Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

11-10-2022 | Original Research Article

Thermoelectric Performance of n-Type Polycrystalline Bi2Te3 by Melt Spinning Following High-Pressure Sintering

Authors: Fang Wu, Wei Wang

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An n-type polycrystalline Bi2Te3 bulk sample with nanostructure was successfully fabricated by melt spinning combined with high-pressure sintering (MS + HPS). The hydrothermal method combined with hot pressing (HM + HP), the hydrothermal method combined with high-pressure sintering (HM + HP) and melt spinning combined with hot pressing (MS + HPS) are all used to synthesize Bi2Te3 bulk samples. The results show that the bulk sample prepared from MS + HPS has a nanograin microstructure with sizes ranging from 100 nm to 300 nm embedded in the matrix, which is beneficial to improve the thermoelectric performance of the materials. The electrical resistivity of the MS samples is not only lower than the commercial ingots fabricated by zone melting but also lower than other reports on MS. In addition, the thermal conductivity of the MS + HPS sample is equivalent to that of the HM + HP sample from 448 K to 498 K due to higher pressure and the nanograins embedded in the matrix. As a result, the ZT values of the MS + HPS sample are higher than that of the other samples and the maximum ZT value of MS + HPS sample reaches 0.74 at 498 K, which is comparable to the maximum value of commercially prepared zone-melted Bi2Te3 ingots. Melt spinning combined with high-pressure sintering proved to be an effective alternative way to improve thermoelectric performance of thermoelectric nanocrystalline bulk materials.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Mao, G. Chen, and Z.F. Ren, Thermoelectric Cooling Materials. Nat. Mater. 20, 454 (2021).CrossRef J. Mao, G. Chen, and Z.F. Ren, Thermoelectric Cooling Materials. Nat. Mater. 20, 454 (2021).CrossRef
2.
go back to reference X.F. Wang and M. Lundstrom, Limitations of zT as a Figure of Merit for Nanostructured Thermoelectric Materials. J. Appl. Phys. 126, 195703 (2019).CrossRef X.F. Wang and M. Lundstrom, Limitations of zT as a Figure of Merit for Nanostructured Thermoelectric Materials. J. Appl. Phys. 126, 195703 (2019).CrossRef
3.
go back to reference Z. Ma, J.T. We, P.S. Song, M.L. Zhang, L.L. Yang, J. Ma, W. Liu, F.H. Yang, and X.D. Wang, Review of Experimental Approaches for Improving zT of Thermoelectric Materials. Mater. Sci. Semicond. Proc. 121, 105303 (2021).CrossRef Z. Ma, J.T. We, P.S. Song, M.L. Zhang, L.L. Yang, J. Ma, W. Liu, F.H. Yang, and X.D. Wang, Review of Experimental Approaches for Improving zT of Thermoelectric Materials. Mater. Sci. Semicond. Proc. 121, 105303 (2021).CrossRef
4.
go back to reference B. Xu, T.L. Feng, Z. Li, W. Zheng, and Y. Wu, Large-Scale, Solution-Synthesized Nanostructured Composites for Thermoelectric Applications. Adv. Mater. 30, 1801904 (2018).CrossRef B. Xu, T.L. Feng, Z. Li, W. Zheng, and Y. Wu, Large-Scale, Solution-Synthesized Nanostructured Composites for Thermoelectric Applications. Adv. Mater. 30, 1801904 (2018).CrossRef
5.
go back to reference I.T. Witting, F. Ricci, T.C. Chasapis, G. Hautier, and G.J. Snyder, The Thermoelectric Properties of n-type Bismuth Telluride: Bismuth Selenide Alloys Bi2Te3−xSex. Research 15, 4361703 (2020). I.T. Witting, F. Ricci, T.C. Chasapis, G. Hautier, and G.J. Snyder, The Thermoelectric Properties of n-type Bismuth Telluride: Bismuth Selenide Alloys Bi2Te3−xSex. Research 15, 4361703 (2020).
6.
go back to reference H. Mamur, M.R.A. Bhuiyan, F. Korkmaz, and M. Ni, A Review on Bismuth Telluride (Bi2Te3) Nanostructure for Thermoelectric Applications. Renew. Energy Rev. 82, 4159 (2018).CrossRef H. Mamur, M.R.A. Bhuiyan, F. Korkmaz, and M. Ni, A Review on Bismuth Telluride (Bi2Te3) Nanostructure for Thermoelectric Applications. Renew. Energy Rev. 82, 4159 (2018).CrossRef
7.
go back to reference G.S. Hegde and A.N. Prabhu, A Review on Doped/Composite Bismuth Chalcogenide Compounds for Thermoelectric Device Applications: Various Synthesis Techniques and Challenges. J. Electron. Mater. 51, 2014 (2022).CrossRef G.S. Hegde and A.N. Prabhu, A Review on Doped/Composite Bismuth Chalcogenide Compounds for Thermoelectric Device Applications: Various Synthesis Techniques and Challenges. J. Electron. Mater. 51, 2014 (2022).CrossRef
8.
go back to reference Y.W. Zhang, X.P. Jia, L. Deng, X. Guo, H.R. Sun, B. Sun, B.W. Liu, and H.G. Ma, Effect of High Pressure Sintering and Annealing on Microstructure and Thermoelectric Properties of Nanocrystalline Bi2Te2.7Se0.3 doped with Gd. J. Alloys Compd. 514, 632 (2015). Y.W. Zhang, X.P. Jia, L. Deng, X. Guo, H.R. Sun, B. Sun, B.W. Liu, and H.G. Ma, Effect of High Pressure Sintering and Annealing on Microstructure and Thermoelectric Properties of Nanocrystalline Bi2Te2.7Se0.3 doped with Gd. J. Alloys Compd. 514, 632 (2015).
9.
go back to reference P. Zou, G.Y. Xun, S. Wang, P.L. Chen, and F.Z. Huang, Effect of High Pressure Sintering and Annealing on Microstructure and Thermoelectric Properties of Nanocrystalline Bi2Te2.7Se0.3 Doped with Gd. Prog. Nat. Sci. 24, 210 (2014).CrossRef P. Zou, G.Y. Xun, S. Wang, P.L. Chen, and F.Z. Huang, Effect of High Pressure Sintering and Annealing on Microstructure and Thermoelectric Properties of Nanocrystalline Bi2Te2.7Se0.3 Doped with Gd. Prog. Nat. Sci. 24, 210 (2014).CrossRef
10.
go back to reference N.V. Morozova, I.V. Korobeinikov, and S.V. Ovsyannikov, Strategies and Challenges of High-Pressure Methods Applied to Thermoelectric Materials. J. Appl. Phys. 125, 220901 (2019).CrossRef N.V. Morozova, I.V. Korobeinikov, and S.V. Ovsyannikov, Strategies and Challenges of High-Pressure Methods Applied to Thermoelectric Materials. J. Appl. Phys. 125, 220901 (2019).CrossRef
11.
go back to reference Y.W. Zhang, H.G. Ma, B. Sun, B.W. Liu, H.Q. Liu, L.J. Kong, B.M. Liu, X.P. Jia, and X. Chen, Thermoelectric Performance of Graphene Composited BiSbTe Bulks by High Pressure Synthesis. J. Alloys Compd. 344, 715 (2017). Y.W. Zhang, H.G. Ma, B. Sun, B.W. Liu, H.Q. Liu, L.J. Kong, B.M. Liu, X.P. Jia, and X. Chen, Thermoelectric Performance of Graphene Composited BiSbTe Bulks by High Pressure Synthesis. J. Alloys Compd. 344, 715 (2017).
12.
go back to reference Q.R. Tao, R.G. Deng, J.J. Li, Y.G. Yan, X.L. Su, P.F.P. Poudeu, and X.F. Tang, Enhanced Thermoelectric Performance of Bi0.46Sb1.54Te3 Nanostructured with CdTe. ACS Appl. Mater. Interfaces 12, 26330 (2020).CrossRef Q.R. Tao, R.G. Deng, J.J. Li, Y.G. Yan, X.L. Su, P.F.P. Poudeu, and X.F. Tang, Enhanced Thermoelectric Performance of Bi0.46Sb1.54Te3 Nanostructured with CdTe. ACS Appl. Mater. Interfaces 12, 26330 (2020).CrossRef
13.
go back to reference D. Zhang, J.D. Lei, W.B. Guan, Z. Ma, C. Wang, L.J. Zhang, Z.X. Cheng, and Y.X. Wang, Enhanced Thermoelectric Performance of BiSbTe Alloy: Energy Filtering Effect of Nanoprecipitates and the Effect of SiC Nanoparticles. J. Alloys Compd. 784, 1276 (2019).CrossRef D. Zhang, J.D. Lei, W.B. Guan, Z. Ma, C. Wang, L.J. Zhang, Z.X. Cheng, and Y.X. Wang, Enhanced Thermoelectric Performance of BiSbTe Alloy: Energy Filtering Effect of Nanoprecipitates and the Effect of SiC Nanoparticles. J. Alloys Compd. 784, 1276 (2019).CrossRef
14.
go back to reference O. Meroz, N. Elkabets, and Y. Gelbstein, Enhanced Thermoelectric Properties of n-type Bi2Te3−xSex Alloys Following Melt-Spinning. ACS Appl. Energy Mater. 3, 2090 (2020).CrossRef O. Meroz, N. Elkabets, and Y. Gelbstein, Enhanced Thermoelectric Properties of n-type Bi2Te3−xSex Alloys Following Melt-Spinning. ACS Appl. Energy Mater. 3, 2090 (2020).CrossRef
15.
go back to reference M.Y. Kim, D.W. Chun, R. Hasan, and S.l Kim, J. H. Lim, S. M. Choi, H. S. Kim, K. H. Lee, Control of Cu-Doping Behavior in n-Type Cu0.01Bi1.99Te2.7Se0.3 Polycrystalline Bulk Via Fabrication Technique Change. J. Mater. Res. Technol. 14, 765 (2021).CrossRef M.Y. Kim, D.W. Chun, R. Hasan, and S.l Kim, J. H. Lim, S. M. Choi, H. S. Kim, K. H. Lee, Control of Cu-Doping Behavior in n-Type Cu0.01Bi1.99Te2.7Se0.3 Polycrystalline Bulk Via Fabrication Technique Change. J. Mater. Res. Technol. 14, 765 (2021).CrossRef
16.
go back to reference H.Y. Cho, J.H. Kim, S.Y. Back, K.G. Ahn, J.S. Rhyee, and S.D. Park, Enhancement of Thermoelectric Properties in CuI-Doped Bi2Te2.7Se0.3 by Hot-Deformation. J. Alloys Compd. 531, 731 (2018). H.Y. Cho, J.H. Kim, S.Y. Back, K.G. Ahn, J.S. Rhyee, and S.D. Park, Enhancement of Thermoelectric Properties in CuI-Doped Bi2Te2.7Se0.3 by Hot-Deformation. J. Alloys Compd. 531, 731 (2018).
17.
go back to reference Q. Zhao, and Y.G. Wang, A Facile Two-Step Hydrothermal Route for the Synthesis of Low-Dimensional Structured Bi2Te3 Nanocrystals with Various Morphologies. J. Alloys Compd. 57, 497 (2010). Q. Zhao, and Y.G. Wang, A Facile Two-Step Hydrothermal Route for the Synthesis of Low-Dimensional Structured Bi2Te3 Nanocrystals with Various Morphologies. J. Alloys Compd. 57, 497 (2010).
18.
go back to reference Y. Deng, C.W. Nan, and L. Guo, A Novel Approach to Bi2Te3 Nanorods by Controlling Oriented Attachment. Chem. Phys. Lett. 383, 572 (2004).CrossRef Y. Deng, C.W. Nan, and L. Guo, A Novel Approach to Bi2Te3 Nanorods by Controlling Oriented Attachment. Chem. Phys. Lett. 383, 572 (2004).CrossRef
19.
go back to reference C.V. Manzano and M. Martin-Gonzalez, Electro Deposition of V–VI Nanowires and Their Thermoelectric Properties. Front. Chem. 7, 516 (2019).CrossRef C.V. Manzano and M. Martin-Gonzalez, Electro Deposition of V–VI Nanowires and Their Thermoelectric Properties. Front. Chem. 7, 516 (2019).CrossRef
20.
go back to reference S.Y. Wang, W.J. Xie, H. Li, X.F. Tang, and Q.J. Zhang, Effects of Cooling Rate on Thermoelectric Properties of n-Type Bi2(Se0.4Te0.6)3 Compounds. J. Electron. Mater. 40, 1150 (2011).CrossRef S.Y. Wang, W.J. Xie, H. Li, X.F. Tang, and Q.J. Zhang, Effects of Cooling Rate on Thermoelectric Properties of n-Type Bi2(Se0.4Te0.6)3 Compounds. J. Electron. Mater. 40, 1150 (2011).CrossRef
21.
go back to reference Y. Zheng, H.Y. Xie, Q. Zhang, A. Suwardi, X. Cheng, Y.F. Zhang, W. Shu, X.J. Wan, Z.L. Yang, Z.H. Liu, and X.F. Tang, Unraveling the Critical Role of Melt-Spinning Atmosphere in Enhancing the Thermoelectric Performance of p-type Bi0.52Sb1.48Te3 alloys. ACS Appl. Mater. Interfaces 12, 36186 (2020).CrossRef Y. Zheng, H.Y. Xie, Q. Zhang, A. Suwardi, X. Cheng, Y.F. Zhang, W. Shu, X.J. Wan, Z.L. Yang, Z.H. Liu, and X.F. Tang, Unraveling the Critical Role of Melt-Spinning Atmosphere in Enhancing the Thermoelectric Performance of p-type Bi0.52Sb1.48Te3 alloys. ACS Appl. Mater. Interfaces 12, 36186 (2020).CrossRef
22.
go back to reference X.Z. Cai, X. Fan, Z.Z. Rong, F. Yang, Z.H. Gan, and G.Q. Li, Improved Thermoelectric Properties of Bi2Te3-xSex Alloys by Melt Spinning and Resistance Pressing Sintering. J. Phys. D Appl. Phys. 47, 115101 (2014).CrossRef X.Z. Cai, X. Fan, Z.Z. Rong, F. Yang, Z.H. Gan, and G.Q. Li, Improved Thermoelectric Properties of Bi2Te3-xSex Alloys by Melt Spinning and Resistance Pressing Sintering. J. Phys. D Appl. Phys. 47, 115101 (2014).CrossRef
23.
go back to reference S.Y. Wang, W.J. Xie, H. Li, and X.F. Tang, Enhanced Performances of Melt Spun Bi2(Te, Se)3 for n-type Thermoelectric Legs. Intermetallics 19, 1024 (2011).CrossRef S.Y. Wang, W.J. Xie, H. Li, and X.F. Tang, Enhanced Performances of Melt Spun Bi2(Te, Se)3 for n-type Thermoelectric Legs. Intermetallics 19, 1024 (2011).CrossRef
24.
go back to reference Y.W. Zhang, X.P. Jia, L. Deng, X. Guo, H.R. Sun, B. Sun, B.W. Liu, and H.G. Ma, Evolution of Thermoelectric Properties and Anisotropic Features of Bi2Te3 Prepared by High Pressure and High Temperature. J. Alloys Compd. 632, 514 (2015).CrossRef Y.W. Zhang, X.P. Jia, L. Deng, X. Guo, H.R. Sun, B. Sun, B.W. Liu, and H.G. Ma, Evolution of Thermoelectric Properties and Anisotropic Features of Bi2Te3 Prepared by High Pressure and High Temperature. J. Alloys Compd. 632, 514 (2015).CrossRef
25.
go back to reference S.F. Fan, J.N. Zhao, J. Guo, Q.Y. Yan, J. Ma, and H.H. Hng, P-type Bi0.4Sb1.6Te3 Nanocomposites with Enhanced Figure of Merit. Appl. Phys. Lett. 96, 182104 (2010).CrossRef S.F. Fan, J.N. Zhao, J. Guo, Q.Y. Yan, J. Ma, and H.H. Hng, P-type Bi0.4Sb1.6Te3 Nanocomposites with Enhanced Figure of Merit. Appl. Phys. Lett. 96, 182104 (2010).CrossRef
26.
go back to reference X.A. Fan, X.Z. Cai, Z.Z. Rong, F. Yang, G.Q. Li, and Z.H. Gan, Resistance Pressing Sintering: A Simple, Economical and Practical Technique and its Application to p-type (Bi, Sb)2Te3 thermoelectric materials. J. Alloys Compd. 607, 91 (2014).CrossRef X.A. Fan, X.Z. Cai, Z.Z. Rong, F. Yang, G.Q. Li, and Z.H. Gan, Resistance Pressing Sintering: A Simple, Economical and Practical Technique and its Application to p-type (Bi, Sb)2Te3 thermoelectric materials. J. Alloys Compd. 607, 91 (2014).CrossRef
27.
go back to reference P. Zou, G.Y. Xu, and S. Wang, Enhanced Thermoelectric Performance in n-type Bi2Te2.95Se0.05 Bulks Fabricated by High Pressure Sintering Technique. Mater. Res. Bull. 60, 808 (2014).CrossRef P. Zou, G.Y. Xu, and S. Wang, Enhanced Thermoelectric Performance in n-type Bi2Te2.95Se0.05 Bulks Fabricated by High Pressure Sintering Technique. Mater. Res. Bull. 60, 808 (2014).CrossRef
28.
go back to reference Y.C. Dou, X.Y. Qin, D. Li, L. Li, T.H. Zou, and Q.Q. Wang, Enhanced Thermopower and Thermoelectric Performance Through Energy Filtering of Carriers in (Bi2Te3)0.2(Sb2Te3)0.8 bulk Alloy Embedded with Amorphous SiO2 Nanoparticles. J. Appl. Phys. 114, 044906 (2013).CrossRef Y.C. Dou, X.Y. Qin, D. Li, L. Li, T.H. Zou, and Q.Q. Wang, Enhanced Thermopower and Thermoelectric Performance Through Energy Filtering of Carriers in (Bi2Te3)0.2(Sb2Te3)0.8 bulk Alloy Embedded with Amorphous SiO2 Nanoparticles. J. Appl. Phys. 114, 044906 (2013).CrossRef
29.
go back to reference J.F. Li, W.S. Liu, L.D. Zhao, and M. Zhou, High-Performance Nanostructured Thermoelectric Materials. NPG Asia Mater. 2, 152 (2010).CrossRef J.F. Li, W.S. Liu, L.D. Zhao, and M. Zhou, High-Performance Nanostructured Thermoelectric Materials. NPG Asia Mater. 2, 152 (2010).CrossRef
30.
go back to reference T. Nakamoto, S. Yokoyama, T. Takamatsu, K. Harata, K. Motomiya, H. Takahashi, Y. Miyazak, and K. Tohji, Aqueous Chemical Synthesis and Consolidation of Size Controlled Bi2Te3 Nanoparticles for Low-Cost and High Performance Thermoelectric Material. J. Electron. Mater. 48, 2700 (2019).CrossRef T. Nakamoto, S. Yokoyama, T. Takamatsu, K. Harata, K. Motomiya, H. Takahashi, Y. Miyazak, and K. Tohji, Aqueous Chemical Synthesis and Consolidation of Size Controlled Bi2Te3 Nanoparticles for Low-Cost and High Performance Thermoelectric Material. J. Electron. Mater. 48, 2700 (2019).CrossRef
31.
go back to reference D. Parker and D.J. Singh, Potential Thermoelectric Performance from Optimization of Hole-Doped Bi2 Se3. Phys. Rev. X 1, 021005 (2011). D. Parker and D.J. Singh, Potential Thermoelectric Performance from Optimization of Hole-Doped Bi2 Se3. Phys. Rev. X 1, 021005 (2011).
32.
go back to reference H.X. Qin, Y. Liu, Z.W. Zhang, Y.M. Wang, J. Cao, W. Cai, Q. Zhang, and J.H. Sui, Improved Thermoelectric Performance of p-type Bi0.5Sb1.5Te3 Through Mn Doping at Elevated Temperature. Mater. Today Phys. 6, 31 (2018).CrossRef H.X. Qin, Y. Liu, Z.W. Zhang, Y.M. Wang, J. Cao, W. Cai, Q. Zhang, and J.H. Sui, Improved Thermoelectric Performance of p-type Bi0.5Sb1.5Te3 Through Mn Doping at Elevated Temperature. Mater. Today Phys. 6, 31 (2018).CrossRef
33.
go back to reference M.M. Yang, T.C. Su, D.W. Zhou, H.Y. Zhu, S.S. Li, M.H. Hu, Q. Hu, H.G. Ma, and X.P. Jia, High-Pressure Synthesis and Thermoelectric Performance of Tellurium Doped with Bismuth. J. Mater. Sci. 52, 10526 (2017).CrossRef M.M. Yang, T.C. Su, D.W. Zhou, H.Y. Zhu, S.S. Li, M.H. Hu, Q. Hu, H.G. Ma, and X.P. Jia, High-Pressure Synthesis and Thermoelectric Performance of Tellurium Doped with Bismuth. J. Mater. Sci. 52, 10526 (2017).CrossRef
Metadata
Title
Thermoelectric Performance of n-Type Polycrystalline Bi2Te3 by Melt Spinning Following High-Pressure Sintering
Authors
Fang Wu
Wei Wang
Publication date
11-10-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09985-x

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue