Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

30-10-2022 | Original Research Article

All-Optical Tunable Slow Light Based on Metal/Semiconductor Hybrid EIT Metamaterial

Authors: Yao Zhang, Chengju Ma, Jiasheng Jin, Yuebin Zhang, Shiqian Bao, Mi Li, Dongming Li, Yixin Zhang, Ming Liu, Qianzhen Liu

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We propose a hybrid metamaterial whose unit cell is consisted of a silicon ring and a silver T-shaped antenna. We use finite-difference time-domain to simulate the electromagnetically-induced transparency (EIT)-like effect and slow-light performance of the metamaterial. Then, we also study the influence of different parameters, and finally achieve a group refractive index of 2253 slow-light effect based on an EIT-like effect. Moreover, we use two-dimensional material WS2 to tune the slow-light effect. This tuning method brings forward a research idea for the slow-light tuning of active metamaterials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference X.X. Lu, X.Y. Hu, K.B. Shi, Q. Hu, R. Zhu, H. Yang, and Q.H. Gong, An Actively Ultrafast Tunable Giant Slow-Light Effect in Ultrathin Nonlinear Metasurfaces. Light Sci. Appl. 4, e302 (2015).CrossRef X.X. Lu, X.Y. Hu, K.B. Shi, Q. Hu, R. Zhu, H. Yang, and Q.H. Gong, An Actively Ultrafast Tunable Giant Slow-Light Effect in Ultrathin Nonlinear Metasurfaces. Light Sci. Appl. 4, e302 (2015).CrossRef
2.
go back to reference T. Luis, B. Antoine, G. Amadeu, S. Pablo, and G.-R. Jaime, Ultra-Compact Optical Switches Using Slow Light Bimodal Silicon Waveguides. J. Lightw. Technol. 39, 3495 (2021).CrossRef T. Luis, B. Antoine, G. Amadeu, S. Pablo, and G.-R. Jaime, Ultra-Compact Optical Switches Using Slow Light Bimodal Silicon Waveguides. J. Lightw. Technol. 39, 3495 (2021).CrossRef
3.
go back to reference T. Ma, Q.P. Huang, H.C. He, Y. Hao, X.X. Lin, and Y.L. Lu, All-Dielectric Metamaterial Analogue of Electromagnetically Induced Transparency and Its Sensing Application in Terahertz Range. Opt. Express 27, 16624 (2019).CrossRef T. Ma, Q.P. Huang, H.C. He, Y. Hao, X.X. Lin, and Y.L. Lu, All-Dielectric Metamaterial Analogue of Electromagnetically Induced Transparency and Its Sensing Application in Terahertz Range. Opt. Express 27, 16624 (2019).CrossRef
4.
go back to reference B.M. Jung, J.D. Shin, and B.G. Kim, Optical True Time-Delay For Two-Dimensional X-Band Phased Array Antennas. IEEE Photon. Technol. Lett. 19, 877 (2007).CrossRef B.M. Jung, J.D. Shin, and B.G. Kim, Optical True Time-Delay For Two-Dimensional X-Band Phased Array Antennas. IEEE Photon. Technol. Lett. 19, 877 (2007).CrossRef
5.
go back to reference S.E. Harris, J.E. Field, and A. Imamoğlu, Nonlinear Optical Processes Using Electromagnetically Induced Transparency. Phys. Rev. Lett. 64, 1107 (1990).CrossRef S.E. Harris, J.E. Field, and A. Imamoğlu, Nonlinear Optical Processes Using Electromagnetically Induced Transparency. Phys. Rev. Lett. 64, 1107 (1990).CrossRef
6.
go back to reference R.W. Boyd, Material Slow Light and Structural Slow Light: Similarities and Differences for Nonlinear Optics. J. Opt. Soc. Am. B: Opt. Phys. 28, A38 (2011).CrossRef R.W. Boyd, Material Slow Light and Structural Slow Light: Similarities and Differences for Nonlinear Optics. J. Opt. Soc. Am. B: Opt. Phys. 28, A38 (2011).CrossRef
7.
go back to reference M.S. Bigelow, N. Lepeshkin, and R.W. Boyd, Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature. Phys. Rev. Lett. 90, 113903 (2003).CrossRef M.S. Bigelow, N. Lepeshkin, and R.W. Boyd, Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature. Phys. Rev. Lett. 90, 113903 (2003).CrossRef
8.
go back to reference J. Sharping, Y. Okawachi, and A. Gaeta, Wide Bandwidth Slow Light Using a Raman Fiber Amplifier. Opt. Express 3, 6092–6098 (2005).CrossRef J. Sharping, Y. Okawachi, and A. Gaeta, Wide Bandwidth Slow Light Using a Raman Fiber Amplifier. Opt. Express 3, 6092–6098 (2005).CrossRef
9.
go back to reference R. Tripathi, G.S. Pati, M. Messall, K. Salit, and M.S. Shahriar, Experimental Constraints of Using Slow-Light in Sodium Vapor for Light-Drag Enhanced Relative Rotation Sensing. Opt. Commun. 266, 604 (2006).CrossRef R. Tripathi, G.S. Pati, M. Messall, K. Salit, and M.S. Shahriar, Experimental Constraints of Using Slow-Light in Sodium Vapor for Light-Drag Enhanced Relative Rotation Sensing. Opt. Commun. 266, 604 (2006).CrossRef
10.
go back to reference A.V. Yurii, M. O’Boyle, F.H. Hendrik, and J.M. Sharee, Active Control of Slow Light on a Chip with Photonic Crystal Waveguides. Nature 438, 65 (2005).CrossRef A.V. Yurii, M. O’Boyle, F.H. Hendrik, and J.M. Sharee, Active Control of Slow Light on a Chip with Photonic Crystal Waveguides. Nature 438, 65 (2005).CrossRef
11.
go back to reference J.K.S. Poon, P. Chak, J.M. Choi, and A. Yariv, Slowing Light with Fabry–Perot Resonator Arrays. J. Opt. Soc. Am. B 14, 2763–2769 (2007).CrossRef J.K.S. Poon, P. Chak, J.M. Choi, and A. Yariv, Slowing Light with Fabry–Perot Resonator Arrays. J. Opt. Soc. Am. B 14, 2763–2769 (2007).CrossRef
12.
go back to reference J.T. Mok, I.C. Littler, B.J. Eggleton, and J.E. Benjamin, Dispersionless Slow Light Using Gap Solitons. Nat. Phys. 12, 775 (2007). J.T. Mok, I.C. Littler, B.J. Eggleton, and J.E. Benjamin, Dispersionless Slow Light Using Gap Solitons. Nat. Phys. 12, 775 (2007).
13.
go back to reference D.R. Smith, J.B. Pendry, and M.C. Wiltshire, Metamaterials and Negative Refractive Index. Science 305, 788 (2004).CrossRef D.R. Smith, J.B. Pendry, and M.C. Wiltshire, Metamaterials and Negative Refractive Index. Science 305, 788 (2004).CrossRef
14.
go back to reference E.D. Palik, Handbook of Optical Constants of Solids, Vol. III (San Diego: Academic, 1998). E.D. Palik, Handbook of Optical Constants of Solids, Vol. III (San Diego: Academic, 1998).
15.
go back to reference D.R. Smith, D.C. Vier, T. Koschny, and C.M. Soukoulis, Electromagnetic Parameter Retrieval from Inhomogeneous Metamaterials. Phys. Rev. E 71, 036617 (2005).CrossRef D.R. Smith, D.C. Vier, T. Koschny, and C.M. Soukoulis, Electromagnetic Parameter Retrieval from Inhomogeneous Metamaterials. Phys. Rev. E 71, 036617 (2005).CrossRef
16.
go back to reference J.Q. Wang, J. Zhang, C.Z. Fan, K.J. Mu, E.J. Liang, and P. Ding, Electromagnetic Field Manipulation in Planar Nanorod Antennas Metamaterial for Slow Light Application. Opt. Commun. 383, 36 (2017).CrossRef J.Q. Wang, J. Zhang, C.Z. Fan, K.J. Mu, E.J. Liang, and P. Ding, Electromagnetic Field Manipulation in Planar Nanorod Antennas Metamaterial for Slow Light Application. Opt. Commun. 383, 36 (2017).CrossRef
17.
go back to reference G.X. Wang, H. Lu, and X.M. Liu, Dispersionless Slow Light in MIM Waveguide Based on a Plasmonic Analogue of Electromagnetically Induced Transparency. Opt. Express 20, 20902 (2012).CrossRef G.X. Wang, H. Lu, and X.M. Liu, Dispersionless Slow Light in MIM Waveguide Based on a Plasmonic Analogue of Electromagnetically Induced Transparency. Opt. Express 20, 20902 (2012).CrossRef
18.
go back to reference A. Brimont, J.V. Galán, J.M. Escalante, M. Javier, and S. Pablo, Group-Index Engineering in Silicon Corrugated Waveguides. Opt. Lett. 35, 2708 (2010).CrossRef A. Brimont, J.V. Galán, J.M. Escalante, M. Javier, and S. Pablo, Group-Index Engineering in Silicon Corrugated Waveguides. Opt. Lett. 35, 2708 (2010).CrossRef
19.
go back to reference Z.Y. Jia, J.Y. Xiang, F.S. Wen, R.L. Yang, C.X. Hao, and Z.Y. Liu, Enhanced Photoresponse of SnSe-nanocrystals-decorated WS2 Monolayer Phototransistor. ACS Appl. Mater. Interfaces. 8, 4781–4788 (2016).CrossRef Z.Y. Jia, J.Y. Xiang, F.S. Wen, R.L. Yang, C.X. Hao, and Z.Y. Liu, Enhanced Photoresponse of SnSe-nanocrystals-decorated WS2 Monolayer Phototransistor. ACS Appl. Mater. Interfaces. 8, 4781–4788 (2016).CrossRef
20.
go back to reference P. Steinleitner, P. Merkl, P. Nagler, M. Joshua, S. Christian, K. Tobias, C. Alexey, and H. Rupert, Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe2. Nano Lett. 17, 1455 (2017).CrossRef P. Steinleitner, P. Merkl, P. Nagler, M. Joshua, S. Christian, K. Tobias, C. Alexey, and H. Rupert, Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe2. Nano Lett. 17, 1455 (2017).CrossRef
21.
go back to reference X. Liu, J. Hu, C.L. Yue, D.F. Nicholas, Y. Ling, Z.Q. Mao, and J. Wei, High Performance Field-Effect Transistor Based on Multilayer Tungsten Disulfide. ACS Nano 8, 10396 (2014).CrossRef X. Liu, J. Hu, C.L. Yue, D.F. Nicholas, Y. Ling, Z.Q. Mao, and J. Wei, High Performance Field-Effect Transistor Based on Multilayer Tungsten Disulfide. ACS Nano 8, 10396 (2014).CrossRef
22.
go back to reference N. Perea-López, A.L. Elías, A. Berkdemir, and A. Castro-Beltran, Photosensor Device Based on Few-Layered WS2 Films. Adv. Funct. Mater. 23, 5511 (2013).CrossRef N. Perea-López, A.L. Elías, A. Berkdemir, and A. Castro-Beltran, Photosensor Device Based on Few-Layered WS2 Films. Adv. Funct. Mater. 23, 5511 (2013).CrossRef
23.
go back to reference S. Chen, F. Fan, Y.P. Miao, X.T. He, K.L. Zhang, and S.J. Chang, Ultrasensitive Terahertz Modulation by Silicon-Grown MoS2 Nanosheets. Nanoscale 8, 4713–4719 (2016).CrossRef S. Chen, F. Fan, Y.P. Miao, X.T. He, K.L. Zhang, and S.J. Chang, Ultrasensitive Terahertz Modulation by Silicon-Grown MoS2 Nanosheets. Nanoscale 8, 4713–4719 (2016).CrossRef
24.
go back to reference A.N. Gandi and U. Schwingenschlögl, WS2 As an Excellent High-Temperature Thermoelectric Material. Chem. Mater. 26, 6628 (2014).CrossRef A.N. Gandi and U. Schwingenschlögl, WS2 As an Excellent High-Temperature Thermoelectric Material. Chem. Mater. 26, 6628 (2014).CrossRef
25.
go back to reference M. Manjappa, S.Y. Chiam, L.Q. Cong, A.A. Bettiol, W.L. Zhang, and R. Singh, Tailoring the Slow Light Behavior in Terahertz Metasurfaces. Appl. Phys. Lett. 106, 181101 (2015).CrossRef M. Manjappa, S.Y. Chiam, L.Q. Cong, A.A. Bettiol, W.L. Zhang, and R. Singh, Tailoring the Slow Light Behavior in Terahertz Metasurfaces. Appl. Phys. Lett. 106, 181101 (2015).CrossRef
26.
go back to reference F.Y. Meng, Q. Wu, D. Erni, K. Wu, and J.C. Lee, Polarization-Independent Metamaterial Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor. IEEE Trans. Microw. Theory Tech. 60, 3013 (2012).CrossRef F.Y. Meng, Q. Wu, D. Erni, K. Wu, and J.C. Lee, Polarization-Independent Metamaterial Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor. IEEE Trans. Microw. Theory Tech. 60, 3013 (2012).CrossRef
27.
go back to reference M.M. Chen, Z.Y. Xiao, X.J. Lu, F. Lv, and Y.J. Zhou, Simulation of Dynamically Tunable and Switchable Electromagnetically Induced Transparency Analogue based on Metal-Graphene Hybrid Metamaterial. Carbon 159, 273 (2020).CrossRef M.M. Chen, Z.Y. Xiao, X.J. Lu, F. Lv, and Y.J. Zhou, Simulation of Dynamically Tunable and Switchable Electromagnetically Induced Transparency Analogue based on Metal-Graphene Hybrid Metamaterial. Carbon 159, 273 (2020).CrossRef
Metadata
Title
All-Optical Tunable Slow Light Based on Metal/Semiconductor Hybrid EIT Metamaterial
Authors
Yao Zhang
Chengju Ma
Jiasheng Jin
Yuebin Zhang
Shiqian Bao
Mi Li
Dongming Li
Yixin Zhang
Ming Liu
Qianzhen Liu
Publication date
30-10-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-10031-z

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue