Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

18-10-2022 | Original Research Article

The Effects of Mo Partial Substitution at the Mn Site on Electroresistance Behaviour in La0.7Ba0.3Mn1−xMoxO3 (x = 0, 0.01, 0.02, 0.03, 0.04) Manganites

Authors: N. Ibrahim, M. S. Sazali, Z. Mohamed, R. Rozilah

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, the structural, electrical, and magnetic properties and electroresistance (ER) effects in La0.7Ba0.3Mn1−xMoxO3 (x = 0–0.04) prepared using the solid-state method have been studied. All samples exhibited a metallic to insulating behaviour accompanied by ferromagnetic properties. Mo substitution increased resistivity under an applied current of 10 mA while the higher applied current of 20 mA reduced the resistivity and led to the ER effect. Mo-substituted samples exhibited almost constant and larger ER values than the x = 0 sample within a temperature range of 30–180 K, which may be due to the presence of dual double-exchange interactions of Mn2+-O-Mn3+ and Mn3+-O-Mn4+ along with the formation of more conductive paths in the metallic region. Meanwhile, the Mo-substituted samples exhibited a reduction in the ER effect in the insulating region which was probably due to the strong localization of charge carriers. The result was attributed to the induction of Mn2+ which may contribute to the lattice distortion effect and thus enhanced electron-lattice attraction in the Mo-substituted samples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Solanki, D. Dhruv, H. Boricha, A. Zankat, K.N. Rathod, B. Rajyaguru, R.K. Trivedi, R.D. Joshi, S. Mukerjee, P.S. Solanki, and N.A. Shah, Charge Transport Mechanisms and Magnetoresistance Behavior of La0.6Pr0.1Ca0.3MnO3 Manganite. J. Solid State Chem. 288, 121446 (2020).CrossRef S. Solanki, D. Dhruv, H. Boricha, A. Zankat, K.N. Rathod, B. Rajyaguru, R.K. Trivedi, R.D. Joshi, S. Mukerjee, P.S. Solanki, and N.A. Shah, Charge Transport Mechanisms and Magnetoresistance Behavior of La0.6Pr0.1Ca0.3MnO3 Manganite. J. Solid State Chem. 288, 121446 (2020).CrossRef
2.
go back to reference K. Manjula, B. Rajyaguru, K. Gadani, N. Vaghela, H. Dadhich, D. Venkateshwarlu, A.D. Joshi, N.A. Shah, and P.S. Solanki, Electric Field Effects on Charge Conduction for LaMnO3 Controlled La0.7Ca0.3MnO3 Manganite. Surf. Interfac. 30, 101949 (2022).CrossRef K. Manjula, B. Rajyaguru, K. Gadani, N. Vaghela, H. Dadhich, D. Venkateshwarlu, A.D. Joshi, N.A. Shah, and P.S. Solanki, Electric Field Effects on Charge Conduction for LaMnO3 Controlled La0.7Ca0.3MnO3 Manganite. Surf. Interfac. 30, 101949 (2022).CrossRef
3.
go back to reference S. Karadavut, F. Denbri, C. Terzioglu, O. Ozturk, and L.P. Altintas, Enhancing Magnetoresistive Features of Iron-Substituted La0⋅8Sr0⋅2MnO3 Ceramic Manganites. Ceram. Int. 48, 29620 (2022).CrossRef S. Karadavut, F. Denbri, C. Terzioglu, O. Ozturk, and L.P. Altintas, Enhancing Magnetoresistive Features of Iron-Substituted La0⋅8Sr0⋅2MnO3 Ceramic Manganites. Ceram. Int. 48, 29620 (2022).CrossRef
4.
go back to reference S. Yang, Q. Chen, Y. Yang, Y. Gao, R. Xu, H. Zhang, and J. Ma, Silver Addition in Polycrystalline La0.7Ca0.3MnO3: Large Magnetoresistance Ann Anisotropic Magnetoresistance for Magnetic Sensor. J. Alloys Compd. 882, 160719 (2021).CrossRef S. Yang, Q. Chen, Y. Yang, Y. Gao, R. Xu, H. Zhang, and J. Ma, Silver Addition in Polycrystalline La0.7Ca0.3MnO3: Large Magnetoresistance Ann Anisotropic Magnetoresistance for Magnetic Sensor. J. Alloys Compd. 882, 160719 (2021).CrossRef
5.
go back to reference L. Yin, C. Wang, and Q. Shen, Enhancement of Intrinsic Magnetoresistance in Zn Doped La0.9Sr0.1MnO3 Epitaxial Films. J. Alloys Compd. 859, 157817 (2020).CrossRef L. Yin, C. Wang, and Q. Shen, Enhancement of Intrinsic Magnetoresistance in Zn Doped La0.9Sr0.1MnO3 Epitaxial Films. J. Alloys Compd. 859, 157817 (2020).CrossRef
6.
go back to reference I.A. Abdel Latif, Rare Earth Manganites and their Applications. J. Phys. 1, 15 (2012). I.A. Abdel Latif, Rare Earth Manganites and their Applications. J. Phys. 1, 15 (2012).
7.
go back to reference A.E.A. Mohamed, B. Hernando, and M.E. Díaz-garcía, Room Temperature Magneto-Transport Properties of La0.7Ba0.3Mn03 Manganite. J. Alloys Compd. 695, 2645–2651 (2016).CrossRef A.E.A. Mohamed, B. Hernando, and M.E. Díaz-garcía, Room Temperature Magneto-Transport Properties of La0.7Ba0.3Mn03 Manganite. J. Alloys Compd. 695, 2645–2651 (2016).CrossRef
8.
go back to reference S.T. Mahmud, M.M. Saber, H.S. Alagoz, R. Bouveyron, J. Jung, and K.H. Chow, Intrinsic Electroresistance of Sm0.60Sr0.40MnO3 and Sm0.55Sr0.45MnO3. Appl. Phys. Lett. 100, 1 (2012). S.T. Mahmud, M.M. Saber, H.S. Alagoz, R. Bouveyron, J. Jung, and K.H. Chow, Intrinsic Electroresistance of Sm0.60Sr0.40MnO3 and Sm0.55Sr0.45MnO3. Appl. Phys. Lett. 100, 1 (2012).
9.
go back to reference Y. Nishi, Challenges and Opportunities for Future Non-Volatile Memory Technology. Curr. Appl. Phys. 11, 101 (2011).CrossRef Y. Nishi, Challenges and Opportunities for Future Non-Volatile Memory Technology. Curr. Appl. Phys. 11, 101 (2011).CrossRef
10.
go back to reference H. Song, M. Tokunaga, S. Imamori, Y. Tokunaga, and T. Tamegai, Nonvolatile Multivalued Memory Effects in Electronic Phase-Change Manganites Controlled by Joule Heating. Phys. Rev. B 74, 052404 (2006).CrossRef H. Song, M. Tokunaga, S. Imamori, Y. Tokunaga, and T. Tamegai, Nonvolatile Multivalued Memory Effects in Electronic Phase-Change Manganites Controlled by Joule Heating. Phys. Rev. B 74, 052404 (2006).CrossRef
11.
go back to reference W.J. Lu, Y.P. Sun, B.C. Zhao, X.B. Zhu, and W.H. Song, Giant Electroresistance and Nonlinear Conduction in Electron-Doped Ca0.9Ce0.1MnO3. Solid State Commun. 137, 288–291 (2006).CrossRef W.J. Lu, Y.P. Sun, B.C. Zhao, X.B. Zhu, and W.H. Song, Giant Electroresistance and Nonlinear Conduction in Electron-Doped Ca0.9Ce0.1MnO3. Solid State Commun. 137, 288–291 (2006).CrossRef
12.
go back to reference C. Jooss, L. Wu, T. Beetz, and Y. Zhu, Polaron Melting and Ordering as Key Mechanisms for Colossal Resistance Effects in Manganites. Proc. Natl. Acad. Sci. 104, 13597 (2007).CrossRef C. Jooss, L. Wu, T. Beetz, and Y. Zhu, Polaron Melting and Ordering as Key Mechanisms for Colossal Resistance Effects in Manganites. Proc. Natl. Acad. Sci. 104, 13597 (2007).CrossRef
13.
go back to reference R. Mohan, N. Kumar, B. Singh, N.K. Gaur, S. Bhattacharya, S. Rayaprol, A. Dogra, S.K. Gupta, S.J. Kim, and R.K. Singh, Colossal Electroresistance in Sm0.55Sr0.45MnO3. J. Alloys Compd. 508, 32 (2010).CrossRef R. Mohan, N. Kumar, B. Singh, N.K. Gaur, S. Bhattacharya, S. Rayaprol, A. Dogra, S.K. Gupta, S.J. Kim, and R.K. Singh, Colossal Electroresistance in Sm0.55Sr0.45MnO3. J. Alloys Compd. 508, 32 (2010).CrossRef
14.
go back to reference R. Kumar, A.K. Gupta, D.P. Singh, V. Kumar, G.L. Bhalla, and N. Khare, Current-Induced Effect on Resistivity and Magnetoresistance of La0.67Ba0.33MnO3 Manganite. J. Magn. Magn. Mater. 320, 2741 (2008).CrossRef R. Kumar, A.K. Gupta, D.P. Singh, V. Kumar, G.L. Bhalla, and N. Khare, Current-Induced Effect on Resistivity and Magnetoresistance of La0.67Ba0.33MnO3 Manganite. J. Magn. Magn. Mater. 320, 2741 (2008).CrossRef
15.
go back to reference T. Wu, S.B. Ogale, J.E. Garrison, B. Nagaraj, A. Biswas, Z. Chen, R.L. Greene, R. Ramesh, T. Venkatesan, and A.J. Millis, Electroresistance and Electronic Phase Separation in Mixed-Valent Manganites. Phys. Rev. Lett. 86, 5998 (2001).CrossRef T. Wu, S.B. Ogale, J.E. Garrison, B. Nagaraj, A. Biswas, Z. Chen, R.L. Greene, R. Ramesh, T. Venkatesan, and A.J. Millis, Electroresistance and Electronic Phase Separation in Mixed-Valent Manganites. Phys. Rev. Lett. 86, 5998 (2001).CrossRef
16.
go back to reference L. Balcells, L. Pena, R. Galceran, A. Pomar, B. Bozzo, Z. Konstantinovic, F. Sandiumenge, and B. Martines, Electroresistance and Joule Heating Effects in Manganite Thin Films. J. Appl. Phys. 113, 073703 (2013).CrossRef L. Balcells, L. Pena, R. Galceran, A. Pomar, B. Bozzo, Z. Konstantinovic, F. Sandiumenge, and B. Martines, Electroresistance and Joule Heating Effects in Manganite Thin Films. J. Appl. Phys. 113, 073703 (2013).CrossRef
17.
go back to reference Y.H. Sun, Y.G. Zhao, X.L. Zhang, S.N. Gao, P.L. Lang, X.P. Zhang, and M.H. Zhu, Electric Current-Induced Giant Electroresistance in Epitaxial La0.67Sr0.33MnO3 Thin Films. J. Magn. Magn. Mater. 311, 644 (2007).CrossRef Y.H. Sun, Y.G. Zhao, X.L. Zhang, S.N. Gao, P.L. Lang, X.P. Zhang, and M.H. Zhu, Electric Current-Induced Giant Electroresistance in Epitaxial La0.67Sr0.33MnO3 Thin Films. J. Magn. Magn. Mater. 311, 644 (2007).CrossRef
18.
go back to reference S.T. Mahmud, M.M. Saber, H.S. Alagoz, K. Biggart, R. Bouveyron, M. Khan, J. Jung, and K.H. Chow, Disorder Enhanced Intrinsic Electroresistance in Sm0.60Sr0.40Mn1-xFexO3. Appl. Phys. Lett. 100, 1 (2012). S.T. Mahmud, M.M. Saber, H.S. Alagoz, K. Biggart, R. Bouveyron, M. Khan, J. Jung, and K.H. Chow, Disorder Enhanced Intrinsic Electroresistance in Sm0.60Sr0.40Mn1-xFexO3. Appl. Phys. Lett. 100, 1 (2012).
19.
go back to reference L. Zhang, X. Li, F. Wang, T. Wang, and W. Shi, Collosal Electroresistance and Magnetoresistance Effect in Polycrystalline Perovskite Cobalties Nd1−xSrxCoO3 (x= 0.1,0.2, 0.3). Mat. Res. Bull. 48, 1088 (2013).CrossRef L. Zhang, X. Li, F. Wang, T. Wang, and W. Shi, Collosal Electroresistance and Magnetoresistance Effect in Polycrystalline Perovskite Cobalties Nd1xSrxCoO3 (x= 0.1,0.2, 0.3). Mat. Res. Bull. 48, 1088 (2013).CrossRef
20.
go back to reference S.T. Mahmud, M.M. Saber, H.S. Alagoz, J. Jung, and K.H. Chow, Current Density and Intrinsic Electroresistance of the Sm1-xSrxMnO3 manganite. J. Phys. Chem. Solids 74, 1865 (2013).CrossRef S.T. Mahmud, M.M. Saber, H.S. Alagoz, J. Jung, and K.H. Chow, Current Density and Intrinsic Electroresistance of the Sm1-xSrxMnO3 manganite. J. Phys. Chem. Solids 74, 1865 (2013).CrossRef
21.
go back to reference S.S. Chen, C.P. Yang, and Q. Dai, Effect of Microstructure on the Electroresistance of Nd0.7Sr0.3MnO3 Perovskite Ceramics. J. Alloys Compd. 491, 1 (2010).CrossRef S.S. Chen, C.P. Yang, and Q. Dai, Effect of Microstructure on the Electroresistance of Nd0.7Sr0.3MnO3 Perovskite Ceramics. J. Alloys Compd. 491, 1 (2010).CrossRef
22.
go back to reference T. Qian, P. Tong, B. Kim, S.I. Lee, N. Shin, S. Park, and B.G. Kim, Enhancement of Ferromagnetism by Decreasing Tolerance Factor in Electron-Doped Manganites. Phys. Rev. B 77, 094423 (2008).CrossRef T. Qian, P. Tong, B. Kim, S.I. Lee, N. Shin, S. Park, and B.G. Kim, Enhancement of Ferromagnetism by Decreasing Tolerance Factor in Electron-Doped Manganites. Phys. Rev. B 77, 094423 (2008).CrossRef
23.
go back to reference G. Narsinga Rao, J.W. Chen, S. Neeleshwar, Y.Y. Chen, and M.K. Wu, Enhanced Magnetoresistance and Griffiths Phase Induced by Mo Substitution in La0.7Ca0.15Sr0.15Mn1-xMoxO3 (0 ≤ x ≤ 0.05). J. Phys. D. Appl. Phys. 42, 1 (2009).CrossRef G. Narsinga Rao, J.W. Chen, S. Neeleshwar, Y.Y. Chen, and M.K. Wu, Enhanced Magnetoresistance and Griffiths Phase Induced by Mo Substitution in La0.7Ca0.15Sr0.15Mn1-xMoxO3 (0 ≤ x ≤ 0.05). J. Phys. D. Appl. Phys. 42, 1 (2009).CrossRef
24.
go back to reference J.W. Chen, and G.N. Rao, Magnetotransport Properties of Mo Substituted La0.7Ca0.3Mn1−xMoxO3 Perovskites. Solid State Sci. 53, 17 (2016).CrossRef J.W. Chen, and G.N. Rao, Magnetotransport Properties of Mo Substituted La0.7Ca0.3Mn1−xMoxO3 Perovskites. Solid State Sci. 53, 17 (2016).CrossRef
25.
go back to reference J.W. Chen, and G. Narsinga Rao, Induced Ferromagnetic Metallic State and Griffiths Phase in La1/2Ca1/2Mn1-xMoxO3 Compounds. Mater. Chem. Phys. 136, 254 (2012).CrossRef J.W. Chen, and G. Narsinga Rao, Induced Ferromagnetic Metallic State and Griffiths Phase in La1/2Ca1/2Mn1-xMoxO3 Compounds. Mater. Chem. Phys. 136, 254 (2012).CrossRef
26.
go back to reference D.C. Kundaliya, R. Vij, R.G. Kulkarni, B. Varughese, A.K. Nigam, and S.K. Malik, Magnetic and Transport Properties of Mo Substituted La0.67Ba0.33Mn1-xMoxO3 Perovskite System. J. Appl. Phys. 98, 013905 (2005).CrossRef D.C. Kundaliya, R. Vij, R.G. Kulkarni, B. Varughese, A.K. Nigam, and S.K. Malik, Magnetic and Transport Properties of Mo Substituted La0.67Ba0.33Mn1-xMoxO3 Perovskite System. J. Appl. Phys. 98, 013905 (2005).CrossRef
27.
go back to reference M.S. Sazali, N. Ibrahim, R. Mohamed Rajmi, and A.K. Yahya, Effect of Fe3+ Partial Substitution at Mn-site on Electroresistance Behavior in La0.7Ba0.3Mn1-xFexO3 (x = 0 and 0.02) Manganites. Solid State Phenom. 317, 3 (2021).CrossRef M.S. Sazali, N. Ibrahim, R. Mohamed Rajmi, and A.K. Yahya, Effect of Fe3+ Partial Substitution at Mn-site on Electroresistance Behavior in La0.7Ba0.3Mn1-xFexO3 (x = 0 and 0.02) Manganites. Solid State Phenom. 317, 3 (2021).CrossRef
28.
go back to reference M. Anchit, M.A. Bhar, D.K. Pandey, S. Tarachand Bhattacharya, N.K. Gaur, and G.S. Okram, Structural, Magnetotransport and Thermal Properties of Sm Substituted La0.7-xSmxBa0.3MnO3 (0≤x≤0.2) Manganites. J. Magn. Magn. Mater. 424, 459 (2016). M. Anchit, M.A. Bhar, D.K. Pandey, S. Tarachand Bhattacharya, N.K. Gaur, and G.S. Okram, Structural, Magnetotransport and Thermal Properties of Sm Substituted La0.7-xSmxBa0.3MnO3 (0≤x≤0.2) Manganites. J. Magn. Magn. Mater. 424, 459 (2016).
29.
go back to reference I. Mahsuri, and D. Varshney, Structure and Electrical Resistivity of La1-xBaxMnO3 (0.25≤x≤0.35) Perovskite. J. Alloys Compd 513, 256 (2012).CrossRef I. Mahsuri, and D. Varshney, Structure and Electrical Resistivity of La1-xBaxMnO3 (0.25≤x≤0.35) Perovskite. J. Alloys Compd 513, 256 (2012).CrossRef
30.
go back to reference K. Momma, and F. Izumi, VESTA: A Three-Dimensional Visualization System for Electronic and Structural Analysis. J. Appl. Crystallogr. 41, 653 (2008).CrossRef K. Momma, and F. Izumi, VESTA: A Three-Dimensional Visualization System for Electronic and Structural Analysis. J. Appl. Crystallogr. 41, 653 (2008).CrossRef
31.
go back to reference A. Sen, Influence of Ba and Mo Co-Doping on the Structural, Electrical, Magnetic and Optical Properties of BiFeO3 Ceramics. Mater. Res. Express. 7, 16312 (2020).CrossRef A. Sen, Influence of Ba and Mo Co-Doping on the Structural, Electrical, Magnetic and Optical Properties of BiFeO3 Ceramics. Mater. Res. Express. 7, 16312 (2020).CrossRef
32.
go back to reference D.C. Kundaliya, Magnetic and Transport Properties of Mo Substituted La0.67Ba0.33Mn1-xMoxO3 Perovskite System. J. Appl. Phys. 98, 103905 (2005).CrossRef D.C. Kundaliya, Magnetic and Transport Properties of Mo Substituted La0.67Ba0.33Mn1-xMoxO3 Perovskite System. J. Appl. Phys. 98, 103905 (2005).CrossRef
33.
go back to reference S. Chen, W. Ruilong, W. Hao, and C. Yang, Effect of Heat Treatment on Electroresistance in Nd0.67Sr0.33MnO3 Ceramics. J. Rare Earth. 28, 251 (2020).CrossRef S. Chen, W. Ruilong, W. Hao, and C. Yang, Effect of Heat Treatment on Electroresistance in Nd0.67Sr0.33MnO3 Ceramics. J. Rare Earth. 28, 251 (2020).CrossRef
34.
go back to reference M. Baazaoui, S. Zemni, M. Boudard, H. Rahmouni, M. Oumezzine, and A. Selmi, Conduction Mechanism in La0.67Ba0.33Mn1-xFexO3 (x = 0-0.2) Perovskites. Phys. B Condens. Matter. 405, 1470–1474 (2010).CrossRef M. Baazaoui, S. Zemni, M. Boudard, H. Rahmouni, M. Oumezzine, and A. Selmi, Conduction Mechanism in La0.67Ba0.33Mn1-xFexO3 (x = 0-0.2) Perovskites. Phys. B Condens. Matter. 405, 1470–1474 (2010).CrossRef
35.
go back to reference M.K. Verma, N.D. Sharma, S. Sharma, N. Choudhary, and D. Singh, High Magnetoresistance in La0.5Nd0.15Ca0.25A0.1MnO3 (A = Ca, Li, Na, K) CMR Manganites: Correlation Between their Magnetic and Electrical Properties. Mater. Res. Bull. 125, 110813 (2020).CrossRef M.K. Verma, N.D. Sharma, S. Sharma, N. Choudhary, and D. Singh, High Magnetoresistance in La0.5Nd0.15Ca0.25A0.1MnO3 (A = Ca, Li, Na, K) CMR Manganites: Correlation Between their Magnetic and Electrical Properties. Mater. Res. Bull. 125, 110813 (2020).CrossRef
Metadata
Title
The Effects of Mo Partial Substitution at the Mn Site on Electroresistance Behaviour in La0.7Ba0.3Mn1−xMoxO3 (x = 0, 0.01, 0.02, 0.03, 0.04) Manganites
Authors
N. Ibrahim
M. S. Sazali
Z. Mohamed
R. Rozilah
Publication date
18-10-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09976-y

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue