sputtering. Appl. Surf. Sci. 324, 791 (2015).CrossRef
86.
go back to reference R. Yan, T. Takahashi, H. Zeng, T. Hosomi, M. Kanai, G. Zhang, K. Nagashima, and T. Yanagida, Robust and Electrically Conductive ZnO Thin Films and Nanostructures: Their Applications in Thermally and Chemically Harsh Environments. ACS Appl. Electron. Mater. 3, 2925–2940 (2021).CrossRef R. Yan, T. Takahashi, H. Zeng, T. Hosomi, M. Kanai, G. Zhang, K. Nagashima, and T. Yanagida, Robust and Electrically Conductive ZnO Thin Films and Nanostructures: Their Applications in Thermally and Chemically Harsh Environments. ACS Appl. Electron. Mater. 3, 2925–2940 (2021).CrossRef
Metadata
Title
Al-Diffused ZnO Transparent Conducting Oxide Thin Films for Cadmium Telluride Superstrate Solar Cells: A Comprehensive Study
Authors
Riza Paul
S. Arulkumar
K. Jenifer
S. Parthiban
Publication date
28-10-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-10001-5

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue