Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

11-11-2022 | Original Research Article

A Simple Route to Synthesize Mixed BiPr Oxide Nanoparticles and Polyaniline Composites with Enhanced l-Cysteine Sensing Properties

Authors: Jianfeng Huang, Zhengyu Cai, Yong Zhang, Lizhai Pei

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

BiPr oxide nanoparticles were successfully synthesized via a facile surfactant-free hydrothermal route using sodium bismuthate and praseodymium nitrate, and polyaniline/BiPr oxide nanoparticles were also obtained. The products were investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy. The obtained nanoparticles with a diameter of about 50–200 nm are composed of polycrystalline structures with rhombohedral Bi0.4Pr0.6O1.5, monoclinic Bi2O3 and monoclinic Pr5O9 phases. Irregular nanoscale polyaniline particles cover the surface of the BiPr oxide. A pair of quasi-reversible cyclic voltammetry (CV) peaks are located at −0.04 V and −0.67 V, respectively, at the BiPr oxide nanoparticle-modified glassy carbon electrode (GCE) in 0.1 M KCl solution with 2 mM l-cysteine. The anodic CV peak shifts positively to +0.14 V and the cathodic CV peak shifts negatively to −0.82 V using the polyaniline/BiPr oxide nanoparticle-modified GCE. The linear range and detection limit are 0.005–2 mM and 1.18 μM, 0.0005–2 mM and 0.16 μM for the GCE modified with BiPr oxide nanoparticles and polyaniline composites, respectively. Polyaniline greatly enhances the electrochemical sensing properties of the BiPr oxide nanoparticle-modified GCE.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference S.L.Yang, G. Li, N. Xia, P.P. Liu, Y.X. Wang, and L.B.Qu, High performance electrochemical l-cysteine sensor based on hierarchical 3D straw-bundle-like Mn-La oxides/reduced graphene oxide composite. J. Electroanal. Chem. 877, 114564 (2020).CrossRef S.L.Yang, G. Li, N. Xia, P.P. Liu, Y.X. Wang, and L.B.Qu, High performance electrochemical l-cysteine sensor based on hierarchical 3D straw-bundle-like Mn-La oxides/reduced graphene oxide composite. J. Electroanal. Chem. 877, 114564 (2020).CrossRef
2.
go back to reference A. Kurniawan, F. Kurniawan, F. Gunawan, and S.H. Chou. Disposable electrochemical sensor based on copper-electrodeposited screenprinted gold electrode and its application in sensing l-cysteine. Electrochim. Acta. 293, 318 (2019).CrossRef A. Kurniawan, F. Kurniawan, F. Gunawan, and S.H. Chou. Disposable electrochemical sensor based on copper-electrodeposited screenprinted gold electrode and its application in sensing l-cysteine. Electrochim. Acta. 293, 318 (2019).CrossRef
3.
go back to reference K. Atacan, CuFe2O4/reduced graphene oxide nanocomposite decorated with gold nanoparticles as a new electrochemical sensor material for l-cysteine detection. J. Alloys Compd. 791, 391 (2019).CrossRef K. Atacan, CuFe2O4/reduced graphene oxide nanocomposite decorated with gold nanoparticles as a new electrochemical sensor material for l-cysteine detection. J. Alloys Compd. 791, 391 (2019).CrossRef
4.
go back to reference W. Liu, J. Luo, and Y. Guo, Nanoparticle coated paper-based chemiluminescence device for the determination of l-cysteine. Talanta.120, 336 (2014).CrossRef W. Liu, J. Luo, and Y. Guo, Nanoparticle coated paper-based chemiluminescence device for the determination of l-cysteine. Talanta.120, 336 (2014).CrossRef
5.
go back to reference X. Liu, L. Dong, L. Wang, H. Xu, S. Gao, L. Zhong, S. Zhang, and T. Jiang, 2-Aminopurine modified DNA probe for rapid and sensitive detection of l-cysteine. Talanta. 202, 520 (2019).CrossRef X. Liu, L. Dong, L. Wang, H. Xu, S. Gao, L. Zhong, S. Zhang, and T. Jiang, 2-Aminopurine modified DNA probe for rapid and sensitive detection of l-cysteine. Talanta. 202, 520 (2019).CrossRef
6.
go back to reference K. Tsuge, M. Kataoka, and Y. Seto, Determination of s-methyl-, s-propyl-, and spropenyl-lcysteine sulfoxides by gas chromatography-mass spectrometry after tertbutyldimethylsilylation. J. Agric. Food. Chem. 50, 4445 (2002).CrossRef K. Tsuge, M. Kataoka, and Y. Seto, Determination of s-methyl-, s-propyl-, and spropenyl-lcysteine sulfoxides by gas chromatography-mass spectrometry after tertbutyldimethylsilylation. J. Agric. Food. Chem. 50, 4445 (2002).CrossRef
7.
go back to reference A. Forgacsova, J. Galba, J. Mojzisova, P. Mikus, J. Piestansky, and A. Kovac, Ultra-high performance hydrophilic interaction liquid chromatography–triple quadrupole tandem mass spectrometry method for determination of cysteine, homocysteine, cysteinylglycine and glutathione in rat plasma. J. Pharmaceut. Biomed. 164, 442 (2019).CrossRef A. Forgacsova, J. Galba, J. Mojzisova, P. Mikus, J. Piestansky, and A. Kovac, Ultra-high performance hydrophilic interaction liquid chromatography–triple quadrupole tandem mass spectrometry method for determination of cysteine, homocysteine, cysteinylglycine and glutathione in rat plasma. J. Pharmaceut. Biomed. 164, 442 (2019).CrossRef
8.
go back to reference A. Petrova, R. Ishimatsu, K. Nakano, T. Imato, A. Vishnikin, L. Moskvin, and A. Bulatov, Flow-injection spectrophotometric determination of cysteine in biologically active dietary supplements. J. Anal. Chem. 71, 172 (2016).CrossRef A. Petrova, R. Ishimatsu, K. Nakano, T. Imato, A. Vishnikin, L. Moskvin, and A. Bulatov, Flow-injection spectrophotometric determination of cysteine in biologically active dietary supplements. J. Anal. Chem. 71, 172 (2016).CrossRef
9.
go back to reference A.V. Ivanov, P.O. Bulgakova, E. D. Virus, M.P. Kruglova, V.V. Alexandrin, V.A. Gadieva, B.P. Luzyanin, N.E. Kushlinskii, A.N. Fedoseev, and A.A. Kubatiev, Capillary electrophoresis coupled with chloroform-acetonitrile extraction for rapid and highly selective determination of cysteine and homocysteine levels in human blood plasma and urine. Electrophoresis. 38, 2646 (2017).CrossRef A.V. Ivanov, P.O. Bulgakova, E. D. Virus, M.P. Kruglova, V.V. Alexandrin, V.A. Gadieva, B.P. Luzyanin, N.E. Kushlinskii, A.N. Fedoseev, and A.A. Kubatiev, Capillary electrophoresis coupled with chloroform-acetonitrile extraction for rapid and highly selective determination of cysteine and homocysteine levels in human blood plasma and urine. Electrophoresis. 38, 2646 (2017).CrossRef
10.
go back to reference T. Matsunaga, T. Kondo, I. Shitanda, Y. Hoshi, M. Itagaki, T. Tojo, and M. Yuasa, Sensitive electrochemical detection of l-cysteine at a screen-printed diamond electrode. Carbon. 173, 395 (2021).CrossRef T. Matsunaga, T. Kondo, I. Shitanda, Y. Hoshi, M. Itagaki, T. Tojo, and M. Yuasa, Sensitive electrochemical detection of l-cysteine at a screen-printed diamond electrode. Carbon. 173, 395 (2021).CrossRef
11.
go back to reference C. Varodi, F. Pogăcean, A. Cioriță, O. Pană, C. Leoștean, B. Cozar, T. Radu, M. Coroș, R.L.Ș. Staden, and S. M. Pruneanul, Nitrogen and sulfur Co-doped graphene as efficient electrode material for l-cysteine detection. Chemosensors. 9, 146 (2021).CrossRef C. Varodi, F. Pogăcean, A. Cioriță, O. Pană, C. Leoștean, B. Cozar, T. Radu, M. Coroș, R.L.Ș. Staden, and S. M. Pruneanul, Nitrogen and sulfur Co-doped graphene as efficient electrode material for l-cysteine detection. Chemosensors. 9, 146 (2021).CrossRef
12.
go back to reference T. Kokulnathan, R. Vishnuraj, T.J. Wang, E.A. Kumar, and B. Pullithadathil, Heterostructured bismuth oxide/hexagonal-boron nitride nanocomposite: a disposable electrochemical sensor for detection of flutamide. Ecotoxicol. Environ. Saf. 207, 111276 (2021).CrossRef T. Kokulnathan, R. Vishnuraj, T.J. Wang, E.A. Kumar, and B. Pullithadathil, Heterostructured bismuth oxide/hexagonal-boron nitride nanocomposite: a disposable electrochemical sensor for detection of flutamide. Ecotoxicol. Environ. Saf. 207, 111276 (2021).CrossRef
13.
go back to reference L.Z. Pei, N. Lin, T. Wei, H.D. Liu, and H.Y. Yu, Formation of copper vanadate nanobelts and the electrochemical behaviors for the determination of ascorbic acid. J. Mater. Chem. A. 3, 2690 (2015).CrossRef L.Z. Pei, N. Lin, T. Wei, H.D. Liu, and H.Y. Yu, Formation of copper vanadate nanobelts and the electrochemical behaviors for the determination of ascorbic acid. J. Mater. Chem. A. 3, 2690 (2015).CrossRef
14.
go back to reference L.Z. Pei, F.L. Qiu, Y. Ma, F.F. Lin, C.G. Fan, X.Z. Ling, and S.B. Zhu, Graphene/zinc bismuthate nanorods composites and their electrochemical sensing performance for ascorbic acid. Fuller. Nanotub. Car. N. 27, 58 (2019).CrossRef L.Z. Pei, F.L. Qiu, Y. Ma, F.F. Lin, C.G. Fan, X.Z. Ling, and S.B. Zhu, Graphene/zinc bismuthate nanorods composites and their electrochemical sensing performance for ascorbic acid. Fuller. Nanotub. Car. N. 27, 58 (2019).CrossRef
15.
go back to reference S. Abdollah and H. Rahman, Catalytic oxidation of thiols at preheated glassy carbon electrode modified with abrasive immobilization of multiwall carbon nanotubes: applications to amperometric detection of thiocytosine l-cysteine nd glutathione. Talanta. 66, 967 (2005).CrossRef S. Abdollah and H. Rahman, Catalytic oxidation of thiols at preheated glassy carbon electrode modified with abrasive immobilization of multiwall carbon nanotubes: applications to amperometric detection of thiocytosine l-cysteine nd glutathione. Talanta. 66, 967 (2005).CrossRef
16.
go back to reference L.Z. Pei, T. Wei, N. Lin, H. Zhang, and C.G. Fan, Bismuth tellurate nanospheres and electrochemical behaviors of l-cysteine at the nanospheres modified electrode. Russ. J. Electrochem. 54, 84 (2018).CrossRef L.Z. Pei, T. Wei, N. Lin, H. Zhang, and C.G. Fan, Bismuth tellurate nanospheres and electrochemical behaviors of l-cysteine at the nanospheres modified electrode. Russ. J. Electrochem. 54, 84 (2018).CrossRef
17.
go back to reference D.R. Kumar, M.L. Baynosa, and J.J. Shim, Cu2+-1,10-phenanthroline-5,6-dione electrochemically reduced graphene oxide modified electrode for the electrocatalytic determinationof l-cysteine. Sens. Actuat. B-Chem. 293, 107 (2019).CrossRef D.R. Kumar, M.L. Baynosa, and J.J. Shim, Cu2+-1,10-phenanthroline-5,6-dione electrochemically reduced graphene oxide modified electrode for the electrocatalytic determinationof l-cysteine. Sens. Actuat. B-Chem. 293, 107 (2019).CrossRef
18.
go back to reference L.Z. Pei, T. Wei, N. Lin, Z.Y. Cai, C.G. Fan, and Z. Yang, Synthesis of zinc bismuthate nanorods and electrochemical performance for sensitive determination of l-cysteine. J. Electrochem. Soc. 163:H1 (2016).CrossRef L.Z. Pei, T. Wei, N. Lin, Z.Y. Cai, C.G. Fan, and Z. Yang, Synthesis of zinc bismuthate nanorods and electrochemical performance for sensitive determination of l-cysteine. J. Electrochem. Soc. 163:H1 (2016).CrossRef
19.
go back to reference H.R. Zare, F. Jahangiri-Dehaghani, Z. Shekari, and A. Benvidi, Electrocatalytic simultaneous determination of ascorbic acid, uric acid and l-cysteine in real samples using quercetin silver nanoparticles–graphene nanosheets modified glassy carbon electrode. Appl. Surf. Sci. 375,169 (2016).CrossRef H.R. Zare, F. Jahangiri-Dehaghani, Z. Shekari, and A. Benvidi, Electrocatalytic simultaneous determination of ascorbic acid, uric acid and l-cysteine in real samples using quercetin silver nanoparticles–graphene nanosheets modified glassy carbon electrode. Appl. Surf. Sci. 375,169 (2016).CrossRef
20.
go back to reference R. María-Hormigos, M.J. Gismera, and M.T. Sevilla, Straightforward ultrasound-assisted synthesis of bismuth oxide particles with enhanced performance for electrochemical sensors development. Mater. Lett. 158, 359 (2015).CrossRef R. María-Hormigos, M.J. Gismera, and M.T. Sevilla, Straightforward ultrasound-assisted synthesis of bismuth oxide particles with enhanced performance for electrochemical sensors development. Mater. Lett. 158, 359 (2015).CrossRef
21.
go back to reference L.Z. Pei, C.H. Yu, Z.Y. Xue, and Y. Zhang, A review on ternary bismuthate nanoscale materials. Recent Pat. Nanotech. 15, 142 (2021).CrossRef L.Z. Pei, C.H. Yu, Z.Y. Xue, and Y. Zhang, A review on ternary bismuthate nanoscale materials. Recent Pat. Nanotech. 15, 142 (2021).CrossRef
22.
go back to reference P. Sonström, J. Birkenstock, Y. Borchert, L. Schilinsky, P. Behrend, K. Gries, K. Müller, A. Rosenauer, and M. Bäumer, Nanostructured praseodymium oxide: correlation between phase transitions and catalytic activity. ChemCatChem. 2, 694 (2010).CrossRef P. Sonström, J. Birkenstock, Y. Borchert, L. Schilinsky, P. Behrend, K. Gries, K. Müller, A. Rosenauer, and M. Bäumer, Nanostructured praseodymium oxide: correlation between phase transitions and catalytic activity. ChemCatChem. 2, 694 (2010).CrossRef
23.
go back to reference Q.C. Zhang, W.L. Yan, L. Jiang, Y.G. Zheng, J.X. Wang , and R.K. Zhang, Synthesis of nano-praseodymium oxide for cataluminescence sensing of acetophenone in exhaled breath. Molecules. 24, 4275 (2019).CrossRef Q.C. Zhang, W.L. Yan, L. Jiang, Y.G. Zheng, J.X. Wang , and R.K. Zhang, Synthesis of nano-praseodymium oxide for cataluminescence sensing of acetophenone in exhaled breath. Molecules. 24, 4275 (2019).CrossRef
24.
go back to reference K. Sato, K. Imamura, Y. Kawano, S.I. Miyahara, T. Yamamoto, S. Matsumura, and K. Nagaoka, A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis. Chem. Sci. 8, 674 (2017).CrossRef K. Sato, K. Imamura, Y. Kawano, S.I. Miyahara, T. Yamamoto, S. Matsumura, and K. Nagaoka, A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis. Chem. Sci. 8, 674 (2017).CrossRef
25.
go back to reference A. Doménech, N. Montoya, and J. Alarcón, Electrochemical characterization of praseodymium centers in PrxZr1-xO2 zirconias using electrocatalysis and photoelectrocatalysis. J. Solid State Electrochem. 16, 963 (2012).CrossRef A. Doménech, N. Montoya, and J. Alarcón, Electrochemical characterization of praseodymium centers in PrxZr1-xO2 zirconias using electrocatalysis and photoelectrocatalysis. J. Solid State Electrochem. 16, 963 (2012).CrossRef
26.
go back to reference S. Shrestha, F. Marken, J. Elliott, C.M.Y. Yeung, C.E. Mills, and S.C. Tsang, Electrochemical deposition of praseodymium oxide on tin-doped indium oxide as a thin sensing film. J. Electrochem. Soc. 153, C517 (2006).CrossRef S. Shrestha, F. Marken, J. Elliott, C.M.Y. Yeung, C.E. Mills, and S.C. Tsang, Electrochemical deposition of praseodymium oxide on tin-doped indium oxide as a thin sensing film. J. Electrochem. Soc. 153, C517 (2006).CrossRef
27.
go back to reference M. Zidan, W.T. Tan, A.H. Abdullah, Z. Zainal, and G.J. Kheng, Electrochemical oxidation of ascorbic acid mediated by Bi2O3 microparticles modified glassy carbon electrode. Int. J. Electrochem. Sci. 6, 289 (2011). M. Zidan, W.T. Tan, A.H. Abdullah, Z. Zainal, and G.J. Kheng, Electrochemical oxidation of ascorbic acid mediated by Bi2O3 microparticles modified glassy carbon electrode. Int. J. Electrochem. Sci. 6, 289 (2011).
28.
go back to reference D. Xu, K. He, R.H. Yu, Y. Tong, J.P. Qi, X.J. Sun, Y.T. Yang, H.X. Xu, H.M. Yuan, and J. Ma, Microstructure and electrical properties of praseodymium oxide doped Bi2O3 based ZnO varistor films. Mater. Technol. 30, A24 (2015).CrossRef D. Xu, K. He, R.H. Yu, Y. Tong, J.P. Qi, X.J. Sun, Y.T. Yang, H.X. Xu, H.M. Yuan, and J. Ma, Microstructure and electrical properties of praseodymium oxide doped Bi2O3 based ZnO varistor films. Mater. Technol. 30, A24 (2015).CrossRef
29.
go back to reference B. Zhang, G.J. Liu, X. Yao, X.L. Li, B. Jin, L.J. Zhao, X.Y. Lang, Y.F. Zhu, and Q. Jiang, CoMoO3 nanoplate/reduced graphene oxide composites decorated with Ag nanoparticles for electrocatalytic water oxidation. ACS Appl. Nano Mater. 4, 5383 (2021).CrossRef B. Zhang, G.J. Liu, X. Yao, X.L. Li, B. Jin, L.J. Zhao, X.Y. Lang, Y.F. Zhu, and Q. Jiang, CoMoO3 nanoplate/reduced graphene oxide composites decorated with Ag nanoparticles for electrocatalytic water oxidation. ACS Appl. Nano Mater. 4, 5383 (2021).CrossRef
30.
go back to reference M. Eising, C. O’Callaghan, C.E. Cava, A. Schmidt, A.J.G. Zarbin, M.S. Ferreira, and L.S. Roman, The role of carbon nanotubes on the sensitivity of composites with polyaniline for ammonia sensors. Carbon Trends. 3,100026 (2021).CrossRef M. Eising, C. O’Callaghan, C.E. Cava, A. Schmidt, A.J.G. Zarbin, M.S. Ferreira, and L.S. Roman, The role of carbon nanotubes on the sensitivity of composites with polyaniline for ammonia sensors. Carbon Trends. 3,100026 (2021).CrossRef
31.
go back to reference F. Saadati, F. Ghahramani, H. Shayani-jam, F. Piri, and M.R. Yaftian, Synthesis and characterization of nanostructure molecularly imprinted polyaniline/graphene oxide composite as highly selective electrochemical sensor for detection of p-nitrophenol. J. Taiwan Inst. Chem. E. 86, 213 (2018).CrossRef F. Saadati, F. Ghahramani, H. Shayani-jam, F. Piri, and M.R. Yaftian, Synthesis and characterization of nanostructure molecularly imprinted polyaniline/graphene oxide composite as highly selective electrochemical sensor for detection of p-nitrophenol. J. Taiwan Inst. Chem. E. 86, 213 (2018).CrossRef
32.
go back to reference V. Gautam, K.P. Singh, and V.L. Yadav, Preparation and characterization of green-nano-composite material based on polyaniline, multiwalled carbon nano tubes and carboxymethyl cellulose: for electrochemical sensor applications. Carbohyd. Polym. 189, 218 (2018).CrossRef V. Gautam, K.P. Singh, and V.L. Yadav, Preparation and characterization of green-nano-composite material based on polyaniline, multiwalled carbon nano tubes and carboxymethyl cellulose: for electrochemical sensor applications. Carbohyd. Polym. 189, 218 (2018).CrossRef
33.
go back to reference X.Z. Lin, B. Guo, Y.F. Qiu , P.R. Xu, and H.B. Fan, Surfactant-free hydrothermal synthesis of CePO4 microbundles assembled by aligned nanorods. Mater. Lett. 197, 49 (2017).CrossRef X.Z. Lin, B. Guo, Y.F. Qiu , P.R. Xu, and H.B. Fan, Surfactant-free hydrothermal synthesis of CePO4 microbundles assembled by aligned nanorods. Mater. Lett. 197, 49 (2017).CrossRef
34.
go back to reference W. Jiang, T.S. Huangfu, X. Yang, L. Bao, Y. Liu, G. Xu, and G.R. Han, Surfactant-free hydrothermal synthesis of hierarchical flower-like Bi2WO6 mesosphere nanostructures with excellent visible-light photocatalytic activity. CrystEngComm. 21, 6293 (2019).CrossRef W. Jiang, T.S. Huangfu, X. Yang, L. Bao, Y. Liu, G. Xu, and G.R. Han, Surfactant-free hydrothermal synthesis of hierarchical flower-like Bi2WO6 mesosphere nanostructures with excellent visible-light photocatalytic activity. CrystEngComm. 21, 6293 (2019).CrossRef
35.
go back to reference W. Zhang, L.L. Feng, H.Y. Chen, and Y.Y. Zhang, Hydrothermal synthesis of SnO2 nanorod as anode materials for lithium-ion battery. NANO. 14, 1950109 (2019)CrossRef W. Zhang, L.L. Feng, H.Y. Chen, and Y.Y. Zhang, Hydrothermal synthesis of SnO2 nanorod as anode materials for lithium-ion battery. NANO. 14, 1950109 (2019)CrossRef
36.
go back to reference L.Z. Pei, S. Wang, Y.X. Jiang, Y. Li, Y.K. Xie, and Y.H. Guo, Single crystalline Sr germanate nanowires and their photocatalytic performance for the degradation of methyl blue. CrystEngComm. 15, 7815 (2013).CrossRef L.Z. Pei, S. Wang, Y.X. Jiang, Y. Li, Y.K. Xie, and Y.H. Guo, Single crystalline Sr germanate nanowires and their photocatalytic performance for the degradation of methyl blue. CrystEngComm. 15, 7815 (2013).CrossRef
37.
go back to reference L.Z. Pei, N. Lin, T. Wei, H.D. Liu, and H.Y. Yu, Zinc vanadate nanorods and their visible light photocatalytic activity. J. Alloys Compd. 631, 90 (2015).CrossRef L.Z. Pei, N. Lin, T. Wei, H.D. Liu, and H.Y. Yu, Zinc vanadate nanorods and their visible light photocatalytic activity. J. Alloys Compd. 631, 90 (2015).CrossRef
38.
go back to reference T. Preethi, K. Senthil, S. Ashokan, B. Sundaravel, and P. Saravanan, Structural, optical and magnetic properties of SnO2 nanoparticles synthesized via surfactant-free hydrothermal process. Mater. Today. 47, 2097 (2021). T. Preethi, K. Senthil, S. Ashokan, B. Sundaravel, and P. Saravanan, Structural, optical and magnetic properties of SnO2 nanoparticles synthesized via surfactant-free hydrothermal process. Mater. Today. 47, 2097 (2021).
39.
go back to reference Y.P. Luo, J.W. Chen, J. Chen, J.W. Liu, Y. Shao, X.F. Li, and D.Z. Li, Hydroxide SrSn(OH)6: a new photocatalyst for degradation of benzene and rhodamine B. Appl. Catal. B: Environ. 182, 533 (2016).CrossRef Y.P. Luo, J.W. Chen, J. Chen, J.W. Liu, Y. Shao, X.F. Li, and D.Z. Li, Hydroxide SrSn(OH)6: a new photocatalyst for degradation of benzene and rhodamine B. Appl. Catal. B: Environ. 182, 533 (2016).CrossRef
40.
go back to reference J.X. Wu, Z.M. Wang, S. Li, and M.S. Ma, In situ photoemission study of a Pr2O3 thin film on GaAs(111). J. Vac. Sci. Technol. A. 22, 594 (2004)CrossRef J.X. Wu, Z.M. Wang, S. Li, and M.S. Ma, In situ photoemission study of a Pr2O3 thin film on GaAs(111). J. Vac. Sci. Technol. A. 22, 594 (2004)CrossRef
41.
go back to reference Z.T. Meng, Y.D. Huang, Y.C. Fang, X.C. Wang , Y. Guo, Z.J. Liu, M.R. Xi, W.Q. Su, and L. Wang. Facile preparation of praseodymium oxide coated peanut-like lithium nickel cobalt manganese oxide microspheres for lithium ion batteries with high voltage capabilities. J. Alloys Compd. 784, 620 (2019)CrossRef Z.T. Meng, Y.D. Huang, Y.C. Fang, X.C. Wang , Y. Guo, Z.J. Liu, M.R. Xi, W.Q. Su, and L. Wang. Facile preparation of praseodymium oxide coated peanut-like lithium nickel cobalt manganese oxide microspheres for lithium ion batteries with high voltage capabilities. J. Alloys Compd. 784, 620 (2019)CrossRef
42.
go back to reference M. Ramezanzadeh, G. Bahlakeh, Z. Sanaei, and B. Ramezanzadeh, Interfacial adhesion and corrosion protection properties improvement of a polyester-melamine coating by deposition of a novel green praseodymium oxide nanofilm: a comprehensive experimental and computational study. J. Ind. Eng. Chem. 74, 26 (201)CrossRef M. Ramezanzadeh, G. Bahlakeh, Z. Sanaei, and B. Ramezanzadeh, Interfacial adhesion and corrosion protection properties improvement of a polyester-melamine coating by deposition of a novel green praseodymium oxide nanofilm: a comprehensive experimental and computational study. J. Ind. Eng. Chem. 74, 26 (201)CrossRef
43.
go back to reference J. Liao, K.D. Li, Y. Zhang, and L. Zhang, Facile synthesis of a novel ultra-low density praseodymium oxide aerogel for catalyst and adsorbent. Mater. Lett. 254, 364 (2019).CrossRef J. Liao, K.D. Li, Y. Zhang, and L. Zhang, Facile synthesis of a novel ultra-low density praseodymium oxide aerogel for catalyst and adsorbent. Mater. Lett. 254, 364 (2019).CrossRef
44.
go back to reference V. Kannan, M. Arredondo, F. Johann, D. Hesse, C. Labrugere, M. Maglione, and I. Vrejoiu, Strain dependent microstructural modifications of BiCrO3 epitaxial thin films. Thin Solid Films. 545, 130 (2013).CrossRef V. Kannan, M. Arredondo, F. Johann, D. Hesse, C. Labrugere, M. Maglione, and I. Vrejoiu, Strain dependent microstructural modifications of BiCrO3 epitaxial thin films. Thin Solid Films. 545, 130 (2013).CrossRef
45.
go back to reference T. Unmüssig, A. Weltin, S. Urban, P. Daubinger, G.A. Urban, and J. Kieninger, Non-enzymatic glucose sensing based on hierarchical platinum micro-/nanostructures. J. Electroanal. Chem. 816, 215 (2018)CrossRef T. Unmüssig, A. Weltin, S. Urban, P. Daubinger, G.A. Urban, and J. Kieninger, Non-enzymatic glucose sensing based on hierarchical platinum micro-/nanostructures. J. Electroanal. Chem. 816, 215 (2018)CrossRef
46.
go back to reference R. Nyholm, A. Berndtsson, and N. Martensson, Core level binding energies for the elements Hf to Bi (Z=72-83). J. Phys. C: Solid State Phys. 13, L1091 (1980)CrossRef R. Nyholm, A. Berndtsson, and N. Martensson, Core level binding energies for the elements Hf to Bi (Z=72-83). J. Phys. C: Solid State Phys. 13, L1091 (1980)CrossRef
47.
go back to reference C. Du, D.H. Li, Q.Y. He, J.M. Liu, W. Li, G.N. He, and Y.Z. Wang, Design and simple synthesis of composite Bi12TiO20/Bi4Ti3O12 with a good photocatalytic quantum efficiency and high production of photo-generated hydroxyl radicals. Phys. Chem. Chem. Phys. 18, 26530 (2016).CrossRef C. Du, D.H. Li, Q.Y. He, J.M. Liu, W. Li, G.N. He, and Y.Z. Wang, Design and simple synthesis of composite Bi12TiO20/Bi4Ti3O12 with a good photocatalytic quantum efficiency and high production of photo-generated hydroxyl radicals. Phys. Chem. Chem. Phys. 18, 26530 (2016).CrossRef
48.
go back to reference S. Palaniappan, Chemical and electrochemical polymerization of aniline using tartaric acid. Eur. Poly. J. 37, 975 (2001)CrossRef S. Palaniappan, Chemical and electrochemical polymerization of aniline using tartaric acid. Eur. Poly. J. 37, 975 (2001)CrossRef
49.
go back to reference D. Boyne, N. Menegazzo, R.C. Pupillo, J. Rosenthal, and K.S. Booksh, Vacuum thermal evaporation of polyaniline doped with camphorsulfonic acid. J. Vac. Sci. Technol. A. 33, 031510 (2015)CrossRef D. Boyne, N. Menegazzo, R.C. Pupillo, J. Rosenthal, and K.S. Booksh, Vacuum thermal evaporation of polyaniline doped with camphorsulfonic acid. J. Vac. Sci. Technol. A. 33, 031510 (2015)CrossRef
50.
go back to reference S. Adhikari and P. Banerji, Enhanced conductivity in iodine doped polyaniline thin film formed by thermal evaporation. Thin Solid Films. 518, 5421 (2010).CrossRef S. Adhikari and P. Banerji, Enhanced conductivity in iodine doped polyaniline thin film formed by thermal evaporation. Thin Solid Films. 518, 5421 (2010).CrossRef
51.
go back to reference S. Zinatloo-Ajabshir and M. Salavati-Niasari, Novel poly(ethyleneglycol)-assisted synthesis of praseodymium oxide nanostructures via a facile precipitation route. Ceram. Int. 41, 567 (2015).CrossRef S. Zinatloo-Ajabshir and M. Salavati-Niasari, Novel poly(ethyleneglycol)-assisted synthesis of praseodymium oxide nanostructures via a facile precipitation route. Ceram. Int. 41, 567 (2015).CrossRef
52.
go back to reference B.M. Abu-Zied, Controlled synthesis of praseodymium oxide nanoparticles obtained by combustion route: effect of calcination temperature and fuel to oxidizer ratio. Appl. Surf. Sci. 471, 246 (2019)CrossRef B.M. Abu-Zied, Controlled synthesis of praseodymium oxide nanoparticles obtained by combustion route: effect of calcination temperature and fuel to oxidizer ratio. Appl. Surf. Sci. 471, 246 (2019)CrossRef
53.
go back to reference X.C. Dou, Y.G. Chen, and H.F. Shi, CuBi2O4/BiOBr composites promoted PMS activation for the degradation of tetracycline: S-scheme mechanism boosted Cu2+/Cu+ cycle. Chem. Eng. J. 431, 134054 (2022).CrossRef X.C. Dou, Y.G. Chen, and H.F. Shi, CuBi2O4/BiOBr composites promoted PMS activation for the degradation of tetracycline: S-scheme mechanism boosted Cu2+/Cu+ cycle. Chem. Eng. J. 431, 134054 (2022).CrossRef
54.
go back to reference T.R. Das, P.K. Sharma, Sensitive and selective electrochemical detection of Cd2+ by using bimetal oxide decorated graphene oxide (Bi2O3/Fe2O3@GO) electrode. Microchem. J. 147, 1203 (2019).CrossRef T.R. Das, P.K. Sharma, Sensitive and selective electrochemical detection of Cd2+ by using bimetal oxide decorated graphene oxide (Bi2O3/Fe2O3@GO) electrode. Microchem. J. 147, 1203 (2019).CrossRef
55.
go back to reference X. Wang, C. Yang, T. Wang, and P. Liu, Praseodymium oxide/polypyrrole nanocomposites for electrochemical energy storage. Electrochim. Acta. 58, 193 (2011).CrossRef X. Wang, C. Yang, T. Wang, and P. Liu, Praseodymium oxide/polypyrrole nanocomposites for electrochemical energy storage. Electrochim. Acta. 58, 193 (2011).CrossRef
56.
go back to reference M. Popa and M. Kakihana, Praseodymium oxide formation by thermal decomposition of a praseodymium complex. Solid State Ion. 141–142, 265 (2001)CrossRef M. Popa and M. Kakihana, Praseodymium oxide formation by thermal decomposition of a praseodymium complex. Solid State Ion. 141–142, 265 (2001)CrossRef
57.
go back to reference M. Mostafavi, M.R. Yaftian, F. Piri, and H. Shayani-Jam, A new diclofenac molecularly imprinted electrochemical sensor based upon a polyaniline/reduced graphene oxide nano-composite. Biosens. Bioelectron. 122, 160 (2018).CrossRef M. Mostafavi, M.R. Yaftian, F. Piri, and H. Shayani-Jam, A new diclofenac molecularly imprinted electrochemical sensor based upon a polyaniline/reduced graphene oxide nano-composite. Biosens. Bioelectron. 122, 160 (2018).CrossRef
58.
go back to reference C.U. Seo, Y. Yoon, D.H. Kim, S.Y. Choi, W.K. Park, J.S. Yoo, B. Baek, S.B. Kwon, C.M. Yang, Y.H. Song, D.H. Yoon, W.S. Yang, and S. Kim, Fabrication of polyaniline-carbon nano composite for application in sensitive flexible acid sensor. J. Ind. Eng. Chem. 64, 97 (2018).CrossRef C.U. Seo, Y. Yoon, D.H. Kim, S.Y. Choi, W.K. Park, J.S. Yoo, B. Baek, S.B. Kwon, C.M. Yang, Y.H. Song, D.H. Yoon, W.S. Yang, and S. Kim, Fabrication of polyaniline-carbon nano composite for application in sensitive flexible acid sensor. J. Ind. Eng. Chem. 64, 97 (2018).CrossRef
59.
go back to reference M.M. Hasan, T. Islam, A. Imran, B. Alqahtani, S.S. Shah, W. Mahfoz, M.R. Karim, H.F. Alharbi, M.A. Aziz, and A.J.S. Ahammad, Mechanistic insights of the oxidation of bisphenol A at ultrasonication assisted polyaniline-Au nanoparticles composite for highly sensitive electrochemical sensor. Electrochim. Acta. 374, 137968 (2021).CrossRef M.M. Hasan, T. Islam, A. Imran, B. Alqahtani, S.S. Shah, W. Mahfoz, M.R. Karim, H.F. Alharbi, M.A. Aziz, and A.J.S. Ahammad, Mechanistic insights of the oxidation of bisphenol A at ultrasonication assisted polyaniline-Au nanoparticles composite for highly sensitive electrochemical sensor. Electrochim. Acta. 374, 137968 (2021).CrossRef
60.
go back to reference L.Z. Pei, H.D. Liu, N. Lin, Y.K. Xie, and Z.Y. Cai, Electrochemical analysis of cyanuric acid using polyaniline/CuGeO3 nanowires as electrode modified materials. Curr. Pharm. Anal. 11, 16 (2015)CrossRef L.Z. Pei, H.D. Liu, N. Lin, Y.K. Xie, and Z.Y. Cai, Electrochemical analysis of cyanuric acid using polyaniline/CuGeO3 nanowires as electrode modified materials. Curr. Pharm. Anal. 11, 16 (2015)CrossRef
61.
go back to reference T. Osaka, S. Ogano, K. Naoi, and N. Oyama, Electrochemical polymerization of electroactive polyaniline in nonaqueous solution and its application in rechargeable lithium batteries. J. Electrochem. Soc. 136, 306 (1989).CrossRef T. Osaka, S. Ogano, K. Naoi, and N. Oyama, Electrochemical polymerization of electroactive polyaniline in nonaqueous solution and its application in rechargeable lithium batteries. J. Electrochem. Soc. 136, 306 (1989).CrossRef
62.
go back to reference J.E. Park, S.G. Park, A. Koukitu, O. Hatozaki, and N. Oyama Effect of adding Pd nanoparticles to dimercaptan-polyaniline cathodes for lithium polymer battery. Synthetic Met. 140, 121 (2004).CrossRef J.E. Park, S.G. Park, A. Koukitu, O. Hatozaki, and N. Oyama Effect of adding Pd nanoparticles to dimercaptan-polyaniline cathodes for lithium polymer battery. Synthetic Met. 140, 121 (2004).CrossRef
63.
go back to reference F. Cao, Y.K. Huang, F. Wang, D. Kwak, Q.C. Dong, D.H. Song, J. Zeng, and Y. Lei, A high-performance electrochemical sensor for biologically meaningful l-cysteine based on a new nanostructured l-cysteine electrocatalyst. Anal. Chim. Acta. 1019, 103 (2018).CrossRef F. Cao, Y.K. Huang, F. Wang, D. Kwak, Q.C. Dong, D.H. Song, J. Zeng, and Y. Lei, A high-performance electrochemical sensor for biologically meaningful l-cysteine based on a new nanostructured l-cysteine electrocatalyst. Anal. Chim. Acta. 1019, 103 (2018).CrossRef
64.
go back to reference J. Zhang, W.S. Tan, Y.X. Tao, L.H. Deng, Y. Qin, and Y. Kong, A novel electrochemical chiral interface based on sandwich-structured molecularly imprinted SiO2/AuNPs/SiO2 for enantioselective recognition of cysteine isomers. Electrochem. Commun. 86, 57 (2018).CrossRef J. Zhang, W.S. Tan, Y.X. Tao, L.H. Deng, Y. Qin, and Y. Kong, A novel electrochemical chiral interface based on sandwich-structured molecularly imprinted SiO2/AuNPs/SiO2 for enantioselective recognition of cysteine isomers. Electrochem. Commun. 86, 57 (2018).CrossRef
65.
go back to reference G. Manibalan, G. Murugadoss, R. Thangamuthu, M.R. Kumar, R.M. Kumar, and R. Jayavel, CeO2-based heterostructure nanocomposite for electrochemical determination of l-cysteine biomolecule. Inorg. Chem. Commun. 113, 107793 (2020).CrossRef G. Manibalan, G. Murugadoss, R. Thangamuthu, M.R. Kumar, R.M. Kumar, and R. Jayavel, CeO2-based heterostructure nanocomposite for electrochemical determination of l-cysteine biomolecule. Inorg. Chem. Commun. 113, 107793 (2020).CrossRef
66.
go back to reference M. Hussain, N. Khaliq, A.A. Khan, M. Mhan, G. Ali, and M. Maqbool, Synthesis, characterization and electrochemical analysis of TiO2 nanostructures for sensing l-cysteine and hydrogen peroxide. Physica E. 128, 114541 (2021).CrossRef M. Hussain, N. Khaliq, A.A. Khan, M. Mhan, G. Ali, and M. Maqbool, Synthesis, characterization and electrochemical analysis of TiO2 nanostructures for sensing l-cysteine and hydrogen peroxide. Physica E. 128, 114541 (2021).CrossRef
67.
go back to reference M. Zhou, J. Ding, L.P. Guo, and Q.K. Shang, Electrochemical behavior of l-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode. Anal. Chem. 79, 5328 (2007).CrossRef M. Zhou, J. Ding, L.P. Guo, and Q.K. Shang, Electrochemical behavior of l-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode. Anal. Chem. 79, 5328 (2007).CrossRef
68.
go back to reference P. Sharma, S. Kaur, S. Chaudhary, A. Umar, and R. Kumar, Bare and non-ionic surfactant-functionalized praseodymium oxide nanoparticles: toxicological studies. Chemosphere. 209, 1007 (2018).CrossRef P. Sharma, S. Kaur, S. Chaudhary, A. Umar, and R. Kumar, Bare and non-ionic surfactant-functionalized praseodymium oxide nanoparticles: toxicological studies. Chemosphere. 209, 1007 (2018).CrossRef
69.
go back to reference S. Sato, R. Takahashi, T. Sodesawa, A. Igarashi, and H. Inoue Catalytic reaction of 1,3-butanediol over rare earth oxides. Appl. Catal. A: Gen. 328, 109 (2007).CrossRef S. Sato, R. Takahashi, T. Sodesawa, A. Igarashi, and H. Inoue Catalytic reaction of 1,3-butanediol over rare earth oxides. Appl. Catal. A: Gen. 328, 109 (2007).CrossRef
70.
go back to reference Z.N. Liu, H.C. Zhang, S.F. Hou, and H.Y. Ma, Highly sensitive and selective electrochemical detection of l-cysteine using nanoporous gold. Microchim. Acta. 177, 427 (2012).CrossRef Z.N. Liu, H.C. Zhang, S.F. Hou, and H.Y. Ma, Highly sensitive and selective electrochemical detection of l-cysteine using nanoporous gold. Microchim. Acta. 177, 427 (2012).CrossRef
71.
go back to reference S.D. Fei, J.H. Chen, S.Z. Yao, G. H. Deng, D.L. He, and Y.F. Kuang, Electrochemical behavior of l-cysteine and its detection at carbon nanotube electrode modified with platinum. Anal. Biochem. 339, 29 (2005).CrossRef S.D. Fei, J.H. Chen, S.Z. Yao, G. H. Deng, D.L. He, and Y.F. Kuang, Electrochemical behavior of l-cysteine and its detection at carbon nanotube electrode modified with platinum. Anal. Biochem. 339, 29 (2005).CrossRef
72.
go back to reference X.J. Wang, L.L. Zhang, L.X. Miao, M.X. Kan, L.L. Kong, and H.M. Zhang, Oxidation and detection of l-cysteine using a modified Au/Nafion/glassy carbon electrode. Sci. China Chem. 54, 521 (2011).CrossRef X.J. Wang, L.L. Zhang, L.X. Miao, M.X. Kan, L.L. Kong, and H.M. Zhang, Oxidation and detection of l-cysteine using a modified Au/Nafion/glassy carbon electrode. Sci. China Chem. 54, 521 (2011).CrossRef
73.
go back to reference S. Yang, G. Li, Y. Wang, G. Wang, and L. Qu, Amperometric l-cysteine sensor based on a carbon paste electrode modified with Y2O3 nanoparticles supported on nitrogen-doped reduced graphene oxide. Microchim. Acta. 183, 1351 (2016).CrossRef S. Yang, G. Li, Y. Wang, G. Wang, and L. Qu, Amperometric l-cysteine sensor based on a carbon paste electrode modified with Y2O3 nanoparticles supported on nitrogen-doped reduced graphene oxide. Microchim. Acta. 183, 1351 (2016).CrossRef
74.
go back to reference H. Heli, M. Hajjizadeh, A. Jabbari, and A. Moosavi-movahedia fine steps of electrocatalytic oxidation and sensitive detection of some amino acids on copper nanoparticles. Anal. Biochem. 388, 81 (2009).CrossRef H. Heli, M. Hajjizadeh, A. Jabbari, and A. Moosavi-movahedia fine steps of electrocatalytic oxidation and sensitive detection of some amino acids on copper nanoparticles. Anal. Biochem. 388, 81 (2009).CrossRef
75.
go back to reference Y.H. Bai, J.J. Xu, H.Y. Chen, Selective sensing of cysteine on manganese dioxide nanowires and chitosan modified glassy carbon electrodes. Biosens. Bioelectron. 24, 2985 (2009).CrossRef Y.H. Bai, J.J. Xu, H.Y. Chen, Selective sensing of cysteine on manganese dioxide nanowires and chitosan modified glassy carbon electrodes. Biosens. Bioelectron. 24, 2985 (2009).CrossRef
76.
go back to reference C.Y. Deng, J.H. Chen, X.L. Chen, M.D. Wang, Z. Nie, and S. Z. Yao, Electrochemical detection of l-cysteine using a boron-doped carbon nanotube-modified electrode. Electrochim. Acta. 54, 3298 (2009).CrossRef C.Y. Deng, J.H. Chen, X.L. Chen, M.D. Wang, Z. Nie, and S. Z. Yao, Electrochemical detection of l-cysteine using a boron-doped carbon nanotube-modified electrode. Electrochim. Acta. 54, 3298 (2009).CrossRef
77.
go back to reference Y.P. Dong, L.Z. Pei, X.F. Chu, W.B. Zhang, Q.F. Zhang, Electrochemical behavior of cysteine at a CuGeO3 nanowires modified glassy carbon electrode. Electrochim. Acta. 55, 5135 (2010).CrossRef Y.P. Dong, L.Z. Pei, X.F. Chu, W.B. Zhang, Q.F. Zhang, Electrochemical behavior of cysteine at a CuGeO3 nanowires modified glassy carbon electrode. Electrochim. Acta. 55, 5135 (2010).CrossRef
78.
go back to reference L.Z. Pei, Z.Y. Cai, Y.Q. Pei, Y.K. Xie, C.G. Fan, and D.G. Fu, Electrochemical determination of l-Cysteine using CuGeO3/polyaniline nanowires modified electrode. Russ. J. Electrochem. 50, 458 (2014).CrossRef L.Z. Pei, Z.Y. Cai, Y.Q. Pei, Y.K. Xie, C.G. Fan, and D.G. Fu, Electrochemical determination of l-Cysteine using CuGeO3/polyaniline nanowires modified electrode. Russ. J. Electrochem. 50, 458 (2014).CrossRef
79.
go back to reference G. Ziyatdinova, L. Grigor’eva, M. Morozov, A. Gilmutdinov, and H. Budnikov, Electrochemical oxidation of sulfur-containing amino acids on an electrode modified with multi-walled carbon nanotubes. Microchim. Acta. 165, 359 (2009).CrossRef G. Ziyatdinova, L. Grigor’eva, M. Morozov, A. Gilmutdinov, and H. Budnikov, Electrochemical oxidation of sulfur-containing amino acids on an electrode modified with multi-walled carbon nanotubes. Microchim. Acta. 165, 359 (2009).CrossRef
80.
go back to reference N. Spataru, B.V. Sarada, E. Papa, D.A. Tryk, and A. Fujishima, Voltammetric determination of l-cysteine at conductive diamond electrodes. Anal. Chem. 73, 514 (2001).CrossRef N. Spataru, B.V. Sarada, E. Papa, D.A. Tryk, and A. Fujishima, Voltammetric determination of l-cysteine at conductive diamond electrodes. Anal. Chem. 73, 514 (2001).CrossRef
81.
go back to reference M. Ahmad, C.F. Pan, and J. Zhu, Electrochemical determination of l-cysteine by an elbow shaped, Sb-doped ZnO nanowire-modified electrode. J. Mater. Chem. 20, 7169 (2010).CrossRef M. Ahmad, C.F. Pan, and J. Zhu, Electrochemical determination of l-cysteine by an elbow shaped, Sb-doped ZnO nanowire-modified electrode. J. Mater. Chem. 20, 7169 (2010).CrossRef
82.
go back to reference X.F. Tang, Y. Liu, H.Q. Hou, and T.Y. You, Electrochemical determination of l-tryptophan, l-tyrosine and l-cysteine using electrospun carbon nanofibers modified electrode. Talanta. 80, 2182 (2010).CrossRef X.F. Tang, Y. Liu, H.Q. Hou, and T.Y. You, Electrochemical determination of l-tryptophan, l-tyrosine and l-cysteine using electrospun carbon nanofibers modified electrode. Talanta. 80, 2182 (2010).CrossRef
83.
go back to reference Z. Chen, H. Zheng, C. Lu, and Y. Zu, Oxidation of l-cysteine at a fluorosurfactant-modified gold electrode: lower overpotential and higher selectivity. Langmuir. 23, 10816 (2007).CrossRef Z. Chen, H. Zheng, C. Lu, and Y. Zu, Oxidation of l-cysteine at a fluorosurfactant-modified gold electrode: lower overpotential and higher selectivity. Langmuir. 23, 10816 (2007).CrossRef
84.
go back to reference S.M. Chen, J.Y. Chen, and R. Thangamuthu, Electrochemical Preparation of brilliant-blue-modified poly(diallyldimethylammonium chloride) and nafion-coated glassy carbon electrodes and their electrocatalytic behavior towards oxygen and l-cysteine. Electroanal. 20, 1565 (2008).CrossRef S.M. Chen, J.Y. Chen, and R. Thangamuthu, Electrochemical Preparation of brilliant-blue-modified poly(diallyldimethylammonium chloride) and nafion-coated glassy carbon electrodes and their electrocatalytic behavior towards oxygen and l-cysteine. Electroanal. 20, 1565 (2008).CrossRef
85.
go back to reference A. Salimi, and R. Hallaj, Catalytic oxidation of thiols at preheated glassy carbon electrode modified with abrasive immobilization of multiwall carbon nanotubes: applications to amperometric detection of thiocytosine, l-cysteine and glutathione. Talanta. 66, 967 (2005).CrossRef A. Salimi, and R. Hallaj, Catalytic oxidation of thiols at preheated glassy carbon electrode modified with abrasive immobilization of multiwall carbon nanotubes: applications to amperometric detection of thiocytosine, l-cysteine and glutathione. Talanta. 66, 967 (2005).CrossRef
Metadata
Title
A Simple Route to Synthesize Mixed BiPr Oxide Nanoparticles and Polyaniline Composites with Enhanced l-Cysteine Sensing Properties
Authors
Jianfeng Huang
Zhengyu Cai
Yong Zhang
Lizhai Pei
Publication date
11-11-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-10033-x

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue