Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

25-10-2022 | Original Research Article

Optimization of CdZnyS1−y Buffer Layer Properties for a ZnO/CZTSxSe1−x/Mo Solar Cell to Enhance Conversion Efficiency

Authors: M. Boubakeur, A. Aissat, L. Chenini, M. Ben Arbia, H. Maaref, J. P. Vilcot

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we focus on optimizing the solar performance of a CZTSSe-based solar cell by adjusting the zinc and sulfur concentrations in the CdZnS buffer layer and the quinary absorber CZTSSe. The state-of-the-art work is to combine the ZnS and CdS binaries into CdZnS ternary used as a buffer layer in both CZTS- and CZTSSe-based solar cells. An overall study of its properties is carried out taking into account the strain present at the heterointerface, defect density, bandgap energy and the interface state density. As a result, the highest efficiency η = 14.59% was achieved with a sulfur content of 0.55 and a zinc content of 0.70 to bandgap energies of 1.25 and 3.12 eV for CZTSSe and CdZnS materials, respectively. Our simulation is validated by the reproducibility of solar cell performance under the same conditions, and an enhancement of the conversion efficiency of about Δη = 5.55% will be achieved when the CdS layer is replaced by CdZnS in the ZnO/CdS/CZTSSe/Mo/Glass solar device.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Cherouana and R. Labbani, Study of CZTS and CZTSSe Solar Cells for Buffer Layers Selection. Appl. Surf. Sci. 424, 251–255 (2017).CrossRef A. Cherouana and R. Labbani, Study of CZTS and CZTSSe Solar Cells for Buffer Layers Selection. Appl. Surf. Sci. 424, 251–255 (2017).CrossRef
2.
go back to reference T.S. Lopes, J.M. Cunha, S. Bose, J.R. Barbosa, J. Borme, O. Donzel-Gargand, and P.M. Salomé, Rear Optical Reflection and Passivation Using a Nanopatterned Metal/Dielectric Structure in Thin-Film Solar Cells. IEEE J. Photovolt. 9, 1421–1427 (2019).CrossRef T.S. Lopes, J.M. Cunha, S. Bose, J.R. Barbosa, J. Borme, O. Donzel-Gargand, and P.M. Salomé, Rear Optical Reflection and Passivation Using a Nanopatterned Metal/Dielectric Structure in Thin-Film Solar Cells. IEEE J. Photovolt. 9, 1421–1427 (2019).CrossRef
3.
go back to reference S. Tripathi, P. Lohia, and D.K. Dwivedi, Contribution to Sustainable and Environmental Friendly Non-toxic CZTS Solar Cell with an Innovative Hybrid Buffer Layer. Sol. Energy 204, 748–760 (2020).CrossRef S. Tripathi, P. Lohia, and D.K. Dwivedi, Contribution to Sustainable and Environmental Friendly Non-toxic CZTS Solar Cell with an Innovative Hybrid Buffer Layer. Sol. Energy 204, 748–760 (2020).CrossRef
4.
go back to reference K. Patel, N. G. Dhere, V. Kheraj, and D. Shah, Cu2ZnSnS4 Thin Film Solar Cell: Fabrication and Characterization. Electrical and Electronic Devices, Circuits, and Materials: Technological Challenges and Solutions, 411–426 (2021). K. Patel, N. G. Dhere, V. Kheraj, and D. Shah, Cu2ZnSnS4 Thin Film Solar Cell: Fabrication and Characterization. Electrical and Electronic Devices, Circuits, and Materials: Technological Challenges and Solutions, 411–426 (2021).
5.
go back to reference H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, Development of CZTS-Based Thin Film Solar Cells. Thin Solid Films 517, 2455–2460 (2009).CrossRef H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, Development of CZTS-Based Thin Film Solar Cells. Thin Solid Films 517, 2455–2460 (2009).CrossRef
6.
go back to reference E. Ojeda-Durán, K. Monfil-Leyva, J. Andrade-Arvizu, I. Becerril-Romero, Y. Sánchez, R. Fonoll-Rubio, and E. Saucedo, CZTS Solar Cells and the Possibility of Increasing VOC Using Evaporated Al2O3 at the CZTS/CdS Interface. Sol. Energy 198, 696–703 (2020).CrossRef E. Ojeda-Durán, K. Monfil-Leyva, J. Andrade-Arvizu, I. Becerril-Romero, Y. Sánchez, R. Fonoll-Rubio, and E. Saucedo, CZTS Solar Cells and the Possibility of Increasing VOC Using Evaporated Al2O3 at the CZTS/CdS Interface. Sol. Energy 198, 696–703 (2020).CrossRef
7.
go back to reference Z. Shi, D. Attygalle, and A.H. Jayatissa, Kesterite-Based Next Generation High Performance Thin Film Solar Cell: Current Progress and Future Prospects. J. Mater. Sci. Mater. Electron. 28, 2290–2306 (2017).CrossRef Z. Shi, D. Attygalle, and A.H. Jayatissa, Kesterite-Based Next Generation High Performance Thin Film Solar Cell: Current Progress and Future Prospects. J. Mater. Sci. Mater. Electron. 28, 2290–2306 (2017).CrossRef
8.
go back to reference W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, and D.B. Mitzi, Device Characteristics of CZTSSe Thin-Film Solar Cells with 126% Efficiency. Adv. Energy Mater. 4, 1301465 (2014).CrossRef W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, and D.B. Mitzi, Device Characteristics of CZTSSe Thin-Film Solar Cells with 126% Efficiency. Adv. Energy Mater. 4, 1301465 (2014).CrossRef
9.
go back to reference X. Min, L. Guo, Q. Yu, B. Duan, J. Shi, H. Wu, and Q. Meng, Enhancing Back Interfacial Contact by In-situ Prepared MoO3 thin layer for Cu2ZnSnSxSe4−x Solar Cells. Sci. China Mater. 62, 797–802 (2019).CrossRef X. Min, L. Guo, Q. Yu, B. Duan, J. Shi, H. Wu, and Q. Meng, Enhancing Back Interfacial Contact by In-situ Prepared MoO3 thin layer for Cu2ZnSnSxSe4x Solar Cells. Sci. China Mater. 62, 797–802 (2019).CrossRef
10.
go back to reference D.B. Khadka, S. Kim, and J. Kim, Effects of Ge Alloying on Device Characteristics of Kesterite-Based CZTSSe Thin Film Solar Cells. J. Phys. Chem. C 120, 4251–4258 (2016).CrossRef D.B. Khadka, S. Kim, and J. Kim, Effects of Ge Alloying on Device Characteristics of Kesterite-Based CZTSSe Thin Film Solar Cells. J. Phys. Chem. C 120, 4251–4258 (2016).CrossRef
11.
go back to reference J. Eun Song, S. Kyung Hwang, J. Hyun Park, and J. Young Kim, A Thin In2S3 Interfacial Layer for Reducing Defects and Roughness of Cu2ZnSn (S, Se) 4 Thin-Film Solar Cells. ChemSusChem 15, e202102350 (2022).CrossRef J. Eun Song, S. Kyung Hwang, J. Hyun Park, and J. Young Kim, A Thin In2S3 Interfacial Layer for Reducing Defects and Roughness of Cu2ZnSn (S, Se) 4 Thin-Film Solar Cells. ChemSusChem 15, e202102350 (2022).CrossRef
12.
go back to reference J. Wang, J. Zhou, X. Xu, F. Meng, C. Xiang, L. Lou, and Q. Meng, Ge‐bidirectional Diffusion to Simultaneously Engineer Back Interface and Bulk Defects in the Absorber for Efficient CZTSSe Solar Cells. Adv. Mater. 2202858 (2022). J. Wang, J. Zhou, X. Xu, F. Meng, C. Xiang, L. Lou, and Q. Meng, Ge‐bidirectional Diffusion to Simultaneously Engineer Back Interface and Bulk Defects in the Absorber for Efficient CZTSSe Solar Cells. Adv. Mater. 2202858 (2022).
13.
go back to reference S. Giraldo, M. Neuschitzer, T. Thersleff, S. López-Marino, Y. Sánchez, H. Xie, and E. Saucedo, Large, Efficiency Improvement in Cu2ZnSnSe4 Solar Cells by Introducing a Superficial Ge Nanolayer. Adv. Energy Mater. 5, 1501070 (2015).CrossRef S. Giraldo, M. Neuschitzer, T. Thersleff, S. López-Marino, Y. Sánchez, H. Xie, and E. Saucedo, Large, Efficiency Improvement in Cu2ZnSnSe4 Solar Cells by Introducing a Superficial Ge Nanolayer. Adv. Energy Mater. 5, 1501070 (2015).CrossRef
14.
go back to reference M. Neuschitzer, M.E. Rodriguez, M. Guc, J.A. Marquez, S. Giraldo, I. Forbes, and E. Saucedo, Revealing the Beneficial Effects of Ge Doping on Cu2ZnSnSe4 Thin Film Solar Cells. J. Mater. Chem. A 6, 11759–11772 (2018).CrossRef M. Neuschitzer, M.E. Rodriguez, M. Guc, J.A. Marquez, S. Giraldo, I. Forbes, and E. Saucedo, Revealing the Beneficial Effects of Ge Doping on Cu2ZnSnSe4 Thin Film Solar Cells. J. Mater. Chem. A 6, 11759–11772 (2018).CrossRef
15.
go back to reference K. Sun, C. Yan, J. Huang, F. Liu, J. Li, H. Sun, and X. Hao, Beyond 10% Efficiency Cu2ZnSnSe4 Solar Cells Enabled by Modifying the Heterojunction Interface Chemistry. J. Mater. Chem. A 7, 27289–27296 (2019).CrossRef K. Sun, C. Yan, J. Huang, F. Liu, J. Li, H. Sun, and X. Hao, Beyond 10% Efficiency Cu2ZnSnSe4 Solar Cells Enabled by Modifying the Heterojunction Interface Chemistry. J. Mater. Chem. A 7, 27289–27296 (2019).CrossRef
16.
go back to reference M. Chadel, A. Chadel, M.M. Bouzaki, M. Aillerie, B. Benyoucef, and J.P. Charles, Optimization by Simulation of the Nature of the Buffer, the Gap Profile of the Absorber and the Thickness of the Various Layers in CZTSSe Solar Cells. Mater. Res. Express 4, 115503 (2017).CrossRef M. Chadel, A. Chadel, M.M. Bouzaki, M. Aillerie, B. Benyoucef, and J.P. Charles, Optimization by Simulation of the Nature of the Buffer, the Gap Profile of the Absorber and the Thickness of the Various Layers in CZTSSe Solar Cells. Mater. Res. Express 4, 115503 (2017).CrossRef
17.
go back to reference M. Yousefi, M. Minbashi, Z. Monfared, N. Memarian, and A. Hajjiah, Improving the Efficiency of CZTSSe Solar Cells by Engineering the Lattice Defects in the Absorber Layer. Sol. Energy 208, 884–893 (2020).CrossRef M. Yousefi, M. Minbashi, Z. Monfared, N. Memarian, and A. Hajjiah, Improving the Efficiency of CZTSSe Solar Cells by Engineering the Lattice Defects in the Absorber Layer. Sol. Energy 208, 884–893 (2020).CrossRef
18.
go back to reference B. Eghbalifar, H. Izadneshan, G. Solookinejad, and L. Separdar, Investigating In2S3 as the Buffer Layer in CZTSSe Solar Cells Using Simulation and Experimental Approaches. Solid State Commun. 343, 114654 (2022).CrossRef B. Eghbalifar, H. Izadneshan, G. Solookinejad, and L. Separdar, Investigating In2S3 as the Buffer Layer in CZTSSe Solar Cells Using Simulation and Experimental Approaches. Solid State Commun. 343, 114654 (2022).CrossRef
19.
go back to reference T. Geremew and T. Abza, Microstructural and Optical Characterization of Heterostructures of ZnS/CdS and CdS/ZnS Synthesized by Chemical Bath Deposition Method. Adv. Mater. Sci. Eng. 1–11 (2020). T. Geremew and T. Abza, Microstructural and Optical Characterization of Heterostructures of ZnS/CdS and CdS/ZnS Synthesized by Chemical Bath Deposition Method. Adv. Mater. Sci. Eng. 1–11 (2020).
20.
go back to reference H. Benamra, H. Saidi, A. Attaf, M.S. Aida, A. Derbali, and N. Attaf, Physical Properties of Al-doped ZnS Thin Films Prepared by Ultrasonic Spray Technique. Surf. Interfaces 21, 100645 (2020).CrossRef H. Benamra, H. Saidi, A. Attaf, M.S. Aida, A. Derbali, and N. Attaf, Physical Properties of Al-doped ZnS Thin Films Prepared by Ultrasonic Spray Technique. Surf. Interfaces 21, 100645 (2020).CrossRef
21.
go back to reference A. Aissat, H. Arbouz, and J.P. Vilcot, Optimization and Improvement of a Front Graded Bandgap CuInGaSe2 Solar Cell. Sol. Energy Mater. Sol. Cells 180, 381–385 (2018).CrossRef A. Aissat, H. Arbouz, and J.P. Vilcot, Optimization and Improvement of a Front Graded Bandgap CuInGaSe2 Solar Cell. Sol. Energy Mater. Sol. Cells 180, 381–385 (2018).CrossRef
22.
go back to reference L. Chenini, A. Aissat, and J.P. Vilcot, Optimization of Inter-Subband Absorption of InGaAsSb/GaAs Quantum Wells Structure. Superlattices Microstruct. 129, 115–123 (2019).CrossRef L. Chenini, A. Aissat, and J.P. Vilcot, Optimization of Inter-Subband Absorption of InGaAsSb/GaAs Quantum Wells Structure. Superlattices Microstruct. 129, 115–123 (2019).CrossRef
23.
go back to reference M. Boubakeur, A. Aissat, M.B. Arbia, H. Maaref, and J.P. Vilcot, Enhancement of the Efficiency of Ultra-thin CIGS/Si Structure for Solar Cell Applications. Superlattices Microstruct. 138, 106377 (2020).CrossRef M. Boubakeur, A. Aissat, M.B. Arbia, H. Maaref, and J.P. Vilcot, Enhancement of the Efficiency of Ultra-thin CIGS/Si Structure for Solar Cell Applications. Superlattices Microstruct. 138, 106377 (2020).CrossRef
24.
go back to reference F.A. Jhuma, M.Z. Shaily, and M.J. Rashid, Towards High-Efficiency CZTS Solar Cell Through Buffer Layer Optimization. Mater. Renew. Sustain. Energy 8, 1–7 (2019).CrossRef F.A. Jhuma, M.Z. Shaily, and M.J. Rashid, Towards High-Efficiency CZTS Solar Cell Through Buffer Layer Optimization. Mater. Renew. Sustain. Energy 8, 1–7 (2019).CrossRef
25.
go back to reference M. Minbashi, A. Ghobadi, M.H. Ehsani, H.R. Dizaji, and N. Memarian, Simulation of High Efficiency SnS-Based Solar Cells with SCAPS. Sol. Energy 176, 520–525 (2018).CrossRef M. Minbashi, A. Ghobadi, M.H. Ehsani, H.R. Dizaji, and N. Memarian, Simulation of High Efficiency SnS-Based Solar Cells with SCAPS. Sol. Energy 176, 520–525 (2018).CrossRef
26.
go back to reference M. Burgelman, J. Verschraegen, S. Degrave, and P. Nollet, Modeling Thin-Film PV Devices. Prog. Photovolt. Res. Appl. 12, 143–153 (2004).CrossRef M. Burgelman, J. Verschraegen, S. Degrave, and P. Nollet, Modeling Thin-Film PV Devices. Prog. Photovolt. Res. Appl. 12, 143–153 (2004).CrossRef
27.
go back to reference M.B. Arbia, H. Helal, F. Saidi, and H. Maaref, Investigation of 19 μm GINA Simulated as Intrinsic Layer in a GaAs Homojunction: From 25% Towards 324% Conversion Yield. J. Electron. Mater. 49, 6308–6316 (2020).CrossRef M.B. Arbia, H. Helal, F. Saidi, and H. Maaref, Investigation of 19 μm GINA Simulated as Intrinsic Layer in a GaAs Homojunction: From 25% Towards 324% Conversion Yield. J. Electron. Mater. 49, 6308–6316 (2020).CrossRef
28.
go back to reference T. Enkhbat, S. Kim, and J. Kim, Device Characteristics of Band Gap Tailored 10.04% Efficient CZTSSe Solar Cells Sprayed from Water-Based Solution. ACS Appl. Mater. Interfaces 11, 36735–36741 (2019).CrossRef T. Enkhbat, S. Kim, and J. Kim, Device Characteristics of Band Gap Tailored 10.04% Efficient CZTSSe Solar Cells Sprayed from Water-Based Solution. ACS Appl. Mater. Interfaces 11, 36735–36741 (2019).CrossRef
29.
go back to reference O. Gunawan, T. Gokmen, and D.B. Mitzi, Suns-VOC Characteristics of High Performance Kesterite Solar Cells. J. Appl. Phys. 116, 084504 (2014).CrossRef O. Gunawan, T. Gokmen, and D.B. Mitzi, Suns-VOC Characteristics of High Performance Kesterite Solar Cells. J. Appl. Phys. 116, 084504 (2014).CrossRef
Metadata
Title
Optimization of CdZnyS1−y Buffer Layer Properties for a ZnO/CZTSxSe1−x/Mo Solar Cell to Enhance Conversion Efficiency
Authors
M. Boubakeur
A. Aissat
L. Chenini
M. Ben Arbia
H. Maaref
J. P. Vilcot
Publication date
25-10-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09986-w

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue