Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

05-11-2022 | Original Research Article

Sensitive Glucose Biosensor Based on ZnO/CuO Nanorods

Authors: Haneen Ali Jasim, Osama Abdul Azeez Dakhil

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

ZnO/CuO nanorods (NRs) were synthesized in two stages to fabricate highly sensitive, stabilized, and ultrafast nonenzymatic glucose biosensors. The first stage was a simple low-cost two-step anodization method, and the second stage involved modification with ZnO NRs by a chemical bath deposition method. The obtained NRs were analyzed by x-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive x-ray spectroscopy, photoluminescence spectroscopy (PL), and electrical studies. The XRD patterns of pure CuO NRs show that all peaks may be attributed to the monoclinic phase of CuO. However, the XRD patterns of the ZnO/CuO heterojunctions show a hexagonal phase structure for the ZnO NRs. The ZnO hexagonal NRs are densely interwoven with CuO NRs with lengths of 200–300 nm, according to FE-SEM micrographs. The PL emission spectra were found to be in the 406 nm range. This corresponded to an increase in the energy gap to 3.1 eV. The I–V characteristics of the biosensors were measured and evaluated at various glucose concentrations to determine their sensitivity and repeatability. The modified electrode achieved a wide linear range from 0.5 mM to 2 mM with a very low limit of detection (LOD) of 0.11 μM. The developed sensor had high sensitivity of 2225.5 mA mM–1 cm–2. This result confirms that the sensor has considerable potential as a high-performance nonenzymatic glucose sensor using a simple, low-cost, and novel sensor design.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Heller and B. Feldman, Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 108, 2482 (2008).CrossRef A. Heller and B. Feldman, Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 108, 2482 (2008).CrossRef
2.
go back to reference N.J. Ronkainen, H.B. Halsall, and W.R. Heineman, Electrochemical biosensors. Chem. Soc. Rev. 39, 1747 (2010).CrossRef N.J. Ronkainen, H.B. Halsall, and W.R. Heineman, Electrochemical biosensors. Chem. Soc. Rev. 39, 1747 (2010).CrossRef
3.
go back to reference J. Su, J. Xu, Y. Chen, Y. Xiang, R. Yuan, and Y. Chai, Personal glucose sensor for point-of-care early cancer diagnosis. Chem. Commun. 48, 6909 (2012).CrossRef J. Su, J. Xu, Y. Chen, Y. Xiang, R. Yuan, and Y. Chai, Personal glucose sensor for point-of-care early cancer diagnosis. Chem. Commun. 48, 6909 (2012).CrossRef
4.
5.
go back to reference M. Wooten, S. Karra, M. Zhang, and W. Gorski, On the direct electron transfer, sensing, and enzyme activity in the glucose oxidase/carbon nanotubes system. Anal. Chem. 86, 752 (2014).CrossRef M. Wooten, S. Karra, M. Zhang, and W. Gorski, On the direct electron transfer, sensing, and enzyme activity in the glucose oxidase/carbon nanotubes system. Anal. Chem. 86, 752 (2014).CrossRef
6.
go back to reference C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu, Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem. 81, 2378 (2009).CrossRef C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu, Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem. 81, 2378 (2009).CrossRef
7.
go back to reference R.A. Sheldon and S.V. Pelt, Enzyme immobilization in biocatalysis: why what and how. Chem. Soc. Rev. 42, 6223 (2013).CrossRef R.A. Sheldon and S.V. Pelt, Enzyme immobilization in biocatalysis: why what and how. Chem. Soc. Rev. 42, 6223 (2013).CrossRef
8.
go back to reference K. Ariga, Q. Ji, T. Mori, M. Naito, Y. Yamauchi, H. Abe, and J.P. Hillab, Enzyme nano architectonics: organization and device application. Chem. Soc. Rev. 42, 6322 (2013).CrossRef K. Ariga, Q. Ji, T. Mori, M. Naito, Y. Yamauchi, H. Abe, and J.P. Hillab, Enzyme nano architectonics: organization and device application. Chem. Soc. Rev. 42, 6322 (2013).CrossRef
9.
go back to reference Z. Jin, S. Han, L. Zhang, S. Zheng, Y. Wang, and Y. Lin, Combined utilization of lipase-displaying pichia pastoris whole-cell biocatalysts to improve biodiesel production in co-solvent media. Bioresour. Technol. 130, 102 (2013).CrossRef Z. Jin, S. Han, L. Zhang, S. Zheng, Y. Wang, and Y. Lin, Combined utilization of lipase-displaying pichia pastoris whole-cell biocatalysts to improve biodiesel production in co-solvent media. Bioresour. Technol. 130, 102 (2013).CrossRef
10.
go back to reference J. Tang, Y. Wang, J. Li, P. Da, J. Genga, and G. Zheng, Sensitive enzymatic glucose detection by TiO2 nanowire photoelectrochemical biosensors. J. Mater. Chem. A 2, 6153 (2014).CrossRef J. Tang, Y. Wang, J. Li, P. Da, J. Genga, and G. Zheng, Sensitive enzymatic glucose detection by TiO2 nanowire photoelectrochemical biosensors. J. Mater. Chem. A 2, 6153 (2014).CrossRef
11.
go back to reference C. Guo, H. Huo, X. Han, C. Xu, and H. Li, Ni/CdS bifunctional Ti@TiO2 core-shell nanowire electrode for high-performance nonenzymatic glucose sensing. Anal. Chem. 86, 876 (2014).CrossRef C. Guo, H. Huo, X. Han, C. Xu, and H. Li, Ni/CdS bifunctional Ti@TiO2 core-shell nanowire electrode for high-performance nonenzymatic glucose sensing. Anal. Chem. 86, 876 (2014).CrossRef
12.
go back to reference X. Niu, M. Lan, H. Zhao, and C. Chen, Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures. Anal. Chem. 85, 3561 (2013).CrossRef X. Niu, M. Lan, H. Zhao, and C. Chen, Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures. Anal. Chem. 85, 3561 (2013).CrossRef
13.
go back to reference S. Park, T.D. Chung, and H.C. Kim, Nonenzymatic glucose detection using mesoporous platinum. Anal. Chem. 75, 3046 (2003).CrossRef S. Park, T.D. Chung, and H.C. Kim, Nonenzymatic glucose detection using mesoporous platinum. Anal. Chem. 75, 3046 (2003).CrossRef
14.
go back to reference C.C. Mayorga-Martinez, M. Guix, R.E. Madrid, and A. Merkoçi, Bimetallic nanowires as electrocatalysts for nonenzymatic realtime impedancimetric detection of glucose. Chem. Commun. 48, 1686 (2012).CrossRef C.C. Mayorga-Martinez, M. Guix, R.E. Madrid, and A. Merkoçi, Bimetallic nanowires as electrocatalysts for nonenzymatic realtime impedancimetric detection of glucose. Chem. Commun. 48, 1686 (2012).CrossRef
15.
go back to reference H. Bai, M. Han, Y. Du, J. Bao, and Z. Dai, Facile synthesis of porous tubular palladium nanostructures and their application in a nonenzymatic glucose sensor. Chem. Commun. 46, 1739 (2010).CrossRef H. Bai, M. Han, Y. Du, J. Bao, and Z. Dai, Facile synthesis of porous tubular palladium nanostructures and their application in a nonenzymatic glucose sensor. Chem. Commun. 46, 1739 (2010).CrossRef
16.
go back to reference Y. Li, Y. Song, C. Yang, and X. Xia, Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochem. Commun. 9, 981 (2007).CrossRef Y. Li, Y. Song, C. Yang, and X. Xia, Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochem. Commun. 9, 981 (2007).CrossRef
17.
go back to reference Y. Yamauchi, A. Tonegawa, M. Komatsu, H. Wang, L. Wang, Y. Nemoto, N. Suzuki, and K. Kuroda, Electrochemical synthesis of mesoporous Pt–Au binary alloys with tunable compositions for enhancement of electrochemical performance. J. Am. Chem. Soc. 134, 5100 (2012).CrossRef Y. Yamauchi, A. Tonegawa, M. Komatsu, H. Wang, L. Wang, Y. Nemoto, N. Suzuki, and K. Kuroda, Electrochemical synthesis of mesoporous Pt–Au binary alloys with tunable compositions for enhancement of electrochemical performance. J. Am. Chem. Soc. 134, 5100 (2012).CrossRef
18.
go back to reference C. Li, H. Wang, and Y. Yamauchi, Electrochemical deposition of mesoporous Pt–Au alloy films in aqueous surfactant solutions: towards a highly sensitive amperometric glucose sensor. Chem. Eur. J. 19, 2242 (2013).CrossRef C. Li, H. Wang, and Y. Yamauchi, Electrochemical deposition of mesoporous Pt–Au alloy films in aqueous surfactant solutions: towards a highly sensitive amperometric glucose sensor. Chem. Eur. J. 19, 2242 (2013).CrossRef
19.
go back to reference C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tana, and S. Yaoa, Recent advances in electrochemical glucose biosensors: a review. RSC Adv. 3, 4473 (2013).CrossRef C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tana, and S. Yaoa, Recent advances in electrochemical glucose biosensors: a review. RSC Adv. 3, 4473 (2013).CrossRef
20.
go back to reference K. Tian, M. Prestgard, and A. Tiwari, A review of recent advances in nonenzymatic glucose sensors. Mater. Sci. Eng. C 41, 100 (2014).CrossRef K. Tian, M. Prestgard, and A. Tiwari, A review of recent advances in nonenzymatic glucose sensors. Mater. Sci. Eng. C 41, 100 (2014).CrossRef
21.
go back to reference L. Wang, X. Lu, C. Wen, Y. Xie, L. Miao, S. Chen, H. Li, P. Lia, and Y. Song, One-step synthesis of Pt–NiO nanoplate array/reduced graphene oxide nanocomposites for nonenzymatic glucose sensing. J. Mater. Chem. A 3, 608 (2015).CrossRef L. Wang, X. Lu, C. Wen, Y. Xie, L. Miao, S. Chen, H. Li, P. Lia, and Y. Song, One-step synthesis of Pt–NiO nanoplate array/reduced graphene oxide nanocomposites for nonenzymatic glucose sensing. J. Mater. Chem. A 3, 608 (2015).CrossRef
22.
go back to reference S. Sun, X. Zhang, Y. Sun, S. Yang, X. Song, and Z. Yang, Facile water-assisted synthesis of cupric oxide nanourchins and their application as nonenzymatic glucose biosensor. ACS Appl. Mater. Interfaces 5, 4429 (2013).CrossRef S. Sun, X. Zhang, Y. Sun, S. Yang, X. Song, and Z. Yang, Facile water-assisted synthesis of cupric oxide nanourchins and their application as nonenzymatic glucose biosensor. ACS Appl. Mater. Interfaces 5, 4429 (2013).CrossRef
23.
go back to reference Z. Zhang, R. Dua, L. Zhang, H. Zhu, H. Zhang, and P. Wang, Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction. ACS Nano 7, 1709 (2013).CrossRef Z. Zhang, R. Dua, L. Zhang, H. Zhu, H. Zhang, and P. Wang, Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction. ACS Nano 7, 1709 (2013).CrossRef
24.
go back to reference Z. Zhangab and P. Wang, Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J. Mater. Chem. 22, 2456 (2012).CrossRef Z. Zhangab and P. Wang, Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J. Mater. Chem. 22, 2456 (2012).CrossRef
25.
go back to reference Y. Shuang, X. Huang, D. Ma, H. Wang, F. Meng, and X. Zhang, Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode. Adv. Mater. 26, 2273 (2014).CrossRef Y. Shuang, X. Huang, D. Ma, H. Wang, F. Meng, and X. Zhang, Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode. Adv. Mater. 26, 2273 (2014).CrossRef
26.
go back to reference H. Fei, Y. Yang, X. Fan, G. Wang, G. Ruana, and J.M. Tour, Tungsten-based porous thin-films for electrocatalytic hydrogen generation. J. Mater. Chem. A 3, 5798 (2015).CrossRef H. Fei, Y. Yang, X. Fan, G. Wang, G. Ruana, and J.M. Tour, Tungsten-based porous thin-films for electrocatalytic hydrogen generation. J. Mater. Chem. A 3, 5798 (2015).CrossRef
27.
go back to reference L. Xu, Q. Yang, X. Liu, J. Liu, and X. Sun, One-dimensional copper oxide nanotube arrays: biosensors for glucose detection. RSC Adv. 4, 1449 (2014).CrossRef L. Xu, Q. Yang, X. Liu, J. Liu, and X. Sun, One-dimensional copper oxide nanotube arrays: biosensors for glucose detection. RSC Adv. 4, 1449 (2014).CrossRef
28.
go back to reference S. Luo, F. Su, C. Liu, J. Li, R. Liu, Y. Xiao, Y. Li, X. Liu, and Q. Cai, A New method for fabricating a CuO/TiO2 nanotube arrays electrode and its application as a sensitive nonenzymatic glucose sensor. Talanta 86, 157 (2011).CrossRef S. Luo, F. Su, C. Liu, J. Li, R. Liu, Y. Xiao, Y. Li, X. Liu, and Q. Cai, A New method for fabricating a CuO/TiO2 nanotube arrays electrode and its application as a sensitive nonenzymatic glucose sensor. Talanta 86, 157 (2011).CrossRef
29.
go back to reference Y. Lei, X. Yan, J. Zhao, X. Liu, Y. Song, N. Luo, and Y. Zhang, Improved glucose electrochemical biosensor by appropriate immobilization of Nano-ZnO. Colloids Surf. B. 82, 168 (2011).CrossRef Y. Lei, X. Yan, J. Zhao, X. Liu, Y. Song, N. Luo, and Y. Zhang, Improved glucose electrochemical biosensor by appropriate immobilization of Nano-ZnO. Colloids Surf. B. 82, 168 (2011).CrossRef
30.
go back to reference P. Huha, M. Kim, and S. Kim, Glucose sensor using periodic nanostructured hybrid 1D Au/ZnO arrays. Mater. Sci. Eng. C. 32, 1288 (2012).CrossRef P. Huha, M. Kim, and S. Kim, Glucose sensor using periodic nanostructured hybrid 1D Au/ZnO arrays. Mater. Sci. Eng. C. 32, 1288 (2012).CrossRef
31.
go back to reference F.X. Hu, S. Chen, C. Wang, R.Y. Yuan, C. Yaqin, Y. Xiang, and C. Wang, ZnO nanoparticle and multiwalled carbon nanotubes for glucose oxidase direct electron transfer and electrocatalytic activity investigation. J. Mol. Catal. B Enzym. 72, 298 (2011).CrossRef F.X. Hu, S. Chen, C. Wang, R.Y. Yuan, C. Yaqin, Y. Xiang, and C. Wang, ZnO nanoparticle and multiwalled carbon nanotubes for glucose oxidase direct electron transfer and electrocatalytic activity investigation. J. Mol. Catal. B Enzym. 72, 298 (2011).CrossRef
32.
go back to reference K. Hwa and B. Subramani, Synthesis of zinc oxide nanoparticles on graphene–carbon nanotube hybrid for glucose biosensor applications. Biosens. Bioelectron. 62, 127 (2014).CrossRef K. Hwa and B. Subramani, Synthesis of zinc oxide nanoparticles on graphene–carbon nanotube hybrid for glucose biosensor applications. Biosens. Bioelectron. 62, 127 (2014).CrossRef
33.
go back to reference T. Dayakar, K.V. Rao, K. Bikshalu, and V. Rajendar, Si-Hyun park, novel synthesis and structural analysis of zinc oxide nanoparticles for the non-enzymatic glucose biosensor. Mater. Sci. Eng. C. 75, 1472 (2017).CrossRef T. Dayakar, K.V. Rao, K. Bikshalu, and V. Rajendar, Si-Hyun park, novel synthesis and structural analysis of zinc oxide nanoparticles for the non-enzymatic glucose biosensor. Mater. Sci. Eng. C. 75, 1472 (2017).CrossRef
34.
go back to reference X. Zhang, W. Ma, H. Nan, and G. Wang, Ultrathin zinc oxide nanofilm on zinc substrate for high-performance electrochemical sensors. Electrochim. Acta. 144, 186 (2014).CrossRef X. Zhang, W. Ma, H. Nan, and G. Wang, Ultrathin zinc oxide nanofilm on zinc substrate for high-performance electrochemical sensors. Electrochim. Acta. 144, 186 (2014).CrossRef
35.
go back to reference R. Ahmad, N. Tripathy, M.Y. Khan, K.S. Bhat, M. Ahn, G. Khang, and Y. Hahn, Hierarchically assembled ZnO nanosheets microspheres for enhanced glucose-sensing performances. Ceram. Int. 4, 13464 (2016).CrossRef R. Ahmad, N. Tripathy, M.Y. Khan, K.S. Bhat, M. Ahn, G. Khang, and Y. Hahn, Hierarchically assembled ZnO nanosheets microspheres for enhanced glucose-sensing performances. Ceram. Int. 4, 13464 (2016).CrossRef
36.
go back to reference J. Wang, X.W. Sun, X.W. Sun, Y. Lei, X. Cai, C.M. Li, and Z.L. Dong, Zinc oxide nano comb biosensor for glucose detection. Appl. Phys. Lett. 88, 233106 (2006).CrossRef J. Wang, X.W. Sun, X.W. Sun, Y. Lei, X. Cai, C.M. Li, and Z.L. Dong, Zinc oxide nano comb biosensor for glucose detection. Appl. Phys. Lett. 88, 233106 (2006).CrossRef
37.
go back to reference K. Yang, G. She, H. Wang, X. Ou, X. Zhang, C. Lee, and S. Lee, ZnO nanotube arrays as biosensors for glucose. J. Phys. Chem. C. 113, 20169 (2009).CrossRef K. Yang, G. She, H. Wang, X. Ou, X. Zhang, C. Lee, and S. Lee, ZnO nanotube arrays as biosensors for glucose. J. Phys. Chem. C. 113, 20169 (2009).CrossRef
38.
go back to reference N.K. Sarkar and S.K. Bhattacharyya, High electrocatalytic activities of glucose oxidase embedded one-dimensional ZnO nanostructures. Nanotechnology 24, 225502 (2013).CrossRef N.K. Sarkar and S.K. Bhattacharyya, High electrocatalytic activities of glucose oxidase embedded one-dimensional ZnO nanostructures. Nanotechnology 24, 225502 (2013).CrossRef
39.
go back to reference Y. Zhai, S. Zhai, G. Chen, K. Zhang, Q. Yue, L. Wang, J. Liu, and J. Jia, Effects of morphology of nanostructured ZnO on direct electrochemistry and biosensing properties of glucose oxidase. J. Electroanal. Chem. 656, 198 (2011).CrossRef Y. Zhai, S. Zhai, G. Chen, K. Zhang, Q. Yue, L. Wang, J. Liu, and J. Jia, Effects of morphology of nanostructured ZnO on direct electrochemistry and biosensing properties of glucose oxidase. J. Electroanal. Chem. 656, 198 (2011).CrossRef
40.
go back to reference T. Soejima, K. Takada, and S. Ito, Alkaline vapor oxidation synthesis and electrocatalytic activity toward glucose oxidation of CuO/ZnO composite nanoarrays. Appl. Surf. Sci. 277, 192 (2013).CrossRef T. Soejima, K. Takada, and S. Ito, Alkaline vapor oxidation synthesis and electrocatalytic activity toward glucose oxidation of CuO/ZnO composite nanoarrays. Appl. Surf. Sci. 277, 192 (2013).CrossRef
41.
go back to reference J. Wu and F. Yin, Easy fabrication of a sensitive non-enzymatic glucose sensor based on electrospinning CuO-ZnO nanocomposites. Integr. Ferroelectr. 147, 47 (2013).CrossRef J. Wu and F. Yin, Easy fabrication of a sensitive non-enzymatic glucose sensor based on electrospinning CuO-ZnO nanocomposites. Integr. Ferroelectr. 147, 47 (2013).CrossRef
42.
go back to reference C. Zhou, L. Xu, J. Song, R. Xing, S. Xu, D. Liu, and H. Song, Ultrasensitive non-enzymatic glucose sensor based on a three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning. Sci. Rep. 4, 7382 (2014).CrossRef C. Zhou, L. Xu, J. Song, R. Xing, S. Xu, D. Liu, and H. Song, Ultrasensitive non-enzymatic glucose sensor based on a three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning. Sci. Rep. 4, 7382 (2014).CrossRef
43.
go back to reference D. Ye, G. Liang, H. Li, J. Luo, S. Zhang, H. Chen, and J. Kong, A novel nonenzymatic sensor based on CuO nanoneedle/graphene/carbon nanofiber modified electrode for probing glucose in saliva. Talanta 116, 223 (2013).CrossRef D. Ye, G. Liang, H. Li, J. Luo, S. Zhang, H. Chen, and J. Kong, A novel nonenzymatic sensor based on CuO nanoneedle/graphene/carbon nanofiber modified electrode for probing glucose in saliva. Talanta 116, 223 (2013).CrossRef
44.
go back to reference Z. Jin, P. Li, B. Zheng, H. Yuan, and D. Xiao, CuO–Ag2O Nanoparticles grown on an AgCuZn alloy substrate in situ for use as a highly sensitive non2enzymatic glucose sensor. Anal. Methods 6, 2215 (2014).CrossRef Z. Jin, P. Li, B. Zheng, H. Yuan, and D. Xiao, CuO–Ag2O Nanoparticles grown on an AgCuZn alloy substrate in situ for use as a highly sensitive non2enzymatic glucose sensor. Anal. Methods 6, 2215 (2014).CrossRef
45.
go back to reference R. Saadon and O.A. Azeez, Chemical route to synthesis hierarchical ZnO thick films for sensor application. Energy Procedia. 50, 445 (2014).CrossRef R. Saadon and O.A. Azeez, Chemical route to synthesis hierarchical ZnO thick films for sensor application. Energy Procedia. 50, 445 (2014).CrossRef
46.
go back to reference R. Saadon and O.A. Azeez, Hydrothermal growth of ZnO nanorods without catalysts in a single step. Manuf Lett. 2, 69 (2014).CrossRef R. Saadon and O.A. Azeez, Hydrothermal growth of ZnO nanorods without catalysts in a single step. Manuf Lett. 2, 69 (2014).CrossRef
47.
go back to reference A. Nalbant, Ö.E. Güldalı, and I. Okur, Producing CuO and ZnO composite thin films using the spin coating method on microscope glasses. Mater. Sci. Eng. B 178, 368 (2013).CrossRef A. Nalbant, Ö.E. Güldalı, and I. Okur, Producing CuO and ZnO composite thin films using the spin coating method on microscope glasses. Mater. Sci. Eng. B 178, 368 (2013).CrossRef
48.
go back to reference C. Cheng, S. Tangsuwanjinda, H. Cheng, and P. Lee, Copper oxide decorated zinc oxide nanostructures for the production of a non-enzymatic glucose sensor. Coatings 11, 936 (2021).CrossRef C. Cheng, S. Tangsuwanjinda, H. Cheng, and P. Lee, Copper oxide decorated zinc oxide nanostructures for the production of a non-enzymatic glucose sensor. Coatings 11, 936 (2021).CrossRef
49.
go back to reference Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. Xiao, and M.M.F. Choi, An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 133, 126 (2008).CrossRef Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. Xiao, and M.M.F. Choi, An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 133, 126 (2008).CrossRef
50.
go back to reference S. Liu, Z. Wang, F. Wang, B. Yua, and T. Zhang, High surface area mesoporous CuO: a high-performance electrocatalyst for non-enzymatic glucose biosensing. RSC Adv. 4, 33327 (2014).CrossRef S. Liu, Z. Wang, F. Wang, B. Yua, and T. Zhang, High surface area mesoporous CuO: a high-performance electrocatalyst for non-enzymatic glucose biosensing. RSC Adv. 4, 33327 (2014).CrossRef
Metadata
Title
Sensitive Glucose Biosensor Based on ZnO/CuO Nanorods
Authors
Haneen Ali Jasim
Osama Abdul Azeez Dakhil
Publication date
05-11-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-10040-y

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue