Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

27-10-2022 | Original Research Article

Mechanism of Aluminum Droplet Nucleation and Ripening on GaAs(001) Surface by Molecular Beam Epitaxy

Authors: Yi Wang, Chong Jiang, Yanbin Huang, Zhao Ding, Zijiang Luo, Jihong Wang, Xiang Guo

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A study is conducted on the nucleation process of aluminum droplets on a GaAs(001) surface during droplet epitaxial growth, which reveals the influencing factors in the nucleation process, including the substrate temperature and the deposition rate, when other conditions are unchanged. In addition, the minimum atomic number for the initially incomplete state, the initially completed state and the completed state are calculated to be 1, 2 and 5, respectively. In the meantime, based on the extended thermodynamic model, the energy \(\left( {E_{r} } \right)\) and ideal contact angle \(\left( {\theta_{0} } \right)\) in the process of droplet ripening and nucleation are 2.5 eV and 73.5°.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. Sergii, O.I. Datsenko, S. Luca, G. Trevisi, F. Paola, B. Li, D. Lin, and J. Qu, InAs/InGaAs Quantum Dots Confined by InAlAs Barriers for Enhanced Room Temperature Light Emission: Photoelectric Properties and Deep Levels. Microelectron. Eng. 238, 111514 (2021).CrossRef G. Sergii, O.I. Datsenko, S. Luca, G. Trevisi, F. Paola, B. Li, D. Lin, and J. Qu, InAs/InGaAs Quantum Dots Confined by InAlAs Barriers for Enhanced Room Temperature Light Emission: Photoelectric Properties and Deep Levels. Microelectron. Eng. 238, 111514 (2021).CrossRef
2.
go back to reference A. Najla, K. Rahul, K. Andrian, Y. Maidaniuk, S.K. Saha, A.A. Alnami, R. Alhelais, A. Kawagy, M.E. Ware, Y.I. Mazur, and G.J. Salamob, InAs Nanostructures for Solar Cell: Improved Efficiency by Submonolayer Quantum Dot. Sol. Energ. Mat. Sol. C. 224, 111026 (2021).CrossRef A. Najla, K. Rahul, K. Andrian, Y. Maidaniuk, S.K. Saha, A.A. Alnami, R. Alhelais, A. Kawagy, M.E. Ware, Y.I. Mazur, and G.J. Salamob, InAs Nanostructures for Solar Cell: Improved Efficiency by Submonolayer Quantum Dot. Sol. Energ. Mat. Sol. C. 224, 111026 (2021).CrossRef
3.
go back to reference Y. Yifat, M. Ackerman, and G.S. Philippe, Mid-IR Colloidal Quantum dot Detectors Enhanced by Optical Nano-Antennas. Appl. Phys. Lett 110, 041106 (2017).CrossRef Y. Yifat, M. Ackerman, and G.S. Philippe, Mid-IR Colloidal Quantum dot Detectors Enhanced by Optical Nano-Antennas. Appl. Phys. Lett 110, 041106 (2017).CrossRef
4.
go back to reference S. Yoon, S.H. Lee, J.C. Shin, J.S. Kim, S.J. Lee, J.Y. Leem, and S. Krishna, Photoreflectance Study on the Photovoltaic Effect in InAs/GaAs Quantum Dot Solar Cell. Curr. Appl. Phys 18, 667 (2018).CrossRef S. Yoon, S.H. Lee, J.C. Shin, J.S. Kim, S.J. Lee, J.Y. Leem, and S. Krishna, Photoreflectance Study on the Photovoltaic Effect in InAs/GaAs Quantum Dot Solar Cell. Curr. Appl. Phys 18, 667 (2018).CrossRef
5.
go back to reference M.G. Barseghyan, A.K. Manaselyan, D. Larozec, and A.A. Kirakosyan, Impurity-Modulated Aharonov-Bohm Oscillations and Intraband Optical Absorption in Quantum Dot–Ring Nanostructures. Phys. E. 81, 31–36 (2016).CrossRef M.G. Barseghyan, A.K. Manaselyan, D. Larozec, and A.A. Kirakosyan, Impurity-Modulated Aharonov-Bohm Oscillations and Intraband Optical Absorption in Quantum Dot–Ring Nanostructures. Phys. E. 81, 31–36 (2016).CrossRef
6.
go back to reference N.W. Strom, Z.M. Wang, J.H. Lee, Z.Y. Abuwaar, Y.I. Mazur, and G.J. Salamo, Self-Assembled InAs Quantum Dot Formation on GaAs Ring-Like Nanostructure Templates. Nanoscale Res. Lett 2, 112 (2007).CrossRef N.W. Strom, Z.M. Wang, J.H. Lee, Z.Y. Abuwaar, Y.I. Mazur, and G.J. Salamo, Self-Assembled InAs Quantum Dot Formation on GaAs Ring-Like Nanostructure Templates. Nanoscale Res. Lett 2, 112 (2007).CrossRef
7.
go back to reference J.M. Garcı́a, D. Granados, J.P. Silveira, and F. Briones, In Segregation Effects During Quantum Dot and Quantum Ring Formation on GaAs(001). Microelectron. J. 35, 7 (2004).CrossRef J.M. Garcı́a, D. Granados, J.P. Silveira, and F. Briones, In Segregation Effects During Quantum Dot and Quantum Ring Formation on GaAs(001). Microelectron. J. 35, 7 (2004).CrossRef
8.
go back to reference S. Linlin, L. Baolai, W. Ying, Y. Qing, G. Qinglin, W. Shufang, F. Guangsheng, L.D. Huffaker, Y.I. Mazur, M.E. Ware, Y. Maidaniuk, and J.S. Gregory, Abnormal Photoluminescence for GaAs/Al0.2Ga0.8As Quantum Dot-Ring Hybrid Nanostructure Grown by Droplet Epitaxy. J. Lumin 195, 187–192 (2018).CrossRef S. Linlin, L. Baolai, W. Ying, Y. Qing, G. Qinglin, W. Shufang, F. Guangsheng, L.D. Huffaker, Y.I. Mazur, M.E. Ware, Y. Maidaniuk, and J.S. Gregory, Abnormal Photoluminescence for GaAs/Al0.2Ga0.8As Quantum Dot-Ring Hybrid Nanostructure Grown by Droplet Epitaxy. J. Lumin 195, 187–192 (2018).CrossRef
9.
go back to reference T. Suzuki and T. Nishinaga, Real Time Observation and Formation Mechanism of Ga Droplet During Molecular Beam Epitaxy Under Excess Ga flux. J. Cryst. Growth 142, 61 (1994).CrossRef T. Suzuki and T. Nishinaga, Real Time Observation and Formation Mechanism of Ga Droplet During Molecular Beam Epitaxy Under Excess Ga flux. J. Cryst. Growth 142, 61 (1994).CrossRef
10.
go back to reference M. Jo, T. Mano, Y. Sakuma, and K. Sakoda, Extremely High-Density GaAs Quantum Dots Grown by Droplet Epitaxy. Appl. Phys. Lett 100, 212113 (2012).CrossRef M. Jo, T. Mano, Y. Sakuma, and K. Sakoda, Extremely High-Density GaAs Quantum Dots Grown by Droplet Epitaxy. Appl. Phys. Lett 100, 212113 (2012).CrossRef
11.
go back to reference M. Benyoucef, Z. Verena, P.R. Johann, K. Tim, W.S. Andreas, and A. Thomas, Single-Photon Emission from Single InGaAs/GaAs Quantum Dots Grown by Droplet Epitaxy at High Substrate Temperature. Nanoscale. Res. Lett 7, 493 (2012).CrossRef M. Benyoucef, Z. Verena, P.R. Johann, K. Tim, W.S. Andreas, and A. Thomas, Single-Photon Emission from Single InGaAs/GaAs Quantum Dots Grown by Droplet Epitaxy at High Substrate Temperature. Nanoscale. Res. Lett 7, 493 (2012).CrossRef
12.
go back to reference P. Yu, W. Jiang, L. Gao, H. Liu, and Z. Wang, InGaAs and GaAs Quantum dot Solar Cells Grown by Droplet Epitaxy. Sol. Energ. Mat. Sol. C 161, 377 (2016).CrossRef P. Yu, W. Jiang, L. Gao, H. Liu, and Z. Wang, InGaAs and GaAs Quantum dot Solar Cells Grown by Droplet Epitaxy. Sol. Energ. Mat. Sol. C 161, 377 (2016).CrossRef
13.
go back to reference N. Pankaow, S. Panyakeow, and S. Ratanathammaphan, Formation of In0.5Ga0.5As ring-and-hole Structure by Droplet Molecular Beam Epitaxy. J. Cryst. Growth 311, 1832 (2009).CrossRef N. Pankaow, S. Panyakeow, and S. Ratanathammaphan, Formation of In0.5Ga0.5As ring-and-hole Structure by Droplet Molecular Beam Epitaxy. J. Cryst. Growth 311, 1832 (2009).CrossRef
14.
go back to reference T. Mano, T. Kuroda, S. Sanguinetti, T. Ochiai, T. Tateno, J.S. Kim, T. Noda, M. Kawabe, K. Sakoda, G. Kido, and N. Koguchi, Self-Assembly of Concentric Quantum Double Rings. Nano Lett. 5, 425 (2005).CrossRef T. Mano, T. Kuroda, S. Sanguinetti, T. Ochiai, T. Tateno, J.S. Kim, T. Noda, M. Kawabe, K. Sakoda, G. Kido, and N. Koguchi, Self-Assembly of Concentric Quantum Double Rings. Nano Lett. 5, 425 (2005).CrossRef
15.
go back to reference H.D. Kim, R. Okuyama, K. Kyhm, M. Eto, R.A. Taylor, A.L. Nicolet, M. Potemski, G. Nogues, L.S. Dang, K.C. Je, J. Kim, J.H. Kyhm, K.H. Yoen, E.H. Lee, J.Y. Kim, K. Han, W. Choi, and J. Song, Observation of a Biexciton Wigner Molecule by Fractional Optical Aharonov-Bohm Oscillations in a Single Quantum Ring. Nano Lett. 16, 27 (2016).CrossRef H.D. Kim, R. Okuyama, K. Kyhm, M. Eto, R.A. Taylor, A.L. Nicolet, M. Potemski, G. Nogues, L.S. Dang, K.C. Je, J. Kim, J.H. Kyhm, K.H. Yoen, E.H. Lee, J.Y. Kim, K. Han, W. Choi, and J. Song, Observation of a Biexciton Wigner Molecule by Fractional Optical Aharonov-Bohm Oscillations in a Single Quantum Ring. Nano Lett. 16, 27 (2016).CrossRef
16.
go back to reference Z.Y. Abuwaar, Y.I. Mazur, J.H. Lee, Z.M. Wang, and G. Salamo, Optical Behavior of GaAs/AlGaAs Ringlike Nanostructures. J. Appl. Phys 101, 24311 (2007).CrossRef Z.Y. Abuwaar, Y.I. Mazur, J.H. Lee, Z.M. Wang, and G. Salamo, Optical Behavior of GaAs/AlGaAs Ringlike Nanostructures. J. Appl. Phys 101, 24311 (2007).CrossRef
17.
go back to reference S. Kanjanachuchai and C.S. Euaruksakul, Self-Running Ga Droplets on GaAs (111) A and (111) B Surfaces. ACS Appl. Mater. Inter 5, 7709 (2013).CrossRef S. Kanjanachuchai and C.S. Euaruksakul, Self-Running Ga Droplets on GaAs (111) A and (111) B Surfaces. ACS Appl. Mater. Inter 5, 7709 (2013).CrossRef
18.
go back to reference B.A. Trisna, N. Nakareseisoon, W. Eiwwongcharoen, S. Panyakeow, and S. Kanjanachuchai, Reliable Synthesis of Self-Running Ga Droplets on GaAs(001) in MBE using RHEED Patterns. Nanoscale Res. Lett 10, 184 (2015).CrossRef B.A. Trisna, N. Nakareseisoon, W. Eiwwongcharoen, S. Panyakeow, and S. Kanjanachuchai, Reliable Synthesis of Self-Running Ga Droplets on GaAs(001) in MBE using RHEED Patterns. Nanoscale Res. Lett 10, 184 (2015).CrossRef
19.
go back to reference M.G. Barseghyan, A.A. Kirakosyan, and D. Laroze, Laser Driven Intraband Optical Transitions in Two-Dimensional Quantum Dots and Quantum Rings. Opt. Commun. 383, 571–576 (2017).CrossRef M.G. Barseghyan, A.A. Kirakosyan, and D. Laroze, Laser Driven Intraband Optical Transitions in Two-Dimensional Quantum Dots and Quantum Rings. Opt. Commun. 383, 571–576 (2017).CrossRef
20.
go back to reference N. Esser, A.M. Frisch, A. Roseler, S. Schintke, C. Goletti, and B. Fimland, Optical Resonances of Indium Islands on GaAs(001) Observed by Reflectance Anisotropy Spectroscopy. Phys. Rev. B 67, 125306 (2003).CrossRef N. Esser, A.M. Frisch, A. Roseler, S. Schintke, C. Goletti, and B. Fimland, Optical Resonances of Indium Islands on GaAs(001) Observed by Reflectance Anisotropy Spectroscopy. Phys. Rev. B 67, 125306 (2003).CrossRef
21.
go back to reference V. Mantovani, S. Sanguinetti, M. Guzzi, E. Grilli, M. Gurioli, K. Watanabe, and N. Koguchi, Low Density GaAs/AlGaAs Quantum Dots Grown by Modified Droplet Epitaxy. J. Appl. Phys 96, 4416 (2004).CrossRef V. Mantovani, S. Sanguinetti, M. Guzzi, E. Grilli, M. Gurioli, K. Watanabe, and N. Koguchi, Low Density GaAs/AlGaAs Quantum Dots Grown by Modified Droplet Epitaxy. J. Appl. Phys 96, 4416 (2004).CrossRef
22.
go back to reference T. Mano, T. Kuroda, K. Mitsuishi, Y. Nakayama, T. Noda, and K. Sakoda, GaAs/AlGaAs Quantum dot Laser Fabricated on GaAs(311) A Substrate by Droplet Epitaxy. Appl. Phys. Lett 93, 203110 (2008).CrossRef T. Mano, T. Kuroda, K. Mitsuishi, Y. Nakayama, T. Noda, and K. Sakoda, GaAs/AlGaAs Quantum dot Laser Fabricated on GaAs(311) A Substrate by Droplet Epitaxy. Appl. Phys. Lett 93, 203110 (2008).CrossRef
23.
go back to reference A.Z. Li, Z.M. Wang, J. Wu, and G.J. Salamo, Holed Nanostructures Formed by Aluminum Droplets on a GaAs Substrate. Nano Res 3, 490 (2010).CrossRef A.Z. Li, Z.M. Wang, J. Wu, and G.J. Salamo, Holed Nanostructures Formed by Aluminum Droplets on a GaAs Substrate. Nano Res 3, 490 (2010).CrossRef
24.
go back to reference M. Zocher, C.H. Heyn, and W. Hansen, Droplet Etching with Indium–INTERMIXING and Lattice Mismatch. J. Cryst. Growth 512, 219–222 (2019).CrossRef M. Zocher, C.H. Heyn, and W. Hansen, Droplet Etching with Indium–INTERMIXING and Lattice Mismatch. J. Cryst. Growth 512, 219–222 (2019).CrossRef
25.
go back to reference D. Majchrzak, S. Gorantla, E. Zdanowicz, A. Pieniążek, J. Serafińczuk, K. Moszak, D. Pucicki, M. Grodzicki, B.J. Kowalski, R. Kudrawiec, and D. Hommel, Detailed Surface Studies on the Reduction of Al Incorporation into AlGaN Grown by Molecular BEAM Epitaxy in the Ga-Droplet Regime. Vacuum 202, 111168 (2022).CrossRef D. Majchrzak, S. Gorantla, E. Zdanowicz, A. Pieniążek, J. Serafińczuk, K. Moszak, D. Pucicki, M. Grodzicki, B.J. Kowalski, R. Kudrawiec, and D. Hommel, Detailed Surface Studies on the Reduction of Al Incorporation into AlGaN Grown by Molecular BEAM Epitaxy in the Ga-Droplet Regime. Vacuum 202, 111168 (2022).CrossRef
26.
go back to reference J.A. Venables, G.D.T. Spiller, and M. Hanbucken, Nucleation and Growth of Thin Films. Rep. Prog. Phys 47, 399 (1984).CrossRef J.A. Venables, G.D.T. Spiller, and M. Hanbucken, Nucleation and Growth of Thin Films. Rep. Prog. Phys 47, 399 (1984).CrossRef
27.
go back to reference J.A. Venables, R. Persaud, F.L. Metcalfe, and M. Azim, Rate and Diffusion Analyses of Surface Processes. J. Phys. Chem. Solids 55, 955 (1994).CrossRef J.A. Venables, R. Persaud, F.L. Metcalfe, and M. Azim, Rate and Diffusion Analyses of Surface Processes. J. Phys. Chem. Solids 55, 955 (1994).CrossRef
28.
go back to reference M. Hata, A. Watanabe, and T. Isu, Surface Diffusion Length Observed by In Situ Scanning Microprobe Reflection High-Energy Electron Diffraction. J. Cryst. Growth 111, 83 (1991).CrossRef M. Hata, A. Watanabe, and T. Isu, Surface Diffusion Length Observed by In Situ Scanning Microprobe Reflection High-Energy Electron Diffraction. J. Cryst. Growth 111, 83 (1991).CrossRef
29.
go back to reference A. Raab and G. Springholz, Oswald Ripening and Shape Transitions of Self-Assembled PbSe Quantum Dots on PbTe(111) During Annealing. Appl. Phys. Lett. 77, 2991 (2000).CrossRef A. Raab and G. Springholz, Oswald Ripening and Shape Transitions of Self-Assembled PbSe Quantum Dots on PbTe(111) During Annealing. Appl. Phys. Lett. 77, 2991 (2000).CrossRef
30.
go back to reference Ch. Heyn, A. Stemmann, A. Schramm, H. Welsch, and W. Hansen, Regimes of GaAs Quantum Dot Self-Assembly by Droplet Epitaxy. Phys. Rev. B 76, 075317 (2007).CrossRef Ch. Heyn, A. Stemmann, A. Schramm, H. Welsch, and W. Hansen, Regimes of GaAs Quantum Dot Self-Assembly by Droplet Epitaxy. Phys. Rev. B 76, 075317 (2007).CrossRef
31.
go back to reference F. Liu, Self-Assembly of Three-Dimensional Metal Islands: Nonstrained Versus Strained Islands. Phys. Rev. Lett 89, 246105 (2002).CrossRef F. Liu, Self-Assembly of Three-Dimensional Metal Islands: Nonstrained Versus Strained Islands. Phys. Rev. Lett 89, 246105 (2002).CrossRef
32.
go back to reference K.O. Ng and D. Vanderbilt, Stability of Periodic Domain Structures in a two-Dimensional Dipolar Model. Phys. Rev. B 52, 2177 (1995).CrossRef K.O. Ng and D. Vanderbilt, Stability of Periodic Domain Structures in a two-Dimensional Dipolar Model. Phys. Rev. B 52, 2177 (1995).CrossRef
33.
go back to reference V.P. LaBella, H. Yang, D.W. Bullock, P.M. Thibado, K. Peter, and S. Matthias, Atomic Structure of the GaAs(001)-(2*4) Surface Resolved Using Scanning Tunneling Microscopy and First-Principles Theory. Phys. Rev. Lett 83, 2989 (1999).CrossRef V.P. LaBella, H. Yang, D.W. Bullock, P.M. Thibado, K. Peter, and S. Matthias, Atomic Structure of the GaAs(001)-(2*4) Surface Resolved Using Scanning Tunneling Microscopy and First-Principles Theory. Phys. Rev. Lett 83, 2989 (1999).CrossRef
34.
go back to reference S. Adorno, S. Bietti, and S. Sanguinetti, Annealing Induced Anisotropy in GaAs/AlGaAs Quantum Dots Grown by Droplet Epitaxy. J. Cryst. Growth 378, 515–518 (2013).CrossRef S. Adorno, S. Bietti, and S. Sanguinetti, Annealing Induced Anisotropy in GaAs/AlGaAs Quantum Dots Grown by Droplet Epitaxy. J. Cryst. Growth 378, 515–518 (2013).CrossRef
35.
go back to reference A. Kley, P. Ruggerone, and M. Scheffler, Novel Diffusion Mechanism on the GaAs(001) Surface: The Role of Adatom-Dimer Interaction. Phys. Rev. Lett 79, 5278 (1997).CrossRef A. Kley, P. Ruggerone, and M. Scheffler, Novel Diffusion Mechanism on the GaAs(001) Surface: The Role of Adatom-Dimer Interaction. Phys. Rev. Lett 79, 5278 (1997).CrossRef
Metadata
Title
Mechanism of Aluminum Droplet Nucleation and Ripening on GaAs(001) Surface by Molecular Beam Epitaxy
Authors
Yi Wang
Chong Jiang
Yanbin Huang
Zhao Ding
Zijiang Luo
Jihong Wang
Xiang Guo
Publication date
27-10-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-10012-2

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue