Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

07-11-2022 | Original Research Article

Hot Extruded Bulk Polycrystalline (Bi1-xSbx)2(Te1-ySey)3 Alloys: Electron Transport and Lattice Thermal Conductivity

Authors: Remo A. Masut, Cédric André, Dimitri Vasilevskiy

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hot extruded bulk polycrystalline n-type (Bi1-xSbx)2(Te1-ySey)3 quaternary alloys with low Sb and Se concentrations (< 10%) are anisotropic materials by virtue of their texture which is a result of severe shearing involved in the extrusion process. Harman-type measurements have provided the electrical and thermal conductivity, Seebeck coefficient, and thermoelectric figure of merit parallel to the extrusion axis, as a function of temperature, in the range ~ 220–420 K. Mobility and carrier concentration were determined by Hall effect measurements along a plane perpendicular to the extrusion axis in the range 15–420 K. Modeling the electronic transport properties allows the determination of the total (including thermodiffusion) electronic contribution to the thermal conductivity. Thus, the lattice thermal conductivity \(\kappa_{\parallel }^{{}}\), along the extrusion axis, can be obtained with a reasonable degree of accuracy in the range 220–380 K. The results carry a rather large relative uncertainty at higher temperatures as \(\kappa_{\parallel }^{{}}\) decreases with increasing temperature with a tendency which mimics that observed for the crystalline base compound Bi2Te3.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference R. Venkatasubramanian, E. Sivola, T. Colpitts, and B. O’Quinn, Thin-flm thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001).CrossRef R. Venkatasubramanian, E. Sivola, T. Colpitts, and B. O’Quinn, Thin-flm thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001).CrossRef
2.
go back to reference T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229–2232 (2002).CrossRef T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229–2232 (2002).CrossRef
3.
go back to reference D. Li, Wu. Yiying, P. Kim, Li. Shi, P. Yang, and A. Majumdar, Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003).CrossRef D. Li, Wu. Yiying, P. Kim, Li. Shi, P. Yang, and A. Majumdar, Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003).CrossRef
4.
go back to reference W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901–045904 (2006).CrossRef W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901–045904 (2006).CrossRef
5.
go back to reference M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, and P. Gogna, New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–53 (2007).CrossRef M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, and P. Gogna, New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–53 (2007).CrossRef
6.
go back to reference B. Poudel, Q. Hao, Y. Ma et al., High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).CrossRef B. Poudel, Q. Hao, Y. Ma et al., High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).CrossRef
7.
go back to reference D. Vasilevskiy, M.S. Dawood, J.-P. Masse, S. Turenne, and R.A. Masut, Generation of nanosized particles during mechanical alloying and their evolution through the hot extrusion process in bismuth telluride based alloys. J. Electron. Mat. 39, 1890–1896 (2010).CrossRef D. Vasilevskiy, M.S. Dawood, J.-P. Masse, S. Turenne, and R.A. Masut, Generation of nanosized particles during mechanical alloying and their evolution through the hot extrusion process in bismuth telluride based alloys. J. Electron. Mat. 39, 1890–1896 (2010).CrossRef
8.
go back to reference C. Dames and G. Chen, Thermal conductivity of nanostructured thermoelectric materials, in Thermoelectrics Handbook: Macro to Nano, 42, 1–16, D.M. Rowe Editor (Taylor & Francis, Boca Raton USA) (2006). C. Dames and G. Chen, Thermal conductivity of nanostructured thermoelectric materials, in Thermoelectrics Handbook: Macro to Nano, 42, 1–16, D.M. Rowe Editor (Taylor & Francis, Boca Raton USA) (2006).
10.
go back to reference J.K. Lee, S. Park, B. Ryu, H.S. Lee, J. Park, and S. Park, Effect of defect interactions with interstitial Ag in the lattice of Bi2xSb2-xTe3 alloys and their thermoelectric properties. Appl. Phys. Lett. 118, 052102 (2021).CrossRef J.K. Lee, S. Park, B. Ryu, H.S. Lee, J. Park, and S. Park, Effect of defect interactions with interstitial Ag in the lattice of Bi2xSb2-xTe3 alloys and their thermoelectric properties. Appl. Phys. Lett. 118, 052102 (2021).CrossRef
11.
go back to reference F. Shi, H. Wang, Q. Zhang, X. Tan, Y. Yin, Hu. Haoyang, Z. Li, J.G. Noudem, G. Liu, and J. Jiang, Improved thermoelectric properties of BiSbTe-AgBiSe2 alloys by suppressing bipolar excitation. ACS Appl. Energy Matter. 4, 2944–2950 (2021).CrossRef F. Shi, H. Wang, Q. Zhang, X. Tan, Y. Yin, Hu. Haoyang, Z. Li, J.G. Noudem, G. Liu, and J. Jiang, Improved thermoelectric properties of BiSbTe-AgBiSe2 alloys by suppressing bipolar excitation. ACS Appl. Energy Matter. 4, 2944–2950 (2021).CrossRef
12.
go back to reference H.-L. Zhuang, J. Pei, B. Cai, J. Dong, H. Haihua, F.-H. Sun, Y. Pan, G. Jeffrey Suyder, and J.-F. Li, Thermoelectric performance enhancement in bisbte alloy by microstructure modulation via cyclic spark plasma sintering with liquid phase. Adv. Funct. Mat. 31, 2009681 (2021).CrossRef H.-L. Zhuang, J. Pei, B. Cai, J. Dong, H. Haihua, F.-H. Sun, Y. Pan, G. Jeffrey Suyder, and J.-F. Li, Thermoelectric performance enhancement in bisbte alloy by microstructure modulation via cyclic spark plasma sintering with liquid phase. Adv. Funct. Mat. 31, 2009681 (2021).CrossRef
13.
go back to reference D. Vasilevskiy, J.-M. Simard, F. Bélanger, F. Bernier, S. Turenne et J. L’Ecuyer, Texture formation in extruded rods of (Bi,Sb)2(Te,Se)3 thermoelectric alloys, proceedings of the 21st international conference on thermoelectrics, ICT’02, Long Beach, California, USA, 25–29 August, IEEE, p 24–27. DOI: https://doi.org/10.1109/ICT.2002.1190257 (2003) D. Vasilevskiy, J.-M. Simard, F. Bélanger, F. Bernier, S. Turenne et J. L’Ecuyer, Texture formation in extruded rods of (Bi,Sb)2(Te,Se)3 thermoelectric alloys, proceedings of the 21st international conference on thermoelectrics, ICT’02, Long Beach, California, USA, 25–29 August, IEEE, p 24–27. DOI: https://​doi.​org/​10.​1109/​ICT.​2002.​1190257 (2003)
14.
go back to reference J.M. Simard, D. Vasilevskiy, S. Turenne, Influence of composition and texture on the thermoelectric and mechanical properties of extruded (Bi1-xSbx)2(Te1-ySey)3 alloys, twenty-second international conference on thermoelectrics, IEEE proceedings ICT’03, 13–18, (2003). J.M. Simard, D. Vasilevskiy, S. Turenne, Influence of composition and texture on the thermoelectric and mechanical properties of extruded (Bi1-xSbx)2(Te1-ySey)3 alloys, twenty-second international conference on thermoelectrics, IEEE proceedings ICT’03, 13–18, (2003).
15.
go back to reference M.K. Keshavarz, D. Vasilevskiy, R.A. Masut, and S. Turenne, Mechanical properties of bismuth telluride based alloys with embedded MoS2 nano-particles. Mat. and Design 103, 114–121 (2016).CrossRef M.K. Keshavarz, D. Vasilevskiy, R.A. Masut, and S. Turenne, Mechanical properties of bismuth telluride based alloys with embedded MoS2 nano-particles. Mat. and Design 103, 114–121 (2016).CrossRef
16.
go back to reference R.A. Masut, D. Vasilevskiy, and M.K. Keshavarz, Elastic modulus and internal friction of thermoelectric composites: enthalpy-entropy compensation. J. Appl. Phys. 129, 245106–245111 (2021).CrossRef R.A. Masut, D. Vasilevskiy, and M.K. Keshavarz, Elastic modulus and internal friction of thermoelectric composites: enthalpy-entropy compensation. J. Appl. Phys. 129, 245106–245111 (2021).CrossRef
17.
go back to reference R.A. Masut, C. André, D. Vasilevskiy, and S. Turenne, Charge transport anisotropy in hot extruded bismuth telluride: scattering by acoustic phonons. J. Appl. Phys. 128, 115106–115111 (2020).CrossRef R.A. Masut, C. André, D. Vasilevskiy, and S. Turenne, Charge transport anisotropy in hot extruded bismuth telluride: scattering by acoustic phonons. J. Appl. Phys. 128, 115106–115111 (2020).CrossRef
18.
go back to reference C. Andre, D. Vasilevskiy, S. Turenne, and R.A. Masut, Extruded bismuth-telluride-based n-Type alloys for waste heat thermoelectric recovery applications. J. Electron. Mat. 38, 1061–1067 (2009).CrossRef C. Andre, D. Vasilevskiy, S. Turenne, and R.A. Masut, Extruded bismuth-telluride-based n-Type alloys for waste heat thermoelectric recovery applications. J. Electron. Mat. 38, 1061–1067 (2009).CrossRef
19.
go back to reference G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics Basic Principles and New Materials Developments, (Berlin: Springer, 2001).CrossRef G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics Basic Principles and New Materials Developments, (Berlin: Springer, 2001).CrossRef
20.
go back to reference H.J. Goldsmid, A.R. Sheard, and D.A. Wright, The performance of bismuth telluride thermojunctions. Britt. J. Appl. Phys. 9, 365–370 (1958).CrossRef H.J. Goldsmid, A.R. Sheard, and D.A. Wright, The performance of bismuth telluride thermojunctions. Britt. J. Appl. Phys. 9, 365–370 (1958).CrossRef
21.
go back to reference O. Ben-Yehuda, R. Shuker, Y. Gelbstein, Z. Dashevsky, and M.P. Dariel, Highly textured Bi2Te3-based materials for thermoelectric energy conversion. J. Appl. Phys. 101, 113707 (2007).CrossRef O. Ben-Yehuda, R. Shuker, Y. Gelbstein, Z. Dashevsky, and M.P. Dariel, Highly textured Bi2Te3-based materials for thermoelectric energy conversion. J. Appl. Phys. 101, 113707 (2007).CrossRef
22.
go back to reference H. Kaibe, Y. Tanaka, M. Sakata, and I. Nishida, Anisotropic galvanomagnetic and thermoelectric properties of n-type single crystal with the composition of a useful thermoelectric cooling material. J. Phys. Chem. Solids 30, 945–950 (1989).CrossRef H. Kaibe, Y. Tanaka, M. Sakata, and I. Nishida, Anisotropic galvanomagnetic and thermoelectric properties of n-type single crystal with the composition of a useful thermoelectric cooling material. J. Phys. Chem. Solids 30, 945–950 (1989).CrossRef
23.
go back to reference W. Zawadski, R. Kowalczyk, and J. Kolodziejczak, The generalized fermi-dirac integrals. Phys. Stat. Sol. 10, 513–518 (1965).CrossRef W. Zawadski, R. Kowalczyk, and J. Kolodziejczak, The generalized fermi-dirac integrals. Phys. Stat. Sol. 10, 513–518 (1965).CrossRef
24.
go back to reference H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G. Jeffrey, Snyder, characterization of lorenz number with seebeck coefficient measurement. APL Mat. 3, 041506 (2015).CrossRef H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G. Jeffrey, Snyder, characterization of lorenz number with seebeck coefficient measurement. APL Mat. 3, 041506 (2015).CrossRef
25.
go back to reference D. Palaporn, W. Mongkolthanaruk, S.-a Tanusilp, K. Kurosaki, and S. Pinitsoontorn, A simple method for fabricating flexible thermoelectric nanocomposites based on bacterial cellulose nanofiber and Ag2Se. Appl. Phys. Lett. 120, 073901 (2022).CrossRef D. Palaporn, W. Mongkolthanaruk, S.-a Tanusilp, K. Kurosaki, and S. Pinitsoontorn, A simple method for fabricating flexible thermoelectric nanocomposites based on bacterial cellulose nanofiber and Ag2Se. Appl. Phys. Lett. 120, 073901 (2022).CrossRef
26.
go back to reference S.-F. Wang, Z.-G. Zhang, B.-T. Wang, and J.-R. Zhang, and F.-W. Wang, Intrinsic ultralow lattice thermal conductivity in the full-heusler compound Ba2AgSb. Phys. Rev. Appl. 17, 034023 (2022).CrossRef S.-F. Wang, Z.-G. Zhang, B.-T. Wang, and J.-R. Zhang, and F.-W. Wang, Intrinsic ultralow lattice thermal conductivity in the full-heusler compound Ba2AgSb. Phys. Rev. Appl. 17, 034023 (2022).CrossRef
27.
go back to reference H.J. Goldsmid, The thermal conductivity of bismuth telluride. Proc. Phys. Soc., London Sect. B 69, 203–209 (1956).CrossRef H.J. Goldsmid, The thermal conductivity of bismuth telluride. Proc. Phys. Soc., London Sect. B 69, 203–209 (1956).CrossRef
28.
go back to reference C.B. Satterthwaite and R.W. Ure Jr., Electrical and thermal properties of Bi2Te3. Phys. Rev. 108, 1164–1170 (1957).CrossRef C.B. Satterthwaite and R.W. Ure Jr., Electrical and thermal properties of Bi2Te3. Phys. Rev. 108, 1164–1170 (1957).CrossRef
29.
go back to reference J.-M. Simard, D. Vasilevskiy, F. Belanger, J. L’Ecuyer and, S. Turenne, Production of thermoelectric materials by mechanical alloying - extrusion process, proceedings ICT2001. 20 international conference on thermoelectrics (Cat. No.01TH8589), 08–11 June 2001, Beijing, China, IEEE, p 132–135. DOI: https://doi.org/10.1109/ICT.2001.979840 (2002). J.-M. Simard, D. Vasilevskiy, F. Belanger, J. L’Ecuyer and, S. Turenne, Production of thermoelectric materials by mechanical alloying - extrusion process, proceedings ICT2001. 20 international conference on thermoelectrics (Cat. No.01TH8589), 08–11 June 2001, Beijing, China, IEEE, p 132–135. DOI: https://​doi.​org/​10.​1109/​ICT.​2001.​979840 (2002).
30.
go back to reference Y. Zhu, Y. Xia, Y. Wang, Y. Sheng, J. Yang, F. Chenguang, A. Li, T. Zhu, J. Luo, G. Christopher Wolverton, J. Snyder, J. Liu, and W. Zhang, Violation of the T−1 relationship in the lattice thermal conductivity of Mg3Sb2 with locally asymmetric vibrations. AAAS Res. 2020, 4589786 (2020). Y. Zhu, Y. Xia, Y. Wang, Y. Sheng, J. Yang, F. Chenguang, A. Li, T. Zhu, J. Luo, G. Christopher Wolverton, J. Snyder, J. Liu, and W. Zhang, Violation of the T−1 relationship in the lattice thermal conductivity of Mg3Sb2 with locally asymmetric vibrations. AAAS Res. 2020, 4589786 (2020).
31.
go back to reference B.-L. Huang and M. Kaviany, Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride. Phys. Rev. B 77, 125209 (2008).CrossRef B.-L. Huang and M. Kaviany, Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride. Phys. Rev. B 77, 125209 (2008).CrossRef
32.
go back to reference R.A. Masut, Role of deep defects on the transport properties of polycrystalline thermoelectric alloys and composites. J. Electron. Mat. 51, 4816–4823 (2022).CrossRef R.A. Masut, Role of deep defects on the transport properties of polycrystalline thermoelectric alloys and composites. J. Electron. Mat. 51, 4816–4823 (2022).CrossRef
Metadata
Title
Hot Extruded Bulk Polycrystalline (Bi1-xSbx)2(Te1-ySey)3 Alloys: Electron Transport and Lattice Thermal Conductivity
Authors
Remo A. Masut
Cédric André
Dimitri Vasilevskiy
Publication date
07-11-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-10041-x

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue