Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

11-11-2022 | Topical Collection: Advanced Metal Ion Batteries

Graphite-Like Carbon-Decorated δ-MnO2 Nanoparticles as a High-Performance Cathode for Rechargeable Zinc-Ion Batteries

Authors: Qixing Xie, Leheng Huang, Zijian Liang, Shichang Tang, Weizhao Ling, Qingxia Huang, Zihao Zhou, Xiaohui Su, Tong Xue, Gao Cheng

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

For rechargeable aqueous Zn-ion batteries (ZIBs), MnO2 is a desirable cathode material because of its structural diversity and high theoretical capacity of ~308 mA h g−1. MnO2 materials’ poor cycle life and inferior conductivity, however, continue to be key obstacles to their application in ZIBs. These problems are anticipated to be resolved by developing a nanocomposite system consisting of MnO2 and a carbon-based matrix. Herein, a series of graphite carbon-coated δ-MnO2 nanoparticles (denoted as GC-δ-MnO2-X; X = 1, 2, and 3) for ZIB cathode materials is prepared via a feasible redox route and varying the amount of KMnO4 (7, 8, and 9 mmol). Benefiting from the abundant active sites and boosted Zn2+ ion diffusion rate, the GC-δ-MnO2-2 nanoparticles (8 mmol KMnO4) display excellent capacity of 299.6 mA h g−1 at 0.3 A g−1 with good cycle stability (62% capacity retention after 1500 cycles at 2 A g−1), surpassing that of the GC-δ-MnO2-1 (7 mmol KMnO4) and GC-δ-MnO2-3 (9 mmol KMnO4) samples. Moreover, the constructed quasi-solid-state ZIBs based on the GC-δ-MnO2-2 cathode show respectable capacity of 194.3 mA h g−1 at 0.3 A g−1, as well as outstanding safe properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference M. Song, H. Tan, D. Chao, and H. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018).CrossRef M. Song, H. Tan, D. Chao, and H. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018).CrossRef
2.
go back to reference X. Shan, Y. Zhong, L. Zhang, Y. Zhang, X. Xia, X. Wang, and J. Tu, A brief review on solid electrolyte interphase composition characterization technology for lithium metal batteries: challenges and perspectives. J. Phys. Chem. C 125, 19060–19080 (2021).CrossRef X. Shan, Y. Zhong, L. Zhang, Y. Zhang, X. Xia, X. Wang, and J. Tu, A brief review on solid electrolyte interphase composition characterization technology for lithium metal batteries: challenges and perspectives. J. Phys. Chem. C 125, 19060–19080 (2021).CrossRef
3.
go back to reference C. Wang, Y. Li, F. Cao, Y. Zhang, X. Xia, and L. Zhang, Employing Ni-embedded porous graphitic carbon fibers for high efficiency lithium-sulfur batteries. ACS Appl. Mater. Interfaces 14, 10457–10466 (2022).CrossRef C. Wang, Y. Li, F. Cao, Y. Zhang, X. Xia, and L. Zhang, Employing Ni-embedded porous graphitic carbon fibers for high efficiency lithium-sulfur batteries. ACS Appl. Mater. Interfaces 14, 10457–10466 (2022).CrossRef
4.
go back to reference G. Jia, D. Chao, N. Tiep, Z. Zhang, and H. Fan, Intercalation Na-Ion storage in two-dimensional MoS2-xSex and capacity enhancement by selenium substitution. Energy Storage Mater. 14, 136–142 (2018).CrossRef G. Jia, D. Chao, N. Tiep, Z. Zhang, and H. Fan, Intercalation Na-Ion storage in two-dimensional MoS2-xSex and capacity enhancement by selenium substitution. Energy Storage Mater. 14, 136–142 (2018).CrossRef
5.
go back to reference X. Liu, F. Yang, W. Xu, Y. Zeng, J. He, and X. Lu, Zeolitic imidazolate frameworks as Zn2+ modulation layers to enable dendrite-free Zn anodes. Adv. Sci. 7, 2002173 (2020).CrossRef X. Liu, F. Yang, W. Xu, Y. Zeng, J. He, and X. Lu, Zeolitic imidazolate frameworks as Zn2+ modulation layers to enable dendrite-free Zn anodes. Adv. Sci. 7, 2002173 (2020).CrossRef
6.
go back to reference M. Zhang, W. Wu, J. Luo, H. Zhang, J. Liu, X. Liu, Y. Yang, and X. Lu, A high-energy-density aqueous Zinc-manganese battery with A La-Ca Co-Doped ε-MnO2 cathode. J. Mater. Chem. A 8, 11642–11648 (2020).CrossRef M. Zhang, W. Wu, J. Luo, H. Zhang, J. Liu, X. Liu, Y. Yang, and X. Lu, A high-energy-density aqueous Zinc-manganese battery with A La-Ca Co-Doped ε-MnO2 cathode. J. Mater. Chem. A 8, 11642–11648 (2020).CrossRef
7.
go back to reference T. Xue, and H. Fan, From aqueous Zn-Ion battery to Zn-MnO2 flow battery: a brief story. J. Energy Chem. 54, 194–201 (2021).CrossRef T. Xue, and H. Fan, From aqueous Zn-Ion battery to Zn-MnO2 flow battery: a brief story. J. Energy Chem. 54, 194–201 (2021).CrossRef
8.
go back to reference Y. Liu, P. Hu, H. Liu, X. Wu, and C. Zhi, Tetragonal VO2 hollow nanospheres as robust cathode material for aqueous zinc ion batteries. Mater. Today Energy 17, 100431 (2020).CrossRef Y. Liu, P. Hu, H. Liu, X. Wu, and C. Zhi, Tetragonal VO2 hollow nanospheres as robust cathode material for aqueous zinc ion batteries. Mater. Today Energy 17, 100431 (2020).CrossRef
9.
go back to reference Y. Liu, J. Wang, Y. Zeng, J. Liu, X. Liu, and X. Lu, Interfacial engineering coupled valence tuning of MoO3 cathode for high-capacity and high-rate fiber-shaped zinc-ion batteries. Small 16, 1907458 (2020).CrossRef Y. Liu, J. Wang, Y. Zeng, J. Liu, X. Liu, and X. Lu, Interfacial engineering coupled valence tuning of MoO3 cathode for high-capacity and high-rate fiber-shaped zinc-ion batteries. Small 16, 1907458 (2020).CrossRef
10.
go back to reference Z. Li, T. Liu, R. Meng, L. Gao, Y. Zou, P. Peng, Y. Shao, and X. Liang, Insights into the structure stability of Prussian blue for aqueous zinc ion batteries. Energy Environ. Mater. 4, 111–116 (2021).CrossRef Z. Li, T. Liu, R. Meng, L. Gao, Y. Zou, P. Peng, Y. Shao, and X. Liang, Insights into the structure stability of Prussian blue for aqueous zinc ion batteries. Energy Environ. Mater. 4, 111–116 (2021).CrossRef
11.
go back to reference L. Liu, Y.-C. Wu, L. Huang, K. Liu, B. Duployer, P. Rozier, P.-L. Taberna, and P. Simon, Alkali ions pre-intercalated layered MnO2 nanosheet for zinc-ions storage. Adv. Energy Mater. 11, 2101287 (2021).CrossRef L. Liu, Y.-C. Wu, L. Huang, K. Liu, B. Duployer, P. Rozier, P.-L. Taberna, and P. Simon, Alkali ions pre-intercalated layered MnO2 nanosheet for zinc-ions storage. Adv. Energy Mater. 11, 2101287 (2021).CrossRef
12.
go back to reference X. Gao, H. Wu, W. Li, Y. Tian, Y. Zhang, H. Wu, L. Yang, G. Zou, H. Hou, and X. Ji, H+-insertion boosted α-MnO2 for an aqueous Zn-ion battery. Small 16, 1905842 (2020).CrossRef X. Gao, H. Wu, W. Li, Y. Tian, Y. Zhang, H. Wu, L. Yang, G. Zou, H. Hou, and X. Ji, H+-insertion boosted α-MnO2 for an aqueous Zn-ion battery. Small 16, 1905842 (2020).CrossRef
13.
go back to reference D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen, L. Gu, K. Davey, and S.-Z. Qiao, An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 58, 7823–7828 (2019).CrossRef D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen, L. Gu, K. Davey, and S.-Z. Qiao, An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 58, 7823–7828 (2019).CrossRef
14.
go back to reference M.H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J.P. Baboo, S.H. Choi, and J. Kim, Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27, 3609–3620 (2015).CrossRef M.H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J.P. Baboo, S.H. Choi, and J. Kim, Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27, 3609–3620 (2015).CrossRef
15.
go back to reference J. Lee, J.B. Ju, W.I. Cho, B.W. Cho, and S.H. Oh, Todorokite-type MnO2 as a zinc-ion intercalating material. Electrochim. Acta 112, 138–143 (2013).CrossRef J. Lee, J.B. Ju, W.I. Cho, B.W. Cho, and S.H. Oh, Todorokite-type MnO2 as a zinc-ion intercalating material. Electrochim. Acta 112, 138–143 (2013).CrossRef
16.
go back to reference C. Wang, Y. Zeng, X. Xiao, S. Wu, G. Zhong, K. Xu, Z. Wei, W. Su, and X. Lu, γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery. J. Energy Chem. 43, 182–187 (2020).CrossRef C. Wang, Y. Zeng, X. Xiao, S. Wu, G. Zhong, K. Xu, Z. Wei, W. Su, and X. Lu, γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery. J. Energy Chem. 43, 182–187 (2020).CrossRef
17.
go back to reference Y. Zhang, S. Deng, Y. Li, B. Liu, G. Pan, Q. Liu, X. Wang, X. Xia, and J. Tu, Anchoring MnO2 on nitrogen-doped porous carbon nanosheets as flexible arrays cathodes for advanced rechargeable Zn-MnO2 batteries. Energy Storage Mater. 29, 52–59 (2020).CrossRef Y. Zhang, S. Deng, Y. Li, B. Liu, G. Pan, Q. Liu, X. Wang, X. Xia, and J. Tu, Anchoring MnO2 on nitrogen-doped porous carbon nanosheets as flexible arrays cathodes for advanced rechargeable Zn-MnO2 batteries. Energy Storage Mater. 29, 52–59 (2020).CrossRef
18.
go back to reference B. Wu, G. Zhang, M. Yan, T. Xiong, P. He, L. He, X. Xu, and L. Mai, Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 14, 1703850 (2018).CrossRef B. Wu, G. Zhang, M. Yan, T. Xiong, P. He, L. He, X. Xu, and L. Mai, Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 14, 1703850 (2018).CrossRef
19.
go back to reference Y. Yang, X. Qiu, W. Shi, H. Hou, G. Zou, W. Huang, Z. Wang, S. Leng, Y. Ran, and X. Ji, Controllable fabrication of two-dimensional layered transition metal oxides through electrochemical exfoliation of Non-van der Waals metals for rechargeable zinc-ion batteries. Chem. Eng. J. 408, 127247 (2021).CrossRef Y. Yang, X. Qiu, W. Shi, H. Hou, G. Zou, W. Huang, Z. Wang, S. Leng, Y. Ran, and X. Ji, Controllable fabrication of two-dimensional layered transition metal oxides through electrochemical exfoliation of Non-van der Waals metals for rechargeable zinc-ion batteries. Chem. Eng. J. 408, 127247 (2021).CrossRef
20.
go back to reference F. Liu, S. Rong, P. Zhang, and L. Gao, One-step synthesis of nanocarbon-decorated MnO2 with superior activity for indoor formaldehyde removal at room temperature. Appl. Catal. B Environ. 235, 158–167 (2018).CrossRef F. Liu, S. Rong, P. Zhang, and L. Gao, One-step synthesis of nanocarbon-decorated MnO2 with superior activity for indoor formaldehyde removal at room temperature. Appl. Catal. B Environ. 235, 158–167 (2018).CrossRef
21.
go back to reference I. Capone, J. Aspinall, H. Lee, A.W. Xiao, J. Ihli, and M. Pasta, A red phosphorus-graphite composite as anode material for potassium-ion batteries. Mater. Today Energy 21, 100840 (2021).CrossRef I. Capone, J. Aspinall, H. Lee, A.W. Xiao, J. Ihli, and M. Pasta, A red phosphorus-graphite composite as anode material for potassium-ion batteries. Mater. Today Energy 21, 100840 (2021).CrossRef
22.
go back to reference H. Ding, S.-B. Yu, J.-S. Wei, and H.-M. Xiong, Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10, 484–491 (2016).CrossRef H. Ding, S.-B. Yu, J.-S. Wei, and H.-M. Xiong, Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10, 484–491 (2016).CrossRef
23.
go back to reference J. Zhao, Z. Ma, C. Qiao, Y. Fan, X. Qin, and G. Shao, Spectroscopic monitoring of the electrode process of MnO2@rGO nanospheres and its application in high-performance flexible micro-supercapacitors. ACS Appl. Mater. Interfaces 14, 34686–34696 (2022).CrossRef J. Zhao, Z. Ma, C. Qiao, Y. Fan, X. Qin, and G. Shao, Spectroscopic monitoring of the electrode process of MnO2@rGO nanospheres and its application in high-performance flexible micro-supercapacitors. ACS Appl. Mater. Interfaces 14, 34686–34696 (2022).CrossRef
24.
go back to reference X. Tang, Y. Li, J. Chen, Y. Xu, and W. Shen, Synthesis, characterization, and catalytic application of titanium-cryptomelane nanorods/fibers. Microporous Mesoporous Mater. 103, 250–256 (2007).CrossRef X. Tang, Y. Li, J. Chen, Y. Xu, and W. Shen, Synthesis, characterization, and catalytic application of titanium-cryptomelane nanorods/fibers. Microporous Mesoporous Mater. 103, 250–256 (2007).CrossRef
25.
go back to reference P. Wu, S. Dai, G. Chen, S. Zhao, Z. Xu, M. Fu, P. Chen, Q. Chen, X. Jin, Y. Qiu, S. Yang, and D. Ye, Interfacial effects in hierarchically porous α-MnO2/Mn3O4 heterostructures promote photocatalytic oxidation activity. Appl. Catal. B Environ. 268, 118418 (2020).CrossRef P. Wu, S. Dai, G. Chen, S. Zhao, Z. Xu, M. Fu, P. Chen, Q. Chen, X. Jin, Y. Qiu, S. Yang, and D. Ye, Interfacial effects in hierarchically porous α-MnO2/Mn3O4 heterostructures promote photocatalytic oxidation activity. Appl. Catal. B Environ. 268, 118418 (2020).CrossRef
26.
go back to reference Y.-X. Pan, Y. You, S. Xin, Y. Li, G. Fu, Z. Cui, Y.-L. Men, F.-F. Cao, S.-H. Yu, and J.B. Goodenough, Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts. J. Am. Chem. Soc. 139, 4123–4129 (2017).CrossRef Y.-X. Pan, Y. You, S. Xin, Y. Li, G. Fu, Z. Cui, Y.-L. Men, F.-F. Cao, S.-H. Yu, and J.B. Goodenough, Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts. J. Am. Chem. Soc. 139, 4123–4129 (2017).CrossRef
27.
go back to reference Y. Qin, J. Lu, P. Du, Z. Chen, Y. Ren, T. Wu, J.T. Miller, J. Wen, D.J. Miller, Z. Zhang, and K. Amine, In Situ fabrication of porous-carbon-supported α-MnO2 nanorods at room temperature: application for rechargeable Li-O2 batteries. Energy Environ. Sci. 6, 519–531 (2013).CrossRef Y. Qin, J. Lu, P. Du, Z. Chen, Y. Ren, T. Wu, J.T. Miller, J. Wen, D.J. Miller, Z. Zhang, and K. Amine, In Situ fabrication of porous-carbon-supported α-MnO2 nanorods at room temperature: application for rechargeable Li-O2 batteries. Energy Environ. Sci. 6, 519–531 (2013).CrossRef
28.
go back to reference R. Zou, Z. Zhang, L. Yu, Q. Tian, Z. Chen, and J. Hu, A general approach for the growth of metal oxide nanorod arrays on graphene sheets and their applications. Chem. Eur. J. 17, 13912–13917 (2011).CrossRef R. Zou, Z. Zhang, L. Yu, Q. Tian, Z. Chen, and J. Hu, A general approach for the growth of metal oxide nanorod arrays on graphene sheets and their applications. Chem. Eur. J. 17, 13912–13917 (2011).CrossRef
29.
go back to reference S. Zeng, Y. Song, X. Shi, W. Xu, D. Zheng, F. Wang, C. Xu, and X. Lu, Crystal form modulation enables high-performance manganese dioxide cathode for aqueous zinc ion battery. J. Alloy. Compd. 913, 165207 (2022).CrossRef S. Zeng, Y. Song, X. Shi, W. Xu, D. Zheng, F. Wang, C. Xu, and X. Lu, Crystal form modulation enables high-performance manganese dioxide cathode for aqueous zinc ion battery. J. Alloy. Compd. 913, 165207 (2022).CrossRef
30.
go back to reference X. Zhang, S. Wu, S. Deng, W. Wu, Y. Zeng, X. Xia, G. Pan, Y. Tong, and X. Lu, 3D CNTs networks enable MnO2 cathodes with high capacity and superior rate capability for flexible rechargeable Zn-MnO2 batteries. Small Methods 3, 1900525 (2019).CrossRef X. Zhang, S. Wu, S. Deng, W. Wu, Y. Zeng, X. Xia, G. Pan, Y. Tong, and X. Lu, 3D CNTs networks enable MnO2 cathodes with high capacity and superior rate capability for flexible rechargeable Zn-MnO2 batteries. Small Methods 3, 1900525 (2019).CrossRef
31.
go back to reference Z. Ni, X. Liang, L. Zhao, H. Zhao, B. Ge, W. Li, Tin doping manganese dioxide cathode materials with the improved stability for aqueous zinc-ion batteries. Mater. Chem. Phys. 287, 126238 (2022)CrossRef Z. Ni, X. Liang, L. Zhao, H. Zhao, B. Ge, W. Li, Tin doping manganese dioxide cathode materials with the improved stability for aqueous zinc-ion batteries. Mater. Chem. Phys. 287, 126238 (2022)CrossRef
32.
go back to reference K. Wang, X. Zhang, J. Han, X. Zhang, X. Sun, C. Li, W. Liu, Q. Li, and Y. Ma, High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode. ACS Appl. Mater. Interfaces 10, 24573–24582 (2018).CrossRef K. Wang, X. Zhang, J. Han, X. Zhang, X. Sun, C. Li, W. Liu, Q. Li, and Y. Ma, High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode. ACS Appl. Mater. Interfaces 10, 24573–24582 (2018).CrossRef
33.
go back to reference Q. Zhao, A. Song, W. Zhao, R. Qin, S. Ding, X. Chen, Y. Song, L. Yang, H. Lin, S. Li, and F. Pan, Boosting the energy density of aqueous batteries via facile grotthuss proton transport. Angew. Chem. Int. Ed. 60, 4169–4174 (2021).CrossRef Q. Zhao, A. Song, W. Zhao, R. Qin, S. Ding, X. Chen, Y. Song, L. Yang, H. Lin, S. Li, and F. Pan, Boosting the energy density of aqueous batteries via facile grotthuss proton transport. Angew. Chem. Int. Ed. 60, 4169–4174 (2021).CrossRef
34.
go back to reference X. Liang, J. Hao, B. Tan, X. Lu, and W. Li, Binder-free CaV3O7 nanobelts with rich oxygen defects as high energy cathode for aqueous Zn-Ion battery. J. Power Sources 472, 228507 (2020).CrossRef X. Liang, J. Hao, B. Tan, X. Lu, and W. Li, Binder-free CaV3O7 nanobelts with rich oxygen defects as high energy cathode for aqueous Zn-Ion battery. J. Power Sources 472, 228507 (2020).CrossRef
35.
go back to reference Y. Huang, J. Zhang, J. Liu, Z. Li, S. Jin, Z. Li, S. Zhang, and H. Zhou, flexible and stable quasi-solid-state zinc ion battery with conductive guar gum electrolyte. Mater. Today Energy 14, 100349 (2019).CrossRef Y. Huang, J. Zhang, J. Liu, Z. Li, S. Jin, Z. Li, S. Zhang, and H. Zhou, flexible and stable quasi-solid-state zinc ion battery with conductive guar gum electrolyte. Mater. Today Energy 14, 100349 (2019).CrossRef
Metadata
Title
Graphite-Like Carbon-Decorated δ-MnO2 Nanoparticles as a High-Performance Cathode for Rechargeable Zinc-Ion Batteries
Authors
Qixing Xie
Leheng Huang
Zijian Liang
Shichang Tang
Weizhao Ling
Qingxia Huang
Zihao Zhou
Xiaohui Su
Tong Xue
Gao Cheng
Publication date
11-11-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-10056-4

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue