Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

26-10-2022 | Original Research Article

Ni(OH)2 Nanoparticles Anchored on Laser- and Alkali-Modified TiO2 Nanotubes Arrays for High-Performance Supercapacitor Application

Authors: Sarda Sharma, P. N. Sidhartha, Karumbaiah N. Chappanda

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A simple and effective approach of dual modification of TiO2 nanotubes (T-NTs) to boost the electronic and electrochemical properties of T-NTs is demonstrated. The T-NTs were doubly modified using alkali treatment and laser irradiation (Na/Las/T-NTs), which led to a fourfold enhancement in capacitance compared to plain T-NTs. Impedance and Mott Schottky analysis showed that the enhanced capacitive performance of the doubly modified T-NTs electrode was due to a decrease in charge transfer resistance by nearly 3 times, a higher charge carrier density value by 1 order of magnitude caused by improved conductivity (alkali treatment), and increased surface area and hydrophilicity (laser irradiation). The Na/Las/T-NTs were then electrodeposited with Ni(OH)2 nanoparticles (Ni-NPs) to further improve the supercapacitive performances. Ni-NPs electrodeposited on the Na/Las/T-NTs substrate exhibited a high specific capacitance value of 108 mF/cm2 (268 mF/g) at a current density of 0.08 mA/cm2. In addition, the substrate had an energy density of 4.7 µWh/cm2 at a power density of 2 mW/cm2 . showing an efficient charge storage capacity compared to most previously reported TiO2 s-based supercapacitors. Furthermore, the proposed supercapacitor possessed an excellent cyclic and electrochemical stability after 6000 cycles with nearly 88% capacitive retention and 90% coulombic efficiency. Overall, the doubly modified T-NTs surface favors improved electronic contact of Ni-NPs that promotes a more feasible electro-redox reaction at the electrode–electrolyte interface, and thereby demonstrates an effective approach to enhance the performance of supercapacitors.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference C.C. Raj and R. Prasanth, Review—Advent of TiO2 Nanotubes as Supercapacitor Electrode. J. Electrochem. Soc. 165, E345 (2018).CrossRef C.C. Raj and R. Prasanth, Review—Advent of TiO2 Nanotubes as Supercapacitor Electrode. J. Electrochem. Soc. 165, E345 (2018).CrossRef
2.
go back to reference G. Li, J. Li, T. Li, and K. Wang, TiO2 Nanotube Arrays on Silicon Substrate for On-Chip Supercapacitors. J. Power Sources 425, 39 (2019).CrossRef G. Li, J. Li, T. Li, and K. Wang, TiO2 Nanotube Arrays on Silicon Substrate for On-Chip Supercapacitors. J. Power Sources 425, 39 (2019).CrossRef
3.
go back to reference D. Ge, Y. Wang, Z. Hu, A.A. Babangida, and L. Zhang, Porous Silicon Composite ZnO Nanoparticles as Supercapacitor Electrodes. J. Electron. Mater. 51, 2964 (2022).CrossRef D. Ge, Y. Wang, Z. Hu, A.A. Babangida, and L. Zhang, Porous Silicon Composite ZnO Nanoparticles as Supercapacitor Electrodes. J. Electron. Mater. 51, 2964 (2022).CrossRef
4.
go back to reference R. Liu, L. Ma, S. Huang, J. Mei, J. Xu, and G. Yuan, A Flexible Polyaniline/Graphene/Bacterial Cellulose Supercapacitor Electrode. New J. Chem. 41, 857 (2017).CrossRef R. Liu, L. Ma, S. Huang, J. Mei, J. Xu, and G. Yuan, A Flexible Polyaniline/Graphene/Bacterial Cellulose Supercapacitor Electrode. New J. Chem. 41, 857 (2017).CrossRef
5.
go back to reference A. Śliwak, N. Díez, E. Miniach, and G. Gryglewicz, Nitrogen-Containing Chitosan-based Carbon as an Electrode Material for High-Performance Supercapacitors. J. Appl. Electrochem. 46, 667 (2016).CrossRef A. Śliwak, N. Díez, E. Miniach, and G. Gryglewicz, Nitrogen-Containing Chitosan-based Carbon as an Electrode Material for High-Performance Supercapacitors. J. Appl. Electrochem. 46, 667 (2016).CrossRef
6.
go back to reference R. Farma, M. Deraman, I.A. Awitdrus, R. Talib, J.G. Omar, M.M. Manjunatha, B.N.H. Ishak, and B.N.M. Dolah, Physical and Electrochemical Properties of Supercapacitor Electrodes Derived from Carbon Nanotube and Biomass Carbon. Int. J. Electrochem. Sci. 8, 257 (2013). R. Farma, M. Deraman, I.A. Awitdrus, R. Talib, J.G. Omar, M.M. Manjunatha, B.N.H. Ishak, and B.N.M. Dolah, Physical and Electrochemical Properties of Supercapacitor Electrodes Derived from Carbon Nanotube and Biomass Carbon. Int. J. Electrochem. Sci. 8, 257 (2013).
7.
go back to reference H. Wu, D. Li, X. Zhu, C. Yang, D. Liu, X. Chen, Y. Song, and L. Lu, High-Performance and Renewable Supercapacitors Based on TiO2 Nanotube Array Electrodes Treated by an Electrochemical Doping Approach. Electrochim. Acta 116, 129 (2014).CrossRef H. Wu, D. Li, X. Zhu, C. Yang, D. Liu, X. Chen, Y. Song, and L. Lu, High-Performance and Renewable Supercapacitors Based on TiO2 Nanotube Array Electrodes Treated by an Electrochemical Doping Approach. Electrochim. Acta 116, 129 (2014).CrossRef
8.
go back to reference C. Yu, Y. Wang, J. Zhang, X. Shu, J. Cui, Y. Qin, H. Zheng, J. Liu, Y. Zhang, and Y. Wu, Integration of Mesoporous Nickel Cobalt Oxide Nanosheets with Ultrathin Layer Carbon Wrapped TiO2 Nanotube Arrays for High-Performance Supercapacitors. New J. Chem. 40, 6881 (2016).CrossRef C. Yu, Y. Wang, J. Zhang, X. Shu, J. Cui, Y. Qin, H. Zheng, J. Liu, Y. Zhang, and Y. Wu, Integration of Mesoporous Nickel Cobalt Oxide Nanosheets with Ultrathin Layer Carbon Wrapped TiO2 Nanotube Arrays for High-Performance Supercapacitors. New J. Chem. 40, 6881 (2016).CrossRef
9.
go back to reference P. Prasannalakshmi, N. Shanmugam, A.S. Kumar, and S. Suthakaran, Zinc Sulfide Decorated Titanium Dioxide Electrodes for Supercapacitor Fabrication. J. Electron. Mater. 51, 2273 (2022).CrossRef P. Prasannalakshmi, N. Shanmugam, A.S. Kumar, and S. Suthakaran, Zinc Sulfide Decorated Titanium Dioxide Electrodes for Supercapacitor Fabrication. J. Electron. Mater. 51, 2273 (2022).CrossRef
10.
go back to reference X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, Hydrogenated TiO2 Nanotube Arrays for Supercapacitors. Nano Lett. 12, 1690 (2012).CrossRef X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, Hydrogenated TiO2 Nanotube Arrays for Supercapacitors. Nano Lett. 12, 1690 (2012).CrossRef
11.
go back to reference W. Zhong, S. Sang, Y. Liu, Q. Wu, K. Liu, and H. Liu, Electrochemically Conductive Treatment of TiO2 Nanotube Arrays in AlCl3 Aqueous Solution for Supercapacitors. J. Power Sources 294, 216 (2015).CrossRef W. Zhong, S. Sang, Y. Liu, Q. Wu, K. Liu, and H. Liu, Electrochemically Conductive Treatment of TiO2 Nanotube Arrays in AlCl3 Aqueous Solution for Supercapacitors. J. Power Sources 294, 216 (2015).CrossRef
12.
go back to reference X. Ning, X. Wang, X. Yu, J. Li, and J. Zhao, Preparation and Capacitance Properties of Mn-Doped TiO2 Nanotube Arrays by Anodisation of Ti-Mn Alloy. J. Alloy. Compd. 658, 177 (2016).CrossRef X. Ning, X. Wang, X. Yu, J. Li, and J. Zhao, Preparation and Capacitance Properties of Mn-Doped TiO2 Nanotube Arrays by Anodisation of Ti-Mn Alloy. J. Alloy. Compd. 658, 177 (2016).CrossRef
13.
go back to reference C. Yang, X. Wang, W. Dong, I.W. Chen, Z. Wang, J. Xu, T. Lin, H. Gu, and F. Huang, Nitrogen-Doped Black Titania for High Performance Supercapacitors. Sci. China Mater. 63, 1227 (2020).CrossRef C. Yang, X. Wang, W. Dong, I.W. Chen, Z. Wang, J. Xu, T. Lin, H. Gu, and F. Huang, Nitrogen-Doped Black Titania for High Performance Supercapacitors. Sci. China Mater. 63, 1227 (2020).CrossRef
14.
go back to reference A. Sarkar, A.K. Singh, D. Sarkar, G.G. Khan, and K. Mandal, Three-Dimensional Nanoarchitecture of BiFeO3 Anchored TiO2 Nanotube Arrays for Electrochemical Energy Storage and Solar Energy Conversion. ACS Sustain. Chem. Eng. 3, 2254 (2015).CrossRef A. Sarkar, A.K. Singh, D. Sarkar, G.G. Khan, and K. Mandal, Three-Dimensional Nanoarchitecture of BiFeO3 Anchored TiO2 Nanotube Arrays for Electrochemical Energy Storage and Solar Energy Conversion. ACS Sustain. Chem. Eng. 3, 2254 (2015).CrossRef
15.
go back to reference Y.G. Huang, X.H. Zhang, X.B. Chen, H.Q. Wang, J.R. Chen, X.X. Zhong, and Q.Y. Li, Electrochemical Properties of MnO2-Deposited TiO2 Nanotube Arrays 3D Composite Electrode for Supercapacitors. Int. J. Hydrog. Energy 40, 14331 (2015).CrossRef Y.G. Huang, X.H. Zhang, X.B. Chen, H.Q. Wang, J.R. Chen, X.X. Zhong, and Q.Y. Li, Electrochemical Properties of MnO2-Deposited TiO2 Nanotube Arrays 3D Composite Electrode for Supercapacitors. Int. J. Hydrog. Energy 40, 14331 (2015).CrossRef
16.
go back to reference H. Wu, C. Xu, J. Xu, L. Lu, Z. Fan, X. Chen, Y. Song, and D. Li, Enhanced Supercapacitance in Anodic TiO2 Nanotube Films by Hydrogen Plasma Treatment. Nanotechnology 24, 455401 (2013).CrossRef H. Wu, C. Xu, J. Xu, L. Lu, Z. Fan, X. Chen, Y. Song, and D. Li, Enhanced Supercapacitance in Anodic TiO2 Nanotube Films by Hydrogen Plasma Treatment. Nanotechnology 24, 455401 (2013).CrossRef
17.
go back to reference Y. Xie, C. Huang, L. Zhou, Y. Liu, and H. Huang, Supercapacitor Application of Nickel Oxide-Titania Nanocomposites. Compos. Sci. Technol. 69, 2108 (2009).CrossRef Y. Xie, C. Huang, L. Zhou, Y. Liu, and H. Huang, Supercapacitor Application of Nickel Oxide-Titania Nanocomposites. Compos. Sci. Technol. 69, 2108 (2009).CrossRef
18.
go back to reference C. Zhao, P. Ju, S. Wang, Y. Zhang, S. Min, and X. Qian, One-Step Hydrothermal Preparation of TiO2/RGO/Ni(OH)2/NF Electrode with High Performance for Supercapacitors. Electrochim. Acta 218, 216 (2016).CrossRef C. Zhao, P. Ju, S. Wang, Y. Zhang, S. Min, and X. Qian, One-Step Hydrothermal Preparation of TiO2/RGO/Ni(OH)2/NF Electrode with High Performance for Supercapacitors. Electrochim. Acta 218, 216 (2016).CrossRef
19.
go back to reference S. Abd El-Nasser, S. Kim, H. Yoon, R. Toth, K. Pal, and M. Bechelany, Sodium-Assisted TiO2 Nanotube Arrays of Novel Electrodes for Photochemical Sensing Platform. Org. Electron. 76, 105443 (2020).CrossRef S. Abd El-Nasser, S. Kim, H. Yoon, R. Toth, K. Pal, and M. Bechelany, Sodium-Assisted TiO2 Nanotube Arrays of Novel Electrodes for Photochemical Sensing Platform. Org. Electron. 76, 105443 (2020).CrossRef
20.
go back to reference S. Sharma, P.N. Sidhartha, and K.N. Chappanda, Influence of Laser and Alkali Treatment on an Ag/TiO2 Nanotube Based Dopamine Sensor. Nanotechnology 33, 015502 (2022).CrossRef S. Sharma, P.N. Sidhartha, and K.N. Chappanda, Influence of Laser and Alkali Treatment on an Ag/TiO2 Nanotube Based Dopamine Sensor. Nanotechnology 33, 015502 (2022).CrossRef
21.
go back to reference J.E. Park, Y.S. Jang, T.S. Bae, and M.H. Lee, Multi-Walled Carbon Nanotube Coating on Alkali Treated TiO2 Nanotubes Surface for Improvement of Biocompatibility. Coatings 8, 159 (2018).CrossRef J.E. Park, Y.S. Jang, T.S. Bae, and M.H. Lee, Multi-Walled Carbon Nanotube Coating on Alkali Treated TiO2 Nanotubes Surface for Improvement of Biocompatibility. Coatings 8, 159 (2018).CrossRef
22.
go back to reference K. Grochowska, N. Nedyalkov, J. Karczewski, Ł Haryński, G. Śliwiński, and K. Siuzdak, Anodic Titania Nanotubes Decorated with Gold Nanoparticles Produced by Laser-induced Dewetting of Thin Metallic Films. Sci. Rep. 10, 1 (2020).CrossRef K. Grochowska, N. Nedyalkov, J. Karczewski, Ł Haryński, G. Śliwiński, and K. Siuzdak, Anodic Titania Nanotubes Decorated with Gold Nanoparticles Produced by Laser-induced Dewetting of Thin Metallic Films. Sci. Rep. 10, 1 (2020).CrossRef
23.
go back to reference K. Grochowska, Z. Molenda, J. Karczewski, J. Bachmann, K. Darowicki, J. Ryl, and K. Siuzdak, Laser Induced Formation of Copper Species Over TiO2 Nanotubes Towards Enhanced Water Splitting Performance. Int. J. Hydrog. Energy 45, 19192 (2020).CrossRef K. Grochowska, Z. Molenda, J. Karczewski, J. Bachmann, K. Darowicki, J. Ryl, and K. Siuzdak, Laser Induced Formation of Copper Species Over TiO2 Nanotubes Towards Enhanced Water Splitting Performance. Int. J. Hydrog. Energy 45, 19192 (2020).CrossRef
24.
go back to reference C.K. Chung, S.L. Lin, S.Y. Cheng, K.P. Chuang, and H.Y. Wang, Effect of Sol-Gel Composition Ratio and Laser Power on Phase Transformation of Crystalline Titanium Dioxide Under CO2 Laser Annealing. Micro Nano Lett. 6, 494 (2011).CrossRef C.K. Chung, S.L. Lin, S.Y. Cheng, K.P. Chuang, and H.Y. Wang, Effect of Sol-Gel Composition Ratio and Laser Power on Phase Transformation of Crystalline Titanium Dioxide Under CO2 Laser Annealing. Micro Nano Lett. 6, 494 (2011).CrossRef
25.
go back to reference J. Li, L. Zheng, L. Li, G. Shi, Y. Xian, and L. Jin, Ti/TiO2 Electrode Preparation Using Laser Anneal and its Application to Determination of Chemical Oxygen Demand. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 18, 1014 (2006). J. Li, L. Zheng, L. Li, G. Shi, Y. Xian, and L. Jin, Ti/TiO2 Electrode Preparation Using Laser Anneal and its Application to Determination of Chemical Oxygen Demand. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 18, 1014 (2006).
26.
go back to reference F. Zhao, D. Zheng, Y. Liu, F. Pan, Q. Deng, C. Qin, Y. Li, and Z. Wang, Flexible Co(OH)2/NiOxHy@Ni Hybrid Electrodes for High Energy Density Supercapacitors. Chem. Eng. J. 415, 128871 (2021).CrossRef F. Zhao, D. Zheng, Y. Liu, F. Pan, Q. Deng, C. Qin, Y. Li, and Z. Wang, Flexible Co(OH)2/NiOxHy@Ni Hybrid Electrodes for High Energy Density Supercapacitors. Chem. Eng. J. 415, 128871 (2021).CrossRef
27.
go back to reference Q. Ke, C. Guan, X. Zhang, M. Zheng, Y.W. Zhang, Y. Cai, H. Zhang, and J. Wang, Surface-Charge-Mediated Formation of H-TiO2@Ni(OH)2 Heterostructures for High-Performance Supercapacitors. Adv. Mater. 29, 1604164 (2017).CrossRef Q. Ke, C. Guan, X. Zhang, M. Zheng, Y.W. Zhang, Y. Cai, H. Zhang, and J. Wang, Surface-Charge-Mediated Formation of H-TiO2@Ni(OH)2 Heterostructures for High-Performance Supercapacitors. Adv. Mater. 29, 1604164 (2017).CrossRef
28.
go back to reference F. Gobal and M. Faraji, Fabrication of Nanoporous Nickel Oxide by De-Zincification of Zn-Ni/(TiO2-nanotubes) for Use in Electrochemical Supercapacitors. Electrochim. Acta 100, 133 (2013).CrossRef F. Gobal and M. Faraji, Fabrication of Nanoporous Nickel Oxide by De-Zincification of Zn-Ni/(TiO2-nanotubes) for Use in Electrochemical Supercapacitors. Electrochim. Acta 100, 133 (2013).CrossRef
29.
go back to reference S. Sharma, S.K. Ganeshan, S. Kundu, and K.N. Chappanda, Effect of Doping on TiO2 Nanotubes Based Electrochemical Sensors: Glucose Sensing as a Case Study. IEEE Trans. Nanotechnol. 20, 185 (2021).CrossRef S. Sharma, S.K. Ganeshan, S. Kundu, and K.N. Chappanda, Effect of Doping on TiO2 Nanotubes Based Electrochemical Sensors: Glucose Sensing as a Case Study. IEEE Trans. Nanotechnol. 20, 185 (2021).CrossRef
30.
go back to reference K.N. Chappanda, Y.R. Smith, L.W. Rieth, P. Tathireddy, M. Misra, and S.K. Mohanty, Effect of Sputtering Parameters on the Morphology of TiO2 Nanotubes Synthesized from Thin Ti Film on Si Substrate. IEEE Trans. Nanotechnol. 14, 18 (2015).CrossRef K.N. Chappanda, Y.R. Smith, L.W. Rieth, P. Tathireddy, M. Misra, and S.K. Mohanty, Effect of Sputtering Parameters on the Morphology of TiO2 Nanotubes Synthesized from Thin Ti Film on Si Substrate. IEEE Trans. Nanotechnol. 14, 18 (2015).CrossRef
31.
go back to reference Y. Lai, H. Zhuang, K. Xie, D. Gong, Y. Tang, L. Sun, C. Lin, and Z. Chen, Fabrication of Uniform Ag/TiO2 Nanotube Array Structures with Enhanced Photoelectrochemical Performance. New J. Chem. 34, 1335 (2010).CrossRef Y. Lai, H. Zhuang, K. Xie, D. Gong, Y. Tang, L. Sun, C. Lin, and Z. Chen, Fabrication of Uniform Ag/TiO2 Nanotube Array Structures with Enhanced Photoelectrochemical Performance. New J. Chem. 34, 1335 (2010).CrossRef
32.
go back to reference X. Wen, J. Xi, M. Long, L. Tan, J. Wang, P. Yan, L. Zhong, Y. Liu, and A. Tang, Ni(OH)2/Ni Based on TiO2 Nanotube Arrays Binder-Free Electrochemical Sensor for Formaldehyde Accelerated Detection. J. Electroanal. Chem. 805, 68 (2017).CrossRef X. Wen, J. Xi, M. Long, L. Tan, J. Wang, P. Yan, L. Zhong, Y. Liu, and A. Tang, Ni(OH)2/Ni Based on TiO2 Nanotube Arrays Binder-Free Electrochemical Sensor for Formaldehyde Accelerated Detection. J. Electroanal. Chem. 805, 68 (2017).CrossRef
33.
go back to reference M. Li, X. Bo, Z. Mu, Y. Zhang, and L. Guo, Electrodeposition of Nickel Oxide and Platinum Nanoparticles on Electrochemically Reduced Graphene Oxide Film as a Nonenzymatic Glucose Sensor. Sens. Actuators B Chem. 192, 261 (2014).CrossRef M. Li, X. Bo, Z. Mu, Y. Zhang, and L. Guo, Electrodeposition of Nickel Oxide and Platinum Nanoparticles on Electrochemically Reduced Graphene Oxide Film as a Nonenzymatic Glucose Sensor. Sens. Actuators B Chem. 192, 261 (2014).CrossRef
34.
go back to reference X. Li, J. Yao, F. Liu, H. He, M. Zhou, N. Mao, P. Xiao, and Y. Zhang, Nickel/copper Nanoparticles Modified TiO2 Nanotubes for Non-Enzymatic Glucose Biosensors. Sens. Actuators B Chem. 181, 501 (2013).CrossRef X. Li, J. Yao, F. Liu, H. He, M. Zhou, N. Mao, P. Xiao, and Y. Zhang, Nickel/copper Nanoparticles Modified TiO2 Nanotubes for Non-Enzymatic Glucose Biosensors. Sens. Actuators B Chem. 181, 501 (2013).CrossRef
35.
go back to reference F. Gobal and M. Faraji, Electrodeposited Polyaniline on Pd-Loaded TiO2 Nanotubes as Active Material for Electrochemical Supercapacitor. J. Electroanal. Chem. 691, 51 (2013).CrossRef F. Gobal and M. Faraji, Electrodeposited Polyaniline on Pd-Loaded TiO2 Nanotubes as Active Material for Electrochemical Supercapacitor. J. Electroanal. Chem. 691, 51 (2013).CrossRef
36.
go back to reference Y. Xu, M.A. Melia, L.K. Tsui, J.M. Fitz-Gerald, and G. Zangari, Laser Induced Surface Modification at Anatase TiO2 Nanotube Array Photoanodes for Photoelectrochemical Water Oxidation. J. Phys. Chem. C 121, 17121 (2017).CrossRef Y. Xu, M.A. Melia, L.K. Tsui, J.M. Fitz-Gerald, and G. Zangari, Laser Induced Surface Modification at Anatase TiO2 Nanotube Array Photoanodes for Photoelectrochemical Water Oxidation. J. Phys. Chem. C 121, 17121 (2017).CrossRef
37.
go back to reference S. Yu, X. Peng, G. Cao, M. Zhou, L. Qiao, J. Yao, and H. He, Ni Nanoparticles Decorated Titania Nanotube Arrays as Efficient Nonenzymatic Glucose Sensor. Electrochim. Acta 76, 512 (2012).CrossRef S. Yu, X. Peng, G. Cao, M. Zhou, L. Qiao, J. Yao, and H. He, Ni Nanoparticles Decorated Titania Nanotube Arrays as Efficient Nonenzymatic Glucose Sensor. Electrochim. Acta 76, 512 (2012).CrossRef
38.
go back to reference A. Subramanian and H.W. Wang, Effects of Boron Doping in TiO2 Nanotubes and the Performance of Dye-Sensitized Solar Cells. Appl. Surf. Sci. 258, 6479 (2012).CrossRef A. Subramanian and H.W. Wang, Effects of Boron Doping in TiO2 Nanotubes and the Performance of Dye-Sensitized Solar Cells. Appl. Surf. Sci. 258, 6479 (2012).CrossRef
39.
go back to reference P. Joshna, A. Hazra, K.N. Chappanda, P.K. Pattnaik, and S. Kundu, Fast Response of UV Photodetector Based on Ag Nanoparticles Embedded Uniform TiO2 Nanotubes Array. Semicond. Sci. Technol. 35, 015001 (2020).CrossRef P. Joshna, A. Hazra, K.N. Chappanda, P.K. Pattnaik, and S. Kundu, Fast Response of UV Photodetector Based on Ag Nanoparticles Embedded Uniform TiO2 Nanotubes Array. Semicond. Sci. Technol. 35, 015001 (2020).CrossRef
40.
go back to reference X. Ren, F. Xu, Z. Peng, Q. Chi, W. Li, J. Wang, T. Tao, W. Ye, and P. Gao, Boosting Visible Light Driven Hydrogen Production: Bifunctional Interface of Ni(OH)2/Pt Cocatalyst on TiO2. Int. J. Hydrog. Energy 45, 16614 (2020).CrossRef X. Ren, F. Xu, Z. Peng, Q. Chi, W. Li, J. Wang, T. Tao, W. Ye, and P. Gao, Boosting Visible Light Driven Hydrogen Production: Bifunctional Interface of Ni(OH)2/Pt Cocatalyst on TiO2. Int. J. Hydrog. Energy 45, 16614 (2020).CrossRef
41.
go back to reference L. Haryński, K. Grochowska, J. Karczewski, J. Ryl, and K. Siuzdak, Scalable Route Toward Superior Photoresponse of UV-Laser-Treated TiO2 Nanotubes. ACS Appl. Mater. Interfaces. 12, 3225 (2020).CrossRef L. Haryński, K. Grochowska, J. Karczewski, J. Ryl, and K. Siuzdak, Scalable Route Toward Superior Photoresponse of UV-Laser-Treated TiO2 Nanotubes. ACS Appl. Mater. Interfaces. 12, 3225 (2020).CrossRef
42.
go back to reference S. Leong, D. Li, K. Hapgood, X. Zhang, and H. Wang, Ni(OH)2 Decorated Rutile TiO2 for Efficient Removal of Tetracycline from Wastewater. Appl. Catal. B 198, 224 (2016).CrossRef S. Leong, D. Li, K. Hapgood, X. Zhang, and H. Wang, Ni(OH)2 Decorated Rutile TiO2 for Efficient Removal of Tetracycline from Wastewater. Appl. Catal. B 198, 224 (2016).CrossRef
43.
go back to reference M.A. Barakat, M. Anjum, R. Kumar, Z.O. Alafif, M. Oves, and M.O. Ansari, Design of Ternary Ni(OH)2/Graphene Oxide/TiO2 Nanocomposite for Enhanced Photocatalytic Degradation of Organic, Microbial Contaminants, and Aerobic Digestion of Dairy Wastewater. J. Clean. Prod. 258, 120588 (2020).CrossRef M.A. Barakat, M. Anjum, R. Kumar, Z.O. Alafif, M. Oves, and M.O. Ansari, Design of Ternary Ni(OH)2/Graphene Oxide/TiO2 Nanocomposite for Enhanced Photocatalytic Degradation of Organic, Microbial Contaminants, and Aerobic Digestion of Dairy Wastewater. J. Clean. Prod. 258, 120588 (2020).CrossRef
44.
go back to reference S. Mohajernia, S. Hejazi, A. Mazare, N.T. Nguyen, I. Hwang, S. Kment, G. Zoppellaro, O. Tomanec, R. Zboril, and P. Schmuki, Semimetallic Core-Shell TiO2 Nanotubes as a High Conductivity Scaffold and Use in Efficient 3D-RuO2 Supercapacitors. Mater. Today Energy 6, 46 (2017).CrossRef S. Mohajernia, S. Hejazi, A. Mazare, N.T. Nguyen, I. Hwang, S. Kment, G. Zoppellaro, O. Tomanec, R. Zboril, and P. Schmuki, Semimetallic Core-Shell TiO2 Nanotubes as a High Conductivity Scaffold and Use in Efficient 3D-RuO2 Supercapacitors. Mater. Today Energy 6, 46 (2017).CrossRef
45.
go back to reference P. Rani, A. Ghorai, S. Roy, D.K. Goswami, A. Midya, and S.K. Ray, Mesoporous GO-TiO2 Nanocomposites for Flexible Solid-State Supercapacitor Applications. Mater. Res. Express 6, 125546 (2019).CrossRef P. Rani, A. Ghorai, S. Roy, D.K. Goswami, A. Midya, and S.K. Ray, Mesoporous GO-TiO2 Nanocomposites for Flexible Solid-State Supercapacitor Applications. Mater. Res. Express 6, 125546 (2019).CrossRef
46.
go back to reference Y. Gu, W. Du, Y. Darrat, M. Saleh, Y. Huang, Z. Zhang, and S. Wei, In Situ Growth of Novel Nickel Diselenide Nanoarrays with High Specific Capacity as the Electrode Material of Flexible Hybrid Supercapacitors. Appl. Nanosci. 10, 1591 (2020).CrossRef Y. Gu, W. Du, Y. Darrat, M. Saleh, Y. Huang, Z. Zhang, and S. Wei, In Situ Growth of Novel Nickel Diselenide Nanoarrays with High Specific Capacity as the Electrode Material of Flexible Hybrid Supercapacitors. Appl. Nanosci. 10, 1591 (2020).CrossRef
47.
go back to reference Q. Zhu, L. Yao, R. Tong, D. Liu, K.W. Ng, and H. Pan, Cobalt/Titanium Nitride@N-Doped Carbon Hybrids for Enhanced Electrocatalytic Hydrogen Evolution and Supercapacitance. New J. Chem. 43, 14518 (2019).CrossRef Q. Zhu, L. Yao, R. Tong, D. Liu, K.W. Ng, and H. Pan, Cobalt/Titanium Nitride@N-Doped Carbon Hybrids for Enhanced Electrocatalytic Hydrogen Evolution and Supercapacitance. New J. Chem. 43, 14518 (2019).CrossRef
48.
go back to reference H. He, Y. Zhang, P. Xiao, Y. Yang, Q. Lou, and F. Yang, Preparation of Ni Nanoparticles-TiO2 Nanotube Arrays Composite and its Application for Electrochemical Capacitor. Bull. Korean Chem. Soc. 33, 1613 (2012).CrossRef H. He, Y. Zhang, P. Xiao, Y. Yang, Q. Lou, and F. Yang, Preparation of Ni Nanoparticles-TiO2 Nanotube Arrays Composite and its Application for Electrochemical Capacitor. Bull. Korean Chem. Soc. 33, 1613 (2012).CrossRef
49.
go back to reference M.S. Vidhya, R. Yuvakkumar, G. Ravi, M. Pannipara, A.G. Al-Sehemi, and D. Velauthapillai, Hydrothermal Synthesis of Cu2Se–CoSe Nanograin for Electrochemical Supercapacitor Applications. Appl. Nanosci. 11, 1881 (2021).CrossRef M.S. Vidhya, R. Yuvakkumar, G. Ravi, M. Pannipara, A.G. Al-Sehemi, and D. Velauthapillai, Hydrothermal Synthesis of Cu2Se–CoSe Nanograin for Electrochemical Supercapacitor Applications. Appl. Nanosci. 11, 1881 (2021).CrossRef
50.
go back to reference N. Askari, N. Salarizadeh, and M.B. Askari, Electrochemical Determination of Rutin by Using NiFe2O4 Nanoparticles-Loaded Reduced Graphene Oxide. J. Mater. Sci.: Mater. Electron. 32, 9765 (2021). N. Askari, N. Salarizadeh, and M.B. Askari, Electrochemical Determination of Rutin by Using NiFe2O4 Nanoparticles-Loaded Reduced Graphene Oxide. J. Mater. Sci.: Mater. Electron. 32, 9765 (2021).
51.
go back to reference T. Mohammadi, Y. Ghayeb, T. Sharifi, and M.M. Momeni, RuO2 Photodeposited on W-Doped and Cr-Doped TiO2 Nanotubes with Enhanced Photoelectrochemical Water Splitting and Capacitor Properties. New J. Chem. 44, 2339 (2020).CrossRef T. Mohammadi, Y. Ghayeb, T. Sharifi, and M.M. Momeni, RuO2 Photodeposited on W-Doped and Cr-Doped TiO2 Nanotubes with Enhanced Photoelectrochemical Water Splitting and Capacitor Properties. New J. Chem. 44, 2339 (2020).CrossRef
52.
go back to reference M. Aghazadeh, Electrochemical Preparation and Properties of Nanostructured Co3O4 as Supercapacitor Material. J. Appl. Electrochem. 42, 89 (2012).CrossRef M. Aghazadeh, Electrochemical Preparation and Properties of Nanostructured Co3O4 as Supercapacitor Material. J. Appl. Electrochem. 42, 89 (2012).CrossRef
53.
go back to reference V. Shrivastav, S. Sundriyal, P. Goel, V. Shrivastav, U.K. Tiwari, and A. Deep, ZIF-67 Derived Co3S4 Hollow Microspheres and WS2 Nanorods as a Hybrid Electrode Material for Flexible 2V Solid-State Supercapacitor. Electrochim. Acta 345, 136194 (2020).CrossRef V. Shrivastav, S. Sundriyal, P. Goel, V. Shrivastav, U.K. Tiwari, and A. Deep, ZIF-67 Derived Co3S4 Hollow Microspheres and WS2 Nanorods as a Hybrid Electrode Material for Flexible 2V Solid-State Supercapacitor. Electrochim. Acta 345, 136194 (2020).CrossRef
54.
go back to reference D. Zheng, F. Zhao, Y. Li, C. Qin, J. Zhu, Q. Hu, Z. Wang, and A. Inoue, Flexible NiO Micro-rods/Nanoporous Ni/metallic Glass Electrode with Sandwich Structure for High Performance Supercapacitors. Electrochim. Acta 297, 767 (2019).CrossRef D. Zheng, F. Zhao, Y. Li, C. Qin, J. Zhu, Q. Hu, Z. Wang, and A. Inoue, Flexible NiO Micro-rods/Nanoporous Ni/metallic Glass Electrode with Sandwich Structure for High Performance Supercapacitors. Electrochim. Acta 297, 767 (2019).CrossRef
55.
go back to reference P. Pazhamalai, K. Krishnamoorthy, V.K. Mariappan, and S. Kim, Blue TiO2 Nanosheets as a High-Performance Electrode Material for Supercapacitors. J. Colloid Interface Sci. 536, 62 (2018).CrossRef P. Pazhamalai, K. Krishnamoorthy, V.K. Mariappan, and S. Kim, Blue TiO2 Nanosheets as a High-Performance Electrode Material for Supercapacitors. J. Colloid Interface Sci. 536, 62 (2018).CrossRef
56.
go back to reference I. Shakir, Z. Almutairi, S.S. Shar, and A. Nafady, Nickel Hydroxide Nanoparticles and Their Hybrids with Carbon Nanotubes for Electrochemical Energy Storage Applications. Results Phys. 17, 103117 (2020).CrossRef I. Shakir, Z. Almutairi, S.S. Shar, and A. Nafady, Nickel Hydroxide Nanoparticles and Their Hybrids with Carbon Nanotubes for Electrochemical Energy Storage Applications. Results Phys. 17, 103117 (2020).CrossRef
57.
go back to reference X. Li, Z. Zhu, G. Ma, Y. Ding, J. Wang, Z. Ye, X. Peng, and D. Li, Novel Synthesis and Characterization of Flexible MnO2/CNT Composites Co-Deposited on Graphite Paper as Supercapacitor Electrodes. J. Electron. Mater. 51, 2982 (2022).CrossRef X. Li, Z. Zhu, G. Ma, Y. Ding, J. Wang, Z. Ye, X. Peng, and D. Li, Novel Synthesis and Characterization of Flexible MnO2/CNT Composites Co-Deposited on Graphite Paper as Supercapacitor Electrodes. J. Electron. Mater. 51, 2982 (2022).CrossRef
58.
go back to reference M. Zhou, A.M. Glushenkov, O. Kartachova, Y. Li, and Y. Chen, Titanium Dioxide Nanotube Films for Electrochemical Supercapacitors: Biocompatibility and Operation in an Electrolyte Based on a Physiological Fluid. J. Electrochem. Soc. 162, A5065 (2015).CrossRef M. Zhou, A.M. Glushenkov, O. Kartachova, Y. Li, and Y. Chen, Titanium Dioxide Nanotube Films for Electrochemical Supercapacitors: Biocompatibility and Operation in an Electrolyte Based on a Physiological Fluid. J. Electrochem. Soc. 162, A5065 (2015).CrossRef
59.
go back to reference S. Cao, L. Wu, W. Huang, X. Zhu, X. Shen, and Y. Song, Electrochemically Doped and Hydrogen Peroxide–Treated TiO2 Nanotube Arrays as an Electrode for Supercapacitor with Excellent Cycling Stability. J. Electrochem. Soc. 166, A1944 (2019).CrossRef S. Cao, L. Wu, W. Huang, X. Zhu, X. Shen, and Y. Song, Electrochemically Doped and Hydrogen Peroxide–Treated TiO2 Nanotube Arrays as an Electrode for Supercapacitor with Excellent Cycling Stability. J. Electrochem. Soc. 166, A1944 (2019).CrossRef
60.
go back to reference X.Y. Cao, X. Xing, N. Zhang, H. Gao, M.Y. Zhang, Y.C. Shang, and X.T. Zhang, Quantitative Investigation on the Effect of Hydrogenation on the Performance of MnO2/H-TiO2 Composite Electrodes for Supercapacitors. J. Mater. Chem. A 3, 3785 (2015).CrossRef X.Y. Cao, X. Xing, N. Zhang, H. Gao, M.Y. Zhang, Y.C. Shang, and X.T. Zhang, Quantitative Investigation on the Effect of Hydrogenation on the Performance of MnO2/H-TiO2 Composite Electrodes for Supercapacitors. J. Mater. Chem. A 3, 3785 (2015).CrossRef
61.
go back to reference S.B. Abitkar, P.R. Jadhav, N.L. Tarwal, A.V. Moholkar, and C.E. Patil, A Facile Synthesis of a Ni(OH)2 -CNT Composite Films for Supercapacitor Application. Adv. Powder Technol. 30, 2285 (2019).CrossRef S.B. Abitkar, P.R. Jadhav, N.L. Tarwal, A.V. Moholkar, and C.E. Patil, A Facile Synthesis of a Ni(OH)2 -CNT Composite Films for Supercapacitor Application. Adv. Powder Technol. 30, 2285 (2019).CrossRef
62.
go back to reference J.M. Chaves, A.L.A. Escada, A.D. Rodrigues, and A.P.R. Alves Claro, Characterization of the Structure, Thermal Stability and Wettability of the TiO2 Nanotubes Growth on the Ti-7.5Mo Alloy Surface. Appl. Surf. Sci. 370, 76 (2016).CrossRef J.M. Chaves, A.L.A. Escada, A.D. Rodrigues, and A.P.R. Alves Claro, Characterization of the Structure, Thermal Stability and Wettability of the TiO2 Nanotubes Growth on the Ti-7.5Mo Alloy Surface. Appl. Surf. Sci. 370, 76 (2016).CrossRef
63.
go back to reference X. Chen, R. Zhu, H. Gao, W. Xu, G. Xiao, and C. Chen, A High Bioactive Alkali-Treated Titanium Surface Induced by Induction Heat Treatment. Surf. Coat. Technol. 385, 125362 (2020).CrossRef X. Chen, R. Zhu, H. Gao, W. Xu, G. Xiao, and C. Chen, A High Bioactive Alkali-Treated Titanium Surface Induced by Induction Heat Treatment. Surf. Coat. Technol. 385, 125362 (2020).CrossRef
64.
go back to reference J.J. Park, D.Y. Kim, S.S. Latthe, J.G. Lee, M.T. Swihart, and S.S. Yoon, Thermally Induced Superhydrophilicity in TiO2 Films Prepared by Supersonic Aerosol Deposition. ACS Appl. Mater. Interfaces. 5, 6155 (2013).CrossRef J.J. Park, D.Y. Kim, S.S. Latthe, J.G. Lee, M.T. Swihart, and S.S. Yoon, Thermally Induced Superhydrophilicity in TiO2 Films Prepared by Supersonic Aerosol Deposition. ACS Appl. Mater. Interfaces. 5, 6155 (2013).CrossRef
65.
go back to reference D. Yang and A. Laforgue, Laser Surface Roughening of Aluminum Foils for Supercapacitor Current Collectors. J. Electrochem. Soc. 166, A2503 (2019).CrossRef D. Yang and A. Laforgue, Laser Surface Roughening of Aluminum Foils for Supercapacitor Current Collectors. J. Electrochem. Soc. 166, A2503 (2019).CrossRef
66.
go back to reference W. Zhang, L. Ding, W. Sun, T. Sheng, Z. Wu, and F. Gao, Ultrasmall Pt Nanoparticles-loaded Crystalline MoO2/Amorphous Ni(OH)2 Hybrid Nano Films with Enhanced Water Dissociation and Sufficient Hydrogen Spillover for Hydrogen Generation. ACS Sustain. Chem. Eng. 9, 8257 (2021).CrossRef W. Zhang, L. Ding, W. Sun, T. Sheng, Z. Wu, and F. Gao, Ultrasmall Pt Nanoparticles-loaded Crystalline MoO2/Amorphous Ni(OH)2 Hybrid Nano Films with Enhanced Water Dissociation and Sufficient Hydrogen Spillover for Hydrogen Generation. ACS Sustain. Chem. Eng. 9, 8257 (2021).CrossRef
67.
go back to reference S. Sarkar, R. Akshaya, and S. Ghosh, Nitrogen Doped Graphene/CuCr2O4 Nanocomposites for Supercapacitors Application: Effect of Nitrogen Doping on Coulombic Efficiency. Electrochim. Acta 332, 135368 (2020).CrossRef S. Sarkar, R. Akshaya, and S. Ghosh, Nitrogen Doped Graphene/CuCr2O4 Nanocomposites for Supercapacitors Application: Effect of Nitrogen Doping on Coulombic Efficiency. Electrochim. Acta 332, 135368 (2020).CrossRef
68.
go back to reference D.J. Ahirrao, H.M. Wilson, and N. Jha, TiO2-Nanoflowers as Flexible Electrode for High Performance Supercapacitor. Appl. Surf. Sci. 491, 765 (2019).CrossRef D.J. Ahirrao, H.M. Wilson, and N. Jha, TiO2-Nanoflowers as Flexible Electrode for High Performance Supercapacitor. Appl. Surf. Sci. 491, 765 (2019).CrossRef
69.
go back to reference M.Z. Iqbal, S. Zakar, M. Tayyab, S.S. Haider, M. Alzaid, A.M. Afzal, and S. Aftab, Scrutinizing the Charge Storage Mechanism in SrO Based Composites for Asymmetric Supercapacitors by Diffusion-Controlled Process. Appl. Nanosci. 10, 3999 (2020).CrossRef M.Z. Iqbal, S. Zakar, M. Tayyab, S.S. Haider, M. Alzaid, A.M. Afzal, and S. Aftab, Scrutinizing the Charge Storage Mechanism in SrO Based Composites for Asymmetric Supercapacitors by Diffusion-Controlled Process. Appl. Nanosci. 10, 3999 (2020).CrossRef
70.
go back to reference S. Wang, Z. Xia, Q. Li, and Y. Zhang, Fabrication of Polyaniline/Self-Doped TiO2 Nanotubes Hybrids as Supercapacitor Electrode by Microwave-Assisted Chemical Reduction and Electrochemical Deposition. J. Electrochem. Soc. 164, D901 (2017).CrossRef S. Wang, Z. Xia, Q. Li, and Y. Zhang, Fabrication of Polyaniline/Self-Doped TiO2 Nanotubes Hybrids as Supercapacitor Electrode by Microwave-Assisted Chemical Reduction and Electrochemical Deposition. J. Electrochem. Soc. 164, D901 (2017).CrossRef
71.
go back to reference C. Li, Z. Wang, S. Li, J. Cheng, Y. Zhang, J. Zhou, D. Yang, D.G. Tong, and B. Wang, Interfacial Engineered Polyaniline/Sulfur-Doped TiO2 Nanotube Arrays for Ultralong Cycle Lifetime Fiber-Shaped, Solid-state Supercapacitors. ACS Appl. Mater. Interfaces. 10, 18390 (2018).CrossRef C. Li, Z. Wang, S. Li, J. Cheng, Y. Zhang, J. Zhou, D. Yang, D.G. Tong, and B. Wang, Interfacial Engineered Polyaniline/Sulfur-Doped TiO2 Nanotube Arrays for Ultralong Cycle Lifetime Fiber-Shaped, Solid-state Supercapacitors. ACS Appl. Mater. Interfaces. 10, 18390 (2018).CrossRef
72.
go back to reference K. Du, P. Lu, G. Liu, X. Chen, and K. Wang, Atomic Layer Deposition of TiN Layer on TiO2 Nanotubes for Enhanced Supercapacitor Performance. in 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) IEEE. (2017), p. 710. K. Du, P. Lu, G. Liu, X. Chen, and K. Wang, Atomic Layer Deposition of TiN Layer on TiO2 Nanotubes for Enhanced Supercapacitor Performance. in 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) IEEE. (2017), p. 710.
73.
go back to reference S. Sundriyal, V. Shrivastav, M. Sharma, S. Mishra, and A. Deep, Significantly Enhanced Performance of rGO/TiO2 Nanosheet Composite Electrodes based 1.8 V Symmetrical Supercapacitor with Use of Redox Additive Electrolyte. J. Alloys Compd. 790, 377 (2019).CrossRef S. Sundriyal, V. Shrivastav, M. Sharma, S. Mishra, and A. Deep, Significantly Enhanced Performance of rGO/TiO2 Nanosheet Composite Electrodes based 1.8 V Symmetrical Supercapacitor with Use of Redox Additive Electrolyte. J. Alloys Compd. 790, 377 (2019).CrossRef
Metadata
Title
Ni(OH)2 Nanoparticles Anchored on Laser- and Alkali-Modified TiO2 Nanotubes Arrays for High-Performance Supercapacitor Application
Authors
Sarda Sharma
P. N. Sidhartha
Karumbaiah N. Chappanda
Publication date
26-10-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-10016-y

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue