Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

04-11-2022 | Original Research Article

Electromagnetic Interference Shielding Performance of CNT Sponge/PDMS Force-Sensitive Composites

Authors: Lishuang Liu, Jinping Liu, Ruirong Wang, Xin Li, Hao Guo, Jun Tang, Jun Liu

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to obtain a force-sensitive composite structure with high-performance electromagnetic interference (EMI) shielding, this paper proposes a method for preparing flexible force-sensitive composites by backfilling PDMS into a carbon nanotube (CNT) sponge using a vacuum-assisted method. Compared with CNTs/PDMS force-sensitive composites with different content prepared by the traditional solution blending method, the CNT sponge/PDMS force-sensitive composite prepared by the vacuum-impregnation method demonstrated sensitivity of 70 in a strain range of 35–50% at a thickness of 1 mm with a low filler content of 1 wt.%, and also showed excellent cyclic stability. The EMI shielding effectiveness (SE) reached 34.56 dB in the X band, and it still maintained high EMI SE (33.68 dB) after 500 repeated stretching cycles, which would be sufficient for commercial applications. The prepared CNT sponge/PDMS force-sensitive composite not only meets the basic sensitivity at low content (only 1 wt.%) but also has high EMI SE (34.56 dB) due to its high electrical conductivity (53 S/m), which makes it have potential applications in flexible stress sensors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao, and S. Park, Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, 1904765 (2019).CrossRef J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao, and S. Park, Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, 1904765 (2019).CrossRef
2.
go back to reference Y. Liu, M. Pharr, and G.A. Salvatore, Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11, 9614 (2017).CrossRef Y. Liu, M. Pharr, and G.A. Salvatore, Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11, 9614 (2017).CrossRef
3.
go back to reference Y. Yang, X. Hao, L. Zhang, and L. Ren, Application of Scikit and Keras libraries for the classification of iron ore data acquired by laser-induced breakdown spectroscopy(LIBS). Sensors 20, 1393 (2020).CrossRef Y. Yang, X. Hao, L. Zhang, and L. Ren, Application of Scikit and Keras libraries for the classification of iron ore data acquired by laser-induced breakdown spectroscopy(LIBS). Sensors 20, 1393 (2020).CrossRef
4.
go back to reference X. Liu, X. Hao, B. Xue, B. Tai, and H. Zhou, Two-dimensional flame temperature and emissivity distribution measurement based on element doping and energy spectrum analysis. IEEE Access. 8, 200863 (2020).CrossRef X. Liu, X. Hao, B. Xue, B. Tai, and H. Zhou, Two-dimensional flame temperature and emissivity distribution measurement based on element doping and energy spectrum analysis. IEEE Access. 8, 200863 (2020).CrossRef
5.
go back to reference X. Bing, H. Xiaojian, L. Xuanda, H. Ziqi, and Z. Hanchang, Simulation of an NSGA-III based fireball inner-temperature-field reconstructive method. IEEE Access. 8, 43908 (2020).CrossRef X. Bing, H. Xiaojian, L. Xuanda, H. Ziqi, and Z. Hanchang, Simulation of an NSGA-III based fireball inner-temperature-field reconstructive method. IEEE Access. 8, 43908 (2020).CrossRef
6.
go back to reference W. Tang, L. Lu, D. Xing, H. Fang, Q. Liu, and K.S. Teh, A carbon-fabric/polycarbonate sandwiched film with high tensile and EMI shielding comprehensive properties: an experimental study. Compos. B 152, 8 (2018).CrossRef W. Tang, L. Lu, D. Xing, H. Fang, Q. Liu, and K.S. Teh, A carbon-fabric/polycarbonate sandwiched film with high tensile and EMI shielding comprehensive properties: an experimental study. Compos. B 152, 8 (2018).CrossRef
7.
go back to reference N. Wen, L. Zhang, D. Jiang, Z. Wu, B. Li, C. Sun, and Z. Guo, Emerging flexible sensors based on nanomaterials: recent status and applications. J. Mater. Chem. A 8, 25499 (2020).CrossRef N. Wen, L. Zhang, D. Jiang, Z. Wu, B. Li, C. Sun, and Z. Guo, Emerging flexible sensors based on nanomaterials: recent status and applications. J. Mater. Chem. A 8, 25499 (2020).CrossRef
8.
go back to reference T. Li, J. Li, A. Zhong, F. Han, R. Sun, C.-P. Wong, F. Niu, G. Zhang, and Y. Jin, A flexible strain sensor based on CNTs/PDMS microspheres for human motion detection. Sens. Actuators A 306, 111959 (2020).CrossRef T. Li, J. Li, A. Zhong, F. Han, R. Sun, C.-P. Wong, F. Niu, G. Zhang, and Y. Jin, A flexible strain sensor based on CNTs/PDMS microspheres for human motion detection. Sens. Actuators A 306, 111959 (2020).CrossRef
9.
go back to reference H. Yuan, Y. Xiong, Q. Shen, G. Luo, D. Zhou, and L. Liu, Synthesis and electromagnetic absorbing performances of CNTs/PMMA laminated nanocomposite foams in x-band. Compos. A 107, 334 (2018).CrossRef H. Yuan, Y. Xiong, Q. Shen, G. Luo, D. Zhou, and L. Liu, Synthesis and electromagnetic absorbing performances of CNTs/PMMA laminated nanocomposite foams in x-band. Compos. A 107, 334 (2018).CrossRef
10.
go back to reference S. Zhu, C. Xing, F. Wu, X. Zuo, Y. Zhang, C. Yu, M. Chen, W. Li, Q. Li, and L. Liu, Cake-like flexible carbon nanotubes/graphene composite prepared via a facile method for high-performance electromagnetic interference shielding. Carbon 145, 259 (2019).CrossRef S. Zhu, C. Xing, F. Wu, X. Zuo, Y. Zhang, C. Yu, M. Chen, W. Li, Q. Li, and L. Liu, Cake-like flexible carbon nanotubes/graphene composite prepared via a facile method for high-performance electromagnetic interference shielding. Carbon 145, 259 (2019).CrossRef
11.
go back to reference S. Gupta, and N.-H. Tai, Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 152, 159 (2019).CrossRef S. Gupta, and N.-H. Tai, Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 152, 159 (2019).CrossRef
12.
go back to reference D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, J.H. Wang, and Z.M. Li, Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25, 559 (2015).CrossRef D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, J.H. Wang, and Z.M. Li, Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25, 559 (2015).CrossRef
13.
go back to reference Q. Jiang, X. Liao, J. Li, J. Chen, G. Wang, J. Yi, Q. Yang, and G. Li, Flexible thermoplastic polyurethane/reduced graphene oxide composite foams for electromagnetic interference shielding with high absorption characteristic. Compos. A 123, 310 (2019).CrossRef Q. Jiang, X. Liao, J. Li, J. Chen, G. Wang, J. Yi, Q. Yang, and G. Li, Flexible thermoplastic polyurethane/reduced graphene oxide composite foams for electromagnetic interference shielding with high absorption characteristic. Compos. A 123, 310 (2019).CrossRef
14.
go back to reference N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P.C. Eklund, Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 6, 1141 (2006).CrossRef N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P.C. Eklund, Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 6, 1141 (2006).CrossRef
15.
go back to reference T. Kuang, L. Chang, F. Chen, Y. Sheng, D. Fu, and X. Peng, Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105, 305 (2016).CrossRef T. Kuang, L. Chang, F. Chen, Y. Sheng, D. Fu, and X. Peng, Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105, 305 (2016).CrossRef
16.
go back to reference Y.-Q. Li, Y.A. Samad, K. Polychronopoulou, and K. Liao, Lightweight and highly conductive aerogel-like carbon from sugarcane with superior mechanical and emi shielding properties. ACS Sustain. Chem. Eng. 3, 1419 (2015).CrossRef Y.-Q. Li, Y.A. Samad, K. Polychronopoulou, and K. Liao, Lightweight and highly conductive aerogel-like carbon from sugarcane with superior mechanical and emi shielding properties. ACS Sustain. Chem. Eng. 3, 1419 (2015).CrossRef
17.
go back to reference D. Feng, P. Liu, and Q. Wang, Exploiting the piezoresistivity and EMI shielding of polyetherimide/carbon nanotube foams by tailoring their porous morphology and segregated CNT networks. Compos. A 124, 105463 (2019).CrossRef D. Feng, P. Liu, and Q. Wang, Exploiting the piezoresistivity and EMI shielding of polyetherimide/carbon nanotube foams by tailoring their porous morphology and segregated CNT networks. Compos. A 124, 105463 (2019).CrossRef
18.
go back to reference H. Mei, X. Zhao, J. Xia, F. Wei, D. Han, S. Xiao, and L. Cheng, Compacting CNT sponge to achieve larger electromagnetic interference shielding performance. Mater. Des. 144, 323 (2018).CrossRef H. Mei, X. Zhao, J. Xia, F. Wei, D. Han, S. Xiao, and L. Cheng, Compacting CNT sponge to achieve larger electromagnetic interference shielding performance. Mater. Des. 144, 323 (2018).CrossRef
19.
go back to reference Y. Chen, H.B. Zhang, Y. Yang, M. Wang, A. Cao, and Z.Z. Yu, High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 26, 447 (2016).CrossRef Y. Chen, H.B. Zhang, Y. Yang, M. Wang, A. Cao, and Z.Z. Yu, High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 26, 447 (2016).CrossRef
20.
go back to reference Z. Chen, C. Xu, C. Ma, W. Ren, and H.M. Cheng, Lightweight andflexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296 (2013).CrossRef Z. Chen, C. Xu, C. Ma, W. Ren, and H.M. Cheng, Lightweight andflexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296 (2013).CrossRef
21.
go back to reference X. Gui, J. Wei, K. Wang, A. Cao, H. Zhu, Y. Jia, Q. Shu, and D. Wu, Carbon nanotube sponges. Adv. Mater. 22, 617 (2010).CrossRef X. Gui, J. Wei, K. Wang, A. Cao, H. Zhu, Y. Jia, Q. Shu, and D. Wu, Carbon nanotube sponges. Adv. Mater. 22, 617 (2010).CrossRef
22.
go back to reference D. Lu, Z. Mo, B. Liang, L. Yang, Z. He, H. Zhu, Z. Tang, and X. Gui, Flexible, Lightweight lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding. Carbon 133, 457 (2018).CrossRef D. Lu, Z. Mo, B. Liang, L. Yang, Z. He, H. Zhu, Z. Tang, and X. Gui, Flexible, Lightweight lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding. Carbon 133, 457 (2018).CrossRef
23.
go back to reference S. Liu, V.S. Chevali, Z. Xu, D. Hui, and H. Wang, A review of extending performance of epoxy resins using carbon nanomaterials. Compos. B 136, 197 (2018).CrossRef S. Liu, V.S. Chevali, Z. Xu, D. Hui, and H. Wang, A review of extending performance of epoxy resins using carbon nanomaterials. Compos. B 136, 197 (2018).CrossRef
24.
go back to reference H. Song, and S. Lim, Screen-printing process of electromagnetic interference (EMI) shielding materials on mulberry paper. Mater. Manuf. Process 35, 1701 (2020).CrossRef H. Song, and S. Lim, Screen-printing process of electromagnetic interference (EMI) shielding materials on mulberry paper. Mater. Manuf. Process 35, 1701 (2020).CrossRef
25.
go back to reference W. Yu, Y. Peng, L. Cao, W. Zhao, and X. Liu, Free-standing laser-induced graphene films for high-performance electromagnetic interference shielding. Carbon 183, 600 (2021).CrossRef W. Yu, Y. Peng, L. Cao, W. Zhao, and X. Liu, Free-standing laser-induced graphene films for high-performance electromagnetic interference shielding. Carbon 183, 600 (2021).CrossRef
26.
go back to reference Y. Pang, H. Tian, L. Tao, Y. Li, X. Wang, N. Deng, Y. Yang, and T.-L. Ren, Flexible, Highly highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Appl. Mater. Interfaces 8, 26458 (2016).CrossRef Y. Pang, H. Tian, L. Tao, Y. Li, X. Wang, N. Deng, Y. Yang, and T.-L. Ren, Flexible, Highly highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Appl. Mater. Interfaces 8, 26458 (2016).CrossRef
27.
go back to reference A. Abdulhameed, N.Z.A. Wahab, M.N. Mohtar, M.N. Hamidon, S. Shafie, and I.A. Halin, Methods and applications of electrical conductivity enhancement of materials using carbon nanotubes. J. Electron. Mater. 50, 3207 (2021).CrossRef A. Abdulhameed, N.Z.A. Wahab, M.N. Mohtar, M.N. Hamidon, S. Shafie, and I.A. Halin, Methods and applications of electrical conductivity enhancement of materials using carbon nanotubes. J. Electron. Mater. 50, 3207 (2021).CrossRef
28.
go back to reference H. Oraby, I. Naeem, M. Darwish, M.H. Senna, and H.R. Tantawy, Effective electromagnetic interference shielding using foamy polyurethane composites. Polym. Compos. 42, 3077 (2021).CrossRef H. Oraby, I. Naeem, M. Darwish, M.H. Senna, and H.R. Tantawy, Effective electromagnetic interference shielding using foamy polyurethane composites. Polym. Compos. 42, 3077 (2021).CrossRef
29.
go back to reference B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei, and W. Zheng, Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 102, 154 (2016).CrossRef B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei, and W. Zheng, Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 102, 154 (2016).CrossRef
Metadata
Title
Electromagnetic Interference Shielding Performance of CNT Sponge/PDMS Force-Sensitive Composites
Authors
Lishuang Liu
Jinping Liu
Ruirong Wang
Xin Li
Hao Guo
Jun Tang
Jun Liu
Publication date
04-11-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-10008-y

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue