Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

31-10-2022 | Original Research Article

Origin of Double-Rhombic Single Shockley Stacking Faults in 4H-SiC Epitaxial Layers

Authors: Johji Nishio, Chiharu Ota, Ryosuke Iijima

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We have investigated double-rhombic single Shockley stacking faults (DRSFs) in 4H-SiC epitaxial layers by analyzing structural details. A combination of plan-view transmission electron microscopy (TEM) and cross-sectional high-angle annular dark field scanning TEM made it possible to determine the Burgers vectors of partial dislocations that consist of DRSF boundaries and the type of glide of the original basal plane dislocations (BPDs). From these results, the origins of DRSFs were identified as BPDs that originated as 60-degree perfect dislocations, and the inclination of the DRSFs was found to depend on the Burgers vectors and the type of glide of the original BPDs. Also, the configuration of the accompanying threading edge dislocations (TEDs) at both ends of the BPDs was categorized into two types, namely (1) TEDs at both ends of the BPD segments toward the surface of the epitaxial layer (cis-configuration) which form the half-loop arrays, and (2) a TED at one end of the BPD from the deeper side of the epitaxial layer and another toward the surface of the epitaxial layer (trans-configuration), and the original BPD segments were isolated. The shrinking processes of the DRSFs were also examined, and it was found that they were not a reversal of the expansion process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Ishigaki, T. Murata, K. Kinoshita, T. Morikawa, T. Oda, R. Fujita, K. Konishi, Y. Mori, and A. Shima, Analysis of Degradation Phenomena in Bipolar Degradation Screening Process for SiC-MOSFETs. In: Proceeding 31st international symposium power semiconductor devices and ICs, p. 259 (2019). T. Ishigaki, T. Murata, K. Kinoshita, T. Morikawa, T. Oda, R. Fujita, K. Konishi, Y. Mori, and A. Shima, Analysis of Degradation Phenomena in Bipolar Degradation Screening Process for SiC-MOSFETs. In: Proceeding 31st international symposium power semiconductor devices and ICs, p. 259 (2019).
2.
go back to reference T. Tawara, T. Miyazawa, M. Ryo, M. Miyazato, T. Fujimoto, K. Takenaka, S. Matsunaga, M. Miyajima, A. Otsuki, Y. Yonezawa, T. Kato, H. Okumura, T. Kimoto, and H. Tsuchida, Short minority carrier lifetimes in highly nitrogen-doped 4H-SiC epilayers for suppression of the stacking fault formation in PiN diodes. J. Appl. Phys. 120, 115101 (2016).CrossRef T. Tawara, T. Miyazawa, M. Ryo, M. Miyazato, T. Fujimoto, K. Takenaka, S. Matsunaga, M. Miyajima, A. Otsuki, Y. Yonezawa, T. Kato, H. Okumura, T. Kimoto, and H. Tsuchida, Short minority carrier lifetimes in highly nitrogen-doped 4H-SiC epilayers for suppression of the stacking fault formation in PiN diodes. J. Appl. Phys. 120, 115101 (2016).CrossRef
3.
go back to reference A. Tanaka, H. Matsuhata, N. Kawabata, D. Mori, K. Inoue, M. Ryo, T. Fujimoto, T. Tawara, M. Miyazato, M. Miyajima, K. Fukuda, A. Ohtsuki, T. Kato, H. Tsuchida, Y. Yonezawa, and T. Kimoto, Growth of Shockley type stacking faults upon forward degradation in 4H-SiC P-i-N diodes. J. Appl. Phys. 119, 095711 (2016).CrossRef A. Tanaka, H. Matsuhata, N. Kawabata, D. Mori, K. Inoue, M. Ryo, T. Fujimoto, T. Tawara, M. Miyazato, M. Miyajima, K. Fukuda, A. Ohtsuki, T. Kato, H. Tsuchida, Y. Yonezawa, and T. Kimoto, Growth of Shockley type stacking faults upon forward degradation in 4H-SiC P-i-N diodes. J. Appl. Phys. 119, 095711 (2016).CrossRef
4.
go back to reference S. Hayashi, T. Yamashita, J. Senzaki, M. Miyazato, M. Ryo, M. Miyajima, T. Kato, Y. Yonezawa, K. Kojima, and H. Okumura, Influence of basal-plane dislocation structures on expansion of single Shockley-type stacking faults in forward-current degradation of 4H-SiC P-i-N diodes. Jpn. J. Appl. Phys. 57, 04FR07 (2018).CrossRef S. Hayashi, T. Yamashita, J. Senzaki, M. Miyazato, M. Ryo, M. Miyajima, T. Kato, Y. Yonezawa, K. Kojima, and H. Okumura, Influence of basal-plane dislocation structures on expansion of single Shockley-type stacking faults in forward-current degradation of 4H-SiC P-i-N diodes. Jpn. J. Appl. Phys. 57, 04FR07 (2018).CrossRef
5.
go back to reference J. Nishio, A. Okada, C. Ota, and R. Iijima, Direct confirmation of structural differences in single Shockley stacking faults expanding from different origins in 4H-SiC PiN diodes. J. Appl. Phys. 128, 085705 (2020).CrossRef J. Nishio, A. Okada, C. Ota, and R. Iijima, Direct confirmation of structural differences in single Shockley stacking faults expanding from different origins in 4H-SiC PiN diodes. J. Appl. Phys. 128, 085705 (2020).CrossRef
6.
go back to reference J. Nishio, A. Okada, C. Ota, and R. Iijima, Single Shockley stacking fault expansion from immobile basal plane dislocations in 4H-SiC. Jpn. J. Appl. Phys. 60, SBBD01 (2021).CrossRef J. Nishio, A. Okada, C. Ota, and R. Iijima, Single Shockley stacking fault expansion from immobile basal plane dislocations in 4H-SiC. Jpn. J. Appl. Phys. 60, SBBD01 (2021).CrossRef
7.
go back to reference J. Nishio, C. Ota, and R. Iijima, Conversion of Shockley partial dislocation pairs from unexpandable to expandable combinations after epitaxial growth of 4H-SiC. J. Appl. Phys. 130, 075107 (2021).CrossRef J. Nishio, C. Ota, and R. Iijima, Conversion of Shockley partial dislocation pairs from unexpandable to expandable combinations after epitaxial growth of 4H-SiC. J. Appl. Phys. 130, 075107 (2021).CrossRef
8.
go back to reference C. Ota, J. Nishio, A. Okada, and R. Iijima, Origin and generation process of a triangular single Shockley stacking fault expanding from the surface side in 4H-SiC PIN diodes. J. Electron. Mater. 50, 6504 (2021).CrossRef C. Ota, J. Nishio, A. Okada, and R. Iijima, Origin and generation process of a triangular single Shockley stacking fault expanding from the surface side in 4H-SiC PIN diodes. J. Electron. Mater. 50, 6504 (2021).CrossRef
9.
go back to reference J. Nishio, C. Ota, and R. Iijima, Structural study of single Shockley stacking faults terminated near substrate/epilayer interface in 4H-SiC. Jpn. J. Appl. Phys. 61, SC1005 (2022).CrossRef J. Nishio, C. Ota, and R. Iijima, Structural study of single Shockley stacking faults terminated near substrate/epilayer interface in 4H-SiC. Jpn. J. Appl. Phys. 61, SC1005 (2022).CrossRef
10.
go back to reference S. Ha, H.J. Chung, N.T. Nuhfer, and M. Skowronski, Dislocation nucleation in 4H silicon carbide epitaxy. J. Cryst. Growth 262, 130 (2004).CrossRef S. Ha, H.J. Chung, N.T. Nuhfer, and M. Skowronski, Dislocation nucleation in 4H silicon carbide epitaxy. J. Cryst. Growth 262, 130 (2004).CrossRef
11.
go back to reference S. Ha, M. Skowronski, and H. Lendenmann, Nucleation sites of recombination-enhanced stacking fault formation in silicon carbide P-i-N diodes. J. Appl. Phys. 96, 393 (2004).CrossRef S. Ha, M. Skowronski, and H. Lendenmann, Nucleation sites of recombination-enhanced stacking fault formation in silicon carbide P-i-N diodes. J. Appl. Phys. 96, 393 (2004).CrossRef
12.
go back to reference X. Zhang, S. Ha, Y. Hanlumnyang, C.H. Chou, V. Rodriguez, M. Skowronski, J.J. Sumakeris, M.J. Paisley, and M.J. O’Loughlin, Morphology of basal plane dislocations in 4H-SiC homoepitaxial layers grown by chemical vapor deposition. J. Appl. Phys. 101, 053517 (2007).CrossRef X. Zhang, S. Ha, Y. Hanlumnyang, C.H. Chou, V. Rodriguez, M. Skowronski, J.J. Sumakeris, M.J. Paisley, and M.J. O’Loughlin, Morphology of basal plane dislocations in 4H-SiC homoepitaxial layers grown by chemical vapor deposition. J. Appl. Phys. 101, 053517 (2007).CrossRef
13.
go back to reference Z. Zhang, R.E. Stahlbush, P. Pirouz, and T.S. Sudarshan, Characteristics of dislocation half-loop arrays in 4H-SiC homo-epilayer. J. Electron. Mater. 36, 539 (2007).CrossRef Z. Zhang, R.E. Stahlbush, P. Pirouz, and T.S. Sudarshan, Characteristics of dislocation half-loop arrays in 4H-SiC homo-epilayer. J. Electron. Mater. 36, 539 (2007).CrossRef
14.
go back to reference X. Zhang, M. Skowronski, K.X. Liu, R.E. Stahlbush, J.J. Sumakeris, M.J. Paisley, and M.J. O’Loughlin, Glide and multiplication of basal plane dislocations during 4H-SiC homoepitaxy. J. Appl. Phys. 102, 093520 (2007).CrossRef X. Zhang, M. Skowronski, K.X. Liu, R.E. Stahlbush, J.J. Sumakeris, M.J. Paisley, and M.J. O’Loughlin, Glide and multiplication of basal plane dislocations during 4H-SiC homoepitaxy. J. Appl. Phys. 102, 093520 (2007).CrossRef
15.
go back to reference H. Tsuchida, I. Kamata, K. Kojima, K. Momose, M. Odawara, T. Takahashi, Y. Ishida, and K. Matsuzawa, Influence of growth conditions and substrate properties on formation of interfacial dislocations and dislocation half-loop arrays in 4H-SiC (0001) and (000–1) epitaxy. MRS Symp. Proc. (2008). https://doi.org/10.1557/PROC-1069-D04-03.CrossRef H. Tsuchida, I. Kamata, K. Kojima, K. Momose, M. Odawara, T. Takahashi, Y. Ishida, and K. Matsuzawa, Influence of growth conditions and substrate properties on formation of interfacial dislocations and dislocation half-loop arrays in 4H-SiC (0001) and (000–1) epitaxy. MRS Symp. Proc. (2008). https://​doi.​org/​10.​1557/​PROC-1069-D04-03.CrossRef
16.
go back to reference N. Zhang, Y. Chen, Y. Zhang, M. Dudley, and R.E. Stahlbush, Nucleation mechanism of dislocation half-loop arrays in 4H-silicon carbide homoepitaxial layers. Appl. Phys. Lett. 94, 122108 (2009).CrossRef N. Zhang, Y. Chen, Y. Zhang, M. Dudley, and R.E. Stahlbush, Nucleation mechanism of dislocation half-loop arrays in 4H-silicon carbide homoepitaxial layers. Appl. Phys. Lett. 94, 122108 (2009).CrossRef
17.
go back to reference R.E. Stahlbush, B.L. VanMil, K.X. Liu, K.K. Lew, R.L. Myers-Ward, D.K. Gaskill, C.R. Eddy Jr., X. Zhang, and M. Skowronski, Evolution of basal plane dislocations during 4H-SiC epitaxial growth. Mater. Sci. Forum 600–603, 317 (2009). R.E. Stahlbush, B.L. VanMil, K.X. Liu, K.K. Lew, R.L. Myers-Ward, D.K. Gaskill, C.R. Eddy Jr., X. Zhang, and M. Skowronski, Evolution of basal plane dislocations during 4H-SiC epitaxial growth. Mater. Sci. Forum 600–603, 317 (2009).
18.
go back to reference S. Ha, M. Benamara, M. Skowronski, and H. Lendenmann, Core structure and properties of partial dislocations in silicon carbide P-i-N diodes. Appl. Phys. Lett. 83, 4957 (2003).CrossRef S. Ha, M. Benamara, M. Skowronski, and H. Lendenmann, Core structure and properties of partial dislocations in silicon carbide P-i-N diodes. Appl. Phys. Lett. 83, 4957 (2003).CrossRef
19.
go back to reference R.E. Stahlbush, M.E. Twigg, J.J. Sumakeris, K.G. Irvine, and P.A. Losee, Mechanisms of stacking fault growth in SiC PiN diodes. MRS Symp. Proc. 815, J6.4 (2004).CrossRef R.E. Stahlbush, M.E. Twigg, J.J. Sumakeris, K.G. Irvine, and P.A. Losee, Mechanisms of stacking fault growth in SiC PiN diodes. MRS Symp. Proc. 815, J6.4 (2004).CrossRef
20.
go back to reference B. Chen, T. Sekiguchi, T. Ohyanagi, H. Matsuhata, A. Kinoshita, and H. Okumura, Electron-beam-induced current and cathodeluminescence study of dislocation arrays in 4H-SiC homoepitaxial layers. J. Appl. Phys. 106, 074502 (2009).CrossRef B. Chen, T. Sekiguchi, T. Ohyanagi, H. Matsuhata, A. Kinoshita, and H. Okumura, Electron-beam-induced current and cathodeluminescence study of dislocation arrays in 4H-SiC homoepitaxial layers. J. Appl. Phys. 106, 074502 (2009).CrossRef
21.
go back to reference J. Nishio, C. Ota, and R. Iijima, Transmission electron microscopy study of single Shockley stacking faults in 4H-SiC expanded from basal plane dislocation segments accompanied by threading edge dislocations on both ends. Mater. Sci. Forum 1062, 258 (2022).CrossRef J. Nishio, C. Ota, and R. Iijima, Transmission electron microscopy study of single Shockley stacking faults in 4H-SiC expanded from basal plane dislocation segments accompanied by threading edge dislocations on both ends. Mater. Sci. Forum 1062, 258 (2022).CrossRef
22.
go back to reference J. Nishio, A. Okada, C. Ota, and M. Kushibe, Photoluminescence analysis of individual partial dislocations in 4H-SiC epilayers. Mater. Sci. Forum 1004, 376 (2020).CrossRef J. Nishio, A. Okada, C. Ota, and M. Kushibe, Photoluminescence analysis of individual partial dislocations in 4H-SiC epilayers. Mater. Sci. Forum 1004, 376 (2020).CrossRef
23.
go back to reference J. Nishio, A. Okada, C. Ota, and M. Kushibe, Triangular single Shockley stacking fault analyses on 4H-SiC PiN diode with forward voltage degradation. J. Electron. Mater. 49, 5232 (2020).CrossRef J. Nishio, A. Okada, C. Ota, and M. Kushibe, Triangular single Shockley stacking fault analyses on 4H-SiC PiN diode with forward voltage degradation. J. Electron. Mater. 49, 5232 (2020).CrossRef
24.
go back to reference S.G. Sridhara, F.H.C. Carlsson, J.P. Bergman, and E. Janzén, Luminescence from stacking faults in 4H SiC. Appl. Phys. Lett. 79, 3944 (2001).CrossRef S.G. Sridhara, F.H.C. Carlsson, J.P. Bergman, and E. Janzén, Luminescence from stacking faults in 4H SiC. Appl. Phys. Lett. 79, 3944 (2001).CrossRef
25.
go back to reference R.E. Stahlbush, Q. Zhang, A. Agarwal, and N.A. Mahadik, Effect of stacking faults originating from half loop arrays on electrical behavior of 10 kV 4H-SiC PiN diodes. Mater. Sci. Forum 717–720, 387 (2012).CrossRef R.E. Stahlbush, Q. Zhang, A. Agarwal, and N.A. Mahadik, Effect of stacking faults originating from half loop arrays on electrical behavior of 10 kV 4H-SiC PiN diodes. Mater. Sci. Forum 717–720, 387 (2012).CrossRef
26.
go back to reference N.A. Mahadik, R.E. Stahlbush, J.D. Caldwell, and K.D. Hobart, Ultraviolet photoluminescence imaging of stacking fault contraction in 4H-SiC epitaxial layers. Mater. Sci. Forum 717–720, 391 (2012).CrossRef N.A. Mahadik, R.E. Stahlbush, J.D. Caldwell, and K.D. Hobart, Ultraviolet photoluminescence imaging of stacking fault contraction in 4H-SiC epitaxial layers. Mater. Sci. Forum 717–720, 391 (2012).CrossRef
27.
go back to reference H. Matsuhata, H. Yamaguchi, T. Yamashita, T. Tanaka, B. Chem, and T. Sekiguchi, Contrast analysis of Shockley partial dislocations in 4H-SiC observed by synchrotron Berg-Barrett X-ray topography. Philos. Mag. 94, 1674 (2014).CrossRef H. Matsuhata, H. Yamaguchi, T. Yamashita, T. Tanaka, B. Chem, and T. Sekiguchi, Contrast analysis of Shockley partial dislocations in 4H-SiC observed by synchrotron Berg-Barrett X-ray topography. Philos. Mag. 94, 1674 (2014).CrossRef
28.
go back to reference H. Matsuhata and T. Sekiguchi, Morphology of single Shockley-type stacking faults generated by recombination enhanced dislocation glide in 4H-SiC. Philos. Mag. 98, 878 (2018).CrossRef H. Matsuhata and T. Sekiguchi, Morphology of single Shockley-type stacking faults generated by recombination enhanced dislocation glide in 4H-SiC. Philos. Mag. 98, 878 (2018).CrossRef
29.
go back to reference T. Tanaka, H. Shiomi, N. Kawabata, Y. Yonezawa, T. Kato, and H. Okumura, Expansion and contraction of single Shockley stacking faults in SiC epitaxial layer under ultraviolet irradiation. Appl. Phys. Express 12, 041006 (2019).CrossRef T. Tanaka, H. Shiomi, N. Kawabata, Y. Yonezawa, T. Kato, and H. Okumura, Expansion and contraction of single Shockley stacking faults in SiC epitaxial layer under ultraviolet irradiation. Appl. Phys. Express 12, 041006 (2019).CrossRef
30.
go back to reference A. Okada, J. Nishio, R. Iijima, C. Ota, A. Goryu, M. Miyazato, M. Ryo, T. Shinohe, M. Miyajima, T. Kato, Y. Yonezawa, and H. Okumura, Dependences of contraction/expansion of stacking faults on temperature and current density in 4H-SiC P-i-N diodes. Jpn. J. Appl. Phys. 57, 061301 (2018).CrossRef A. Okada, J. Nishio, R. Iijima, C. Ota, A. Goryu, M. Miyazato, M. Ryo, T. Shinohe, M. Miyajima, T. Kato, Y. Yonezawa, and H. Okumura, Dependences of contraction/expansion of stacking faults on temperature and current density in 4H-SiC P-i-N diodes. Jpn. J. Appl. Phys. 57, 061301 (2018).CrossRef
31.
go back to reference M.E. Twigg, R.E. Stahlbush, M. Fatemi, S.D. Arthur, J.B. Fedison, J.B. Tucker, and S. Wang, Structure of stacking faults formed during the forward bias of 4H-SiC P-i-N diodes. Appl. Phys. Lett. 82, 2410 (2003).CrossRef M.E. Twigg, R.E. Stahlbush, M. Fatemi, S.D. Arthur, J.B. Fedison, J.B. Tucker, and S. Wang, Structure of stacking faults formed during the forward bias of 4H-SiC P-i-N diodes. Appl. Phys. Lett. 82, 2410 (2003).CrossRef
32.
go back to reference M. Zhang, P. Pirouz, and H. Lendenmann, Transmission electron microscopy investigation of dislocations in farward-biased 4H-SiC P-i-N diodes. Appl. Phys. Lett. 83, 3320 (2003).CrossRef M. Zhang, P. Pirouz, and H. Lendenmann, Transmission electron microscopy investigation of dislocations in farward-biased 4H-SiC P-i-N diodes. Appl. Phys. Lett. 83, 3320 (2003).CrossRef
33.
go back to reference Y. Ishikawa, M. Sudo, Y.-Z. Yao, Y. Sugawara, and M. Kato, Expansion of a single Shockley stacking fault in a 4H-SiC (11 0) epitaxial layer caused by electron beam irradiation. J. Appl. Phys. 123, 225101 (2018).CrossRef Y. Ishikawa, M. Sudo, Y.-Z. Yao, Y. Sugawara, and M. Kato, Expansion of a single Shockley stacking fault in a 4H-SiC (11 0) epitaxial layer caused by electron beam irradiation. J. Appl. Phys. 123, 225101 (2018).CrossRef
34.
go back to reference P. Pirouz, J.L. Demenet, and M.H. Hong, On transition temperatures in the plasticity and fracture of semiconductors. Philos. Mag. A 81, 1207 (2001).CrossRef P. Pirouz, J.L. Demenet, and M.H. Hong, On transition temperatures in the plasticity and fracture of semiconductors. Philos. Mag. A 81, 1207 (2001).CrossRef
35.
go back to reference M. Skowronski, J.Q. Lui, W.M. Vetter, M. Dudley, C. Hallin, and H. Lendenmann, Recombination-enhanced defect motion in forward-biased 4H-SiC p-n diodes. J. Appl. Phys. 92, 4699 (2002).CrossRef M. Skowronski, J.Q. Lui, W.M. Vetter, M. Dudley, C. Hallin, and H. Lendenmann, Recombination-enhanced defect motion in forward-biased 4H-SiC p-n diodes. J. Appl. Phys. 92, 4699 (2002).CrossRef
36.
go back to reference A. Iijima, I. Kamata, H. Tsuchida, J. Suda, and T. Kimoto, Correlation between shapes of Shockley stacking faults and structures of basal plane dislocations in 4H-SiC epilayers. Philos. Mag. 97, 2736 (2017).CrossRef A. Iijima, I. Kamata, H. Tsuchida, J. Suda, and T. Kimoto, Correlation between shapes of Shockley stacking faults and structures of basal plane dislocations in 4H-SiC epilayers. Philos. Mag. 97, 2736 (2017).CrossRef
Metadata
Title
Origin of Double-Rhombic Single Shockley Stacking Faults in 4H-SiC Epitaxial Layers
Authors
Johji Nishio
Chiharu Ota
Ryosuke Iijima
Publication date
31-10-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-10038-6

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue