Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

11-10-2022 | Original Research Article

K2FeO4-Assisted Preparation of Discarded Badminton Shuttlecock Feather-Derived Hierarchical Porous Carbon for High-Performance Supercapacitors

Authors: Xinru Liu, Jianwei Yang, Zhentao Bian, Xuanxuan Zhao, Yanyan Zhu, Hongyan Wang, Lei Song, Juncai Chu, Ying Zhang, Ziyan Ye

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biomass waste carbon sources enjoy a place of pride because of their low-cost, environmentally friendly, and readily available nature. The development of an efficient approach to transform biomass wastes into functional carbon-based electrode materials is a hot topic. However, the production process of biologically-based activated carbon needs to be further improved. Here, discarded badminton shuttlecock feathers were used as precursor via activation with potassium ferrate (K2FeO4) to prepare hierarchical porous carbon. The obtained carbon material with hierarchical pore structure displays a high specific surface area (SBET) of 1279.5 m2 g−1, large total pore volume (Vtotal) of 0.73 cm3 g−1 ,and high-level hetero-atom doping (N: 3.78 at.%, O: 7.5 at.%, S: 3.85 at.%). Experimental results reveal that the as-prepared FPCB-750–1:3 exhibits an excellent specific capacitance (Cg) of up to 449 F g−1 at the current density of 0.1 A g−1. Moreover, even at 10 A g−1, the FPCB-750–1:3 electrode still presents a high capacitance of 216 F g−1. In addition, the energy density (ED) of the FPCB-750–1:3//FPCB-750–1:3 symmetric cell reaches 56 Wh kg−1 at a power density (PD) of 720 W kg−1 in an aqueous electrolyte (1 M Na2SO4), meanwhile maintaining a high-class long-term electrochemical stability (fading lower than 4% after 10,000 cycles of charging and discharging). This study provides a trustworthy method to produce promising electrode materials from waste biomass for high-performance supercapacitors.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference L. Qian, F. Guo, X. Jia, Y. Zhan, H. Zhou, X. Jiang, and C. Tao, Recent Development in the Synthesis of Agricultural and Forestry Biomass-Derived Porous Carbons for Supercapacitor Applications: A Review. Ionics 26, 3705 (2020).CrossRef L. Qian, F. Guo, X. Jia, Y. Zhan, H. Zhou, X. Jiang, and C. Tao, Recent Development in the Synthesis of Agricultural and Forestry Biomass-Derived Porous Carbons for Supercapacitor Applications: A Review. Ionics 26, 3705 (2020).CrossRef
3.
go back to reference Z. Pang, G. Li, X. Xiong, L. Ji, Q. Xu, X. Zou, and X. Lu, Molten Salt Synthesis of Porous Carbon and its Application in Supercapacitors: A Review. J. Energy Chem. 61, 622 (2021).CrossRef Z. Pang, G. Li, X. Xiong, L. Ji, Q. Xu, X. Zou, and X. Lu, Molten Salt Synthesis of Porous Carbon and its Application in Supercapacitors: A Review. J. Energy Chem. 61, 622 (2021).CrossRef
4.
go back to reference R. Guo, S. Zhang, H. Ying, W. Yang, J. Wang, and W. Han, New, Effective, and Low-Cost Dual-Functional Binder for Porous Silicon Anodes in Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 11, 14051 (2019).CrossRef R. Guo, S. Zhang, H. Ying, W. Yang, J. Wang, and W. Han, New, Effective, and Low-Cost Dual-Functional Binder for Porous Silicon Anodes in Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 11, 14051 (2019).CrossRef
5.
go back to reference M. Wu, J. Liao, L. Yu, R. Lv, P. Li, W. Sun, R. Tan, X. Duan, L. Zhang, F. Li, J. Kim, K.H. Shin, H.S. Park, W. Zhang, Z. Guo, H. Wang, Y. Tang, G. Gorgolis, C. Galiotis, and J. Ma, Roadmap on Carbon Materials for Energy Storage and Conversion. Chem-Asian J. 15, 995 (2020).CrossRef M. Wu, J. Liao, L. Yu, R. Lv, P. Li, W. Sun, R. Tan, X. Duan, L. Zhang, F. Li, J. Kim, K.H. Shin, H.S. Park, W. Zhang, Z. Guo, H. Wang, Y. Tang, G. Gorgolis, C. Galiotis, and J. Ma, Roadmap on Carbon Materials for Energy Storage and Conversion. Chem-Asian J. 15, 995 (2020).CrossRef
6.
go back to reference Z. Bi, Q. Kong, Y. Cao, G. Sun, F. Su, X. Wei, X. Li, A. Ahmad, L. Xie, and C. Chen, Biomass-Derived Porous Carbon Materials with Different Dimensions for Supercapacitor Electrodes: A Review. J. Mater. Chem. A 7, 16028 (2019).CrossRef Z. Bi, Q. Kong, Y. Cao, G. Sun, F. Su, X. Wei, X. Li, A. Ahmad, L. Xie, and C. Chen, Biomass-Derived Porous Carbon Materials with Different Dimensions for Supercapacitor Electrodes: A Review. J. Mater. Chem. A 7, 16028 (2019).CrossRef
7.
go back to reference Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wangl, B. Dunn, and R.B. Kaner, Design and Mechanisms of Asymmetric Supercapacitors. Chem. Rev. 118, 9233 (2018).CrossRef Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wangl, B. Dunn, and R.B. Kaner, Design and Mechanisms of Asymmetric Supercapacitors. Chem. Rev. 118, 9233 (2018).CrossRef
8.
go back to reference H. Wang, L. Yang, G. Liu, and M. Li, Tobacco-Stem-Derived Nitrogen-Enriched Hierarchical Porous Carbon for High-Energy Supercapacitor. ChemistrySelect 6, 532 (2021).CrossRef H. Wang, L. Yang, G. Liu, and M. Li, Tobacco-Stem-Derived Nitrogen-Enriched Hierarchical Porous Carbon for High-Energy Supercapacitor. ChemistrySelect 6, 532 (2021).CrossRef
9.
go back to reference S. Lv, L. Ma, X. Shen, and H. Tong, Recent Design and Control of Carbon Materials for Supercapacitors. J. Mater. Sci. 56, 1919 (2021).CrossRef S. Lv, L. Ma, X. Shen, and H. Tong, Recent Design and Control of Carbon Materials for Supercapacitors. J. Mater. Sci. 56, 1919 (2021).CrossRef
10.
go back to reference Y. Han and L. Dai, Conducting Polymers for Flexible Supercapacitors. Macromol Chem. Phys. 220, 1800355 (2019).CrossRef Y. Han and L. Dai, Conducting Polymers for Flexible Supercapacitors. Macromol Chem. Phys. 220, 1800355 (2019).CrossRef
11.
go back to reference Q. Wang, D. Zhang, Y. Wu, T. Li, A. Zhang, and M. Miao, Fabrication of Supercapacitors from NiCo2O4 Nanowire/Carbon-Nanotube Yarn for Ultraviolet Photodetectors and Portable Electronics. Energy Technol. 5, 1449 (2017).CrossRef Q. Wang, D. Zhang, Y. Wu, T. Li, A. Zhang, and M. Miao, Fabrication of Supercapacitors from NiCo2O4 Nanowire/Carbon-Nanotube Yarn for Ultraviolet Photodetectors and Portable Electronics. Energy Technol. 5, 1449 (2017).CrossRef
12.
go back to reference S. Lu, M. Jin, Y. Zhang, Y. Niu, J. Gao, and C.M. Li, Chemically Exfoliating Biomass into a Graphene-like Porous Active Carbon with Rational Pore Structure, Good Conductivity, and Large Surface Area for High-Performance Supercapacitors. Adv. Energy Mater. 8, 1702545 (2018).CrossRef S. Lu, M. Jin, Y. Zhang, Y. Niu, J. Gao, and C.M. Li, Chemically Exfoliating Biomass into a Graphene-like Porous Active Carbon with Rational Pore Structure, Good Conductivity, and Large Surface Area for High-Performance Supercapacitors. Adv. Energy Mater. 8, 1702545 (2018).CrossRef
13.
go back to reference B. Wang, L. Li, C. Zhao, and C. Zhao, Microporous Active Carbon with Ultrahigh Surface Area from Metaplexis Japonica for High-Performance Supercapacitor. Diam. Relat. Mater. 118, 108484 (2021).CrossRef B. Wang, L. Li, C. Zhao, and C. Zhao, Microporous Active Carbon with Ultrahigh Surface Area from Metaplexis Japonica for High-Performance Supercapacitor. Diam. Relat. Mater. 118, 108484 (2021).CrossRef
14.
go back to reference C. Shi, L. Hu, K. Guo, H. Li, and T. Zhai, Highly Porous Carbon with Graphene Nanoplatelet Microstructure Derived from Biomass Waste for High-Performance Supercapacitors in Universal Electrolyte. J. Adv. Sustain. Syst. 1, 1600011 (2017).CrossRef C. Shi, L. Hu, K. Guo, H. Li, and T. Zhai, Highly Porous Carbon with Graphene Nanoplatelet Microstructure Derived from Biomass Waste for High-Performance Supercapacitors in Universal Electrolyte. J. Adv. Sustain. Syst. 1, 1600011 (2017).CrossRef
15.
go back to reference W. Ye, J. Cai, F. Yu, X. Li, and X. Wang, Nitrogen-Doped Bagasse Carbon Spheres/Graphene Composite for High-Performance Supercapacitors. Biomass Bioenerg. 145, 105949 (2021).CrossRef W. Ye, J. Cai, F. Yu, X. Li, and X. Wang, Nitrogen-Doped Bagasse Carbon Spheres/Graphene Composite for High-Performance Supercapacitors. Biomass Bioenerg. 145, 105949 (2021).CrossRef
16.
go back to reference G. Liao, Y. Gong, L. Zhang, H. Gao, G. Yang, and B. Fang, Semiconductor Polymeric Graphitic Carbon Nitride Photocatalysts: the “Holy Grail” for the Photocatalytic Hydrogen Evolution Reaction Under Visible Light. Energy Environ. Sci. 12, 2080 (2019).CrossRef G. Liao, Y. Gong, L. Zhang, H. Gao, G. Yang, and B. Fang, Semiconductor Polymeric Graphitic Carbon Nitride Photocatalysts: the “Holy Grail” for the Photocatalytic Hydrogen Evolution Reaction Under Visible Light. Energy Environ. Sci. 12, 2080 (2019).CrossRef
17.
go back to reference A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, and D. Aurbach, Carbon-Based Composite Materials for Supercapacitor Electrodes: A Review. J. Mater. Chem. A 5, 12653 (2017).CrossRef A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, and D. Aurbach, Carbon-Based Composite Materials for Supercapacitor Electrodes: A Review. J. Mater. Chem. A 5, 12653 (2017).CrossRef
18.
go back to reference F. Gao, J. Qu, Z. Zhao, Z. Wang, and J. Qiu, Nitrogen-Doped Activated Carbon Derived from Prawn Shells for high-Performance Supercapacitors. Electrochim. Acta 190, 1134 (2016).CrossRef F. Gao, J. Qu, Z. Zhao, Z. Wang, and J. Qiu, Nitrogen-Doped Activated Carbon Derived from Prawn Shells for high-Performance Supercapacitors. Electrochim. Acta 190, 1134 (2016).CrossRef
19.
go back to reference C. Song, H. Kuihua, Y. Gao, Z. Teng, M. Wang, and J. Li, Preparation of Scallion-Derived Porous Carbon with Regular Pore Structure for High-Performance Supercapacitors. J. Electrochem. Soc. 167, 160549 (2020).CrossRef C. Song, H. Kuihua, Y. Gao, Z. Teng, M. Wang, and J. Li, Preparation of Scallion-Derived Porous Carbon with Regular Pore Structure for High-Performance Supercapacitors. J. Electrochem. Soc. 167, 160549 (2020).CrossRef
20.
go back to reference X. Zhang, H. Li, K. Zhang, Q. Wang, B. Qin, Q. Cao, and L. Jin, Strategy for Preparing Porous Graphitic Carbon for Supercapacitor: Balance on Porous Structure and Graphitization Degree. J. Electrochem. Soc. 165, A2084 (2018).CrossRef X. Zhang, H. Li, K. Zhang, Q. Wang, B. Qin, Q. Cao, and L. Jin, Strategy for Preparing Porous Graphitic Carbon for Supercapacitor: Balance on Porous Structure and Graphitization Degree. J. Electrochem. Soc. 165, A2084 (2018).CrossRef
21.
go back to reference S. Chen, L. Qiu, and H. Cheng, Carbon-Based Fibers for Advanced Electrochemical Energy Storage Devices. Chem. Rev. 120, 2811 (2020).CrossRef S. Chen, L. Qiu, and H. Cheng, Carbon-Based Fibers for Advanced Electrochemical Energy Storage Devices. Chem. Rev. 120, 2811 (2020).CrossRef
22.
go back to reference D. Khalafallah, X. Quan, C. Quyang, M. Zhi, and Z. Hong, Heteroatoms Doped Porous Carbon Derived from Waste Potato Peel for Supercapacitors. Renew. Energ. 170, 60 (2021).CrossRef D. Khalafallah, X. Quan, C. Quyang, M. Zhi, and Z. Hong, Heteroatoms Doped Porous Carbon Derived from Waste Potato Peel for Supercapacitors. Renew. Energ. 170, 60 (2021).CrossRef
23.
go back to reference L. Yang, Y. Feng, M. Cao, and J. Yao, Two-Step Preparation of Hierarchical Porous Carbon from KOH-Activated for Supercapacitor. Mater Chem Phys. 238, 121956 (2019).CrossRef L. Yang, Y. Feng, M. Cao, and J. Yao, Two-Step Preparation of Hierarchical Porous Carbon from KOH-Activated for Supercapacitor. Mater Chem Phys. 238, 121956 (2019).CrossRef
24.
go back to reference B. Armynah, E. Taer, Z. Djafar, W. Piarah, and D. Tahir, Effect of Temperature on Physical and Electrochemical Properties of the Monolithic Carbon-Based Leaf to Enhanced Surface Area and Specific Capacitance of the Supercapacitor. Int. J. Electrochem. Sci. 14, 7076 (2019).CrossRef B. Armynah, E. Taer, Z. Djafar, W. Piarah, and D. Tahir, Effect of Temperature on Physical and Electrochemical Properties of the Monolithic Carbon-Based Leaf to Enhanced Surface Area and Specific Capacitance of the Supercapacitor. Int. J. Electrochem. Sci. 14, 7076 (2019).CrossRef
25.
go back to reference W. Tian, Q. Gao, Y. Tan, K. Yang, L. Zhu, C. Yang, and H. Zhang, Bio-Inspired Beehive-Like Hierarchical Nanoporous Carbon Derived from Bamboo-Based Industrial by-Product as a High Performance Supercapacitor Electrode Material. J. Mater. Chem. A 3, 5656 (2015).CrossRef W. Tian, Q. Gao, Y. Tan, K. Yang, L. Zhu, C. Yang, and H. Zhang, Bio-Inspired Beehive-Like Hierarchical Nanoporous Carbon Derived from Bamboo-Based Industrial by-Product as a High Performance Supercapacitor Electrode Material. J. Mater. Chem. A 3, 5656 (2015).CrossRef
26.
go back to reference J. Li, K. Han, and S. Li, Porous carbons from Sargassum Muticum Prepared by H3PO4 and KOH Activation for Supercapacitors. J. Mater. Sci. Mater. Electron. 29, 8480 (2018).CrossRef J. Li, K. Han, and S. Li, Porous carbons from Sargassum Muticum Prepared by H3PO4 and KOH Activation for Supercapacitors. J. Mater. Sci. Mater. Electron. 29, 8480 (2018).CrossRef
27.
go back to reference S. Li, K. Han, P. Si, J. Li, and C. Lu, Improvement in the Pore Structure of Gulfweed–Based Activated Carbon via Two–Step Acid Treatment for High Performance Supercapacitors. J. Electroanal Chem. 820, 103 (2018).CrossRef S. Li, K. Han, P. Si, J. Li, and C. Lu, Improvement in the Pore Structure of Gulfweed–Based Activated Carbon via Two–Step Acid Treatment for High Performance Supercapacitors. J. Electroanal Chem. 820, 103 (2018).CrossRef
28.
go back to reference E. Taer, R. Taslim, A.W. Putri, A. Apriwandi, and A. Agustino, Activated Carbon Electrode Made from Coconut Husk Waste for Supercapacitor Application. Int. J. Electrochem. Sci. 13, 12072 (2018).CrossRef E. Taer, R. Taslim, A.W. Putri, A. Apriwandi, and A. Agustino, Activated Carbon Electrode Made from Coconut Husk Waste for Supercapacitor Application. Int. J. Electrochem. Sci. 13, 12072 (2018).CrossRef
29.
go back to reference Y. Gao, L. Li, Y. Jin, Y. Wang, C. Yuan, Y. Wei, G. Chen, J. Ge, and H. Lu, Porous Carbon Made from Rice Husk as Electrode Material for Electrochemical Double Layer Capacitor. Appl. Energy 153, 41 (2015).CrossRef Y. Gao, L. Li, Y. Jin, Y. Wang, C. Yuan, Y. Wei, G. Chen, J. Ge, and H. Lu, Porous Carbon Made from Rice Husk as Electrode Material for Electrochemical Double Layer Capacitor. Appl. Energy 153, 41 (2015).CrossRef
30.
go back to reference F. Guo, X. Jiang, X. Li, K. Peng, C. Guo, and Z. Rao, Carbon Electrode Material from Peanut Shell by One-Step Synthesis for High performance Supercapacitor. J. Mater. Sci. Mater. Electron. 30, 914 (2019).CrossRef F. Guo, X. Jiang, X. Li, K. Peng, C. Guo, and Z. Rao, Carbon Electrode Material from Peanut Shell by One-Step Synthesis for High performance Supercapacitor. J. Mater. Sci. Mater. Electron. 30, 914 (2019).CrossRef
31.
go back to reference Y. Cao, K. Wang, X. Wang, Z. Gu, Q. Fan, W. Gibbons, J. Hoefelmeyer, P. Kharel, and M. Shrestha, Hierarchical Porous Activated Carbon for Supercapacitor Derived from Corn Stalk Core by Potassium Hydroxide Activation. Electrochim. Acta 212, 839 (2016).CrossRef Y. Cao, K. Wang, X. Wang, Z. Gu, Q. Fan, W. Gibbons, J. Hoefelmeyer, P. Kharel, and M. Shrestha, Hierarchical Porous Activated Carbon for Supercapacitor Derived from Corn Stalk Core by Potassium Hydroxide Activation. Electrochim. Acta 212, 839 (2016).CrossRef
32.
go back to reference G. Ma, F. Hua, K. Sun, Z. Zhang, E. Feng, H. Peng, and Z. Lei, Porous Carbon Derived from Sorghum Stalk for Symmetric Supercapacitors. RSC Adv. 6, 103508 (2016).CrossRef G. Ma, F. Hua, K. Sun, Z. Zhang, E. Feng, H. Peng, and Z. Lei, Porous Carbon Derived from Sorghum Stalk for Symmetric Supercapacitors. RSC Adv. 6, 103508 (2016).CrossRef
33.
go back to reference X. Tian, H. Ma, Z. Li, S. Yan, L. Ma, F. Yu, G. Wang, X. Guo, Y. Ma, and C. Wong, Flute Type Micropores Activated Carbon from Cotton Stalk for High Performance Supercapacitors. J. Power Sources 359, 88 (2017).CrossRef X. Tian, H. Ma, Z. Li, S. Yan, L. Ma, F. Yu, G. Wang, X. Guo, Y. Ma, and C. Wong, Flute Type Micropores Activated Carbon from Cotton Stalk for High Performance Supercapacitors. J. Power Sources 359, 88 (2017).CrossRef
34.
go back to reference Y. Wang, B. Hou, H. Lu, C. Lu, and X. Wu, Hierarchically Porous N-Doped Carbon Nanosheets Derived From Grapefruit Peels for High-Performance Supercapacitors. ChemistrySelect 1, 1441 (2016).CrossRef Y. Wang, B. Hou, H. Lu, C. Lu, and X. Wu, Hierarchically Porous N-Doped Carbon Nanosheets Derived From Grapefruit Peels for High-Performance Supercapacitors. ChemistrySelect 1, 1441 (2016).CrossRef
35.
go back to reference N. Guo, M. Li, Y. Wang, X. Sun, F. Wang, and R. Yang, N-Doped Hierarchical Porous Carbon Prepared by Simultaneous-Activation of KOH and NH3 for High Performance Supercapacitors. RSC Adv. 6, 101372 (2016).CrossRef N. Guo, M. Li, Y. Wang, X. Sun, F. Wang, and R. Yang, N-Doped Hierarchical Porous Carbon Prepared by Simultaneous-Activation of KOH and NH3 for High Performance Supercapacitors. RSC Adv. 6, 101372 (2016).CrossRef
36.
go back to reference L. Hu, Q. Zhu, Q. Wu, D. Li, Z. An, and B. Xu, Natural Biomass-Derived Hierarchical Porous Carbon Synthesized by an in Situ Hard Template Coupled with NaOH Activation for Ultrahigh Rate Supercapacitors. ACS Sustain. Chem. Eng. 6, 13949 (2018).CrossRef L. Hu, Q. Zhu, Q. Wu, D. Li, Z. An, and B. Xu, Natural Biomass-Derived Hierarchical Porous Carbon Synthesized by an in Situ Hard Template Coupled with NaOH Activation for Ultrahigh Rate Supercapacitors. ACS Sustain. Chem. Eng. 6, 13949 (2018).CrossRef
37.
go back to reference G. Song, J. Yang, K. Liu, Z. Qin, and X. Zheng, Cattail Fiber-Derived Hierarchical Porous Carbon Materials for High-Performance Supercapacitors. Diam. Relat. Mater. 111, 108162 (2021).CrossRef G. Song, J. Yang, K. Liu, Z. Qin, and X. Zheng, Cattail Fiber-Derived Hierarchical Porous Carbon Materials for High-Performance Supercapacitors. Diam. Relat. Mater. 111, 108162 (2021).CrossRef
38.
go back to reference F. Guo, X. Jiang, X. Jia, S. Liang, L. Qian, and Z. Rao, Synthesis of Biomass Carbon Electrode Materials by Bimetallic Activation for the Application in Supercapacitors. J. Electroanal Chem. 844, 105 (2019).CrossRef F. Guo, X. Jiang, X. Jia, S. Liang, L. Qian, and Z. Rao, Synthesis of Biomass Carbon Electrode Materials by Bimetallic Activation for the Application in Supercapacitors. J. Electroanal Chem. 844, 105 (2019).CrossRef
39.
go back to reference V. Gehrke, G. Maron, L. Rodrigues, J. Alano, C. Pereira, M. Orlandi, and N. Carren, Facile Preparation of a Novel Biomass-Derived H3PO4 and Mn(NO3)2 Activated Carbon from Citrus Bergamia Peels for High-Performance Supercapacitors. J. Mater. Today Commun. 26, 101779 (2021).CrossRef V. Gehrke, G. Maron, L. Rodrigues, J. Alano, C. Pereira, M. Orlandi, and N. Carren, Facile Preparation of a Novel Biomass-Derived H3PO4 and Mn(NO3)2 Activated Carbon from Citrus Bergamia Peels for High-Performance Supercapacitors. J. Mater. Today Commun. 26, 101779 (2021).CrossRef
40.
go back to reference Y. Gong, D. Li, C. Luo, Q. Fu, and C. Pan, Highly Porous Graphitic Biomass Carbon as Advanced Electrode Materials for Supercapacitors. Green Chem. 19, 4132 (2017).CrossRef Y. Gong, D. Li, C. Luo, Q. Fu, and C. Pan, Highly Porous Graphitic Biomass Carbon as Advanced Electrode Materials for Supercapacitors. Green Chem. 19, 4132 (2017).CrossRef
41.
go back to reference M. Fu, J. Huang, S. Feng, T. Zhang, P. Qian, and W. Wong, One-Step Solid-State Pyrolysis of Bio-Wastes to Synthesize Multi-Hierarchical Porous Carbon for Ultra-Long Life Supercapacitors. Mater. Chem. Front. 5, 2320 (2021).CrossRef M. Fu, J. Huang, S. Feng, T. Zhang, P. Qian, and W. Wong, One-Step Solid-State Pyrolysis of Bio-Wastes to Synthesize Multi-Hierarchical Porous Carbon for Ultra-Long Life Supercapacitors. Mater. Chem. Front. 5, 2320 (2021).CrossRef
42.
go back to reference J. Dong, S. Li, and Y. Ding, Anchoring Nickel-Cobalt Sulfide Nanoparticles on Carbon Aerogel Derived from Waste Watermelon Rind for High-Performance Asymmetric Supercapacitors. J. Alloys Compd. 845, 155701 (2020).CrossRef J. Dong, S. Li, and Y. Ding, Anchoring Nickel-Cobalt Sulfide Nanoparticles on Carbon Aerogel Derived from Waste Watermelon Rind for High-Performance Asymmetric Supercapacitors. J. Alloys Compd. 845, 155701 (2020).CrossRef
43.
go back to reference Y. Ping, S. Yang, J. Han, X. Li, H. Zhang, B. Xiong, P. Fang, and C. He, N-Self-Doped Graphitic Carbon Aerogels Derived From Metal–Organic Frameworks as Supercapacitor Electrode Materials with High-Performance. Electrochim. Acta 380, 138237 (2021).CrossRef Y. Ping, S. Yang, J. Han, X. Li, H. Zhang, B. Xiong, P. Fang, and C. He, N-Self-Doped Graphitic Carbon Aerogels Derived From Metal–Organic Frameworks as Supercapacitor Electrode Materials with High-Performance. Electrochim. Acta 380, 138237 (2021).CrossRef
44.
go back to reference Y. Wu, J. Cao, Z. Yang, Y. Wei, Q. Zhuang, X. Zhao, Z. Zhou, Y. Lu, and H. Bai, Green and Facile Synthesis of Porous Carbon Spheres from Waste Solution for High Performance all-Solid-State Symmetric Supercapacitors. Int. J. Hydrog. Energy 46, 32373 (2021).CrossRef Y. Wu, J. Cao, Z. Yang, Y. Wei, Q. Zhuang, X. Zhao, Z. Zhou, Y. Lu, and H. Bai, Green and Facile Synthesis of Porous Carbon Spheres from Waste Solution for High Performance all-Solid-State Symmetric Supercapacitors. Int. J. Hydrog. Energy 46, 32373 (2021).CrossRef
45.
go back to reference W. Liu, K. Tian, Y. He, H. Jiang, and H. Yu, High-Yield Harvest of Nanofibers/Mesoporous Carbon Composite by Pyrolysis of Waste Biomass and Its Application for High Durability Electrochemical Energy Storage. Environ. Sci. Technol. 48, 13951 (2014).CrossRef W. Liu, K. Tian, Y. He, H. Jiang, and H. Yu, High-Yield Harvest of Nanofibers/Mesoporous Carbon Composite by Pyrolysis of Waste Biomass and Its Application for High Durability Electrochemical Energy Storage. Environ. Sci. Technol. 48, 13951 (2014).CrossRef
46.
go back to reference Y. Shen, Carbothermal Synthesis of Metal-Functionalized Nanostructures for Energy and Environmental Applications. J. Mater. Chem. A 3, 13114 (2015).CrossRef Y. Shen, Carbothermal Synthesis of Metal-Functionalized Nanostructures for Energy and Environmental Applications. J. Mater. Chem. A 3, 13114 (2015).CrossRef
47.
go back to reference J. Wang and S. Kaskel, KOH Activation of Carbon-Based Materials for Energy Storage. J. Mater. Chem. 22, 23710 (2012).CrossRef J. Wang and S. Kaskel, KOH Activation of Carbon-Based Materials for Energy Storage. J. Mater. Chem. 22, 23710 (2012).CrossRef
48.
go back to reference D. Lozano-Castello, J. Calo, D. Cazorla-Amoros, and A. Linares-Solano, Carbon Activation with KOH as Explored by Temperature Programmed Techniques, and the Effects of Hydrogen. Carbon 45, 2529 (2007).CrossRef D. Lozano-Castello, J. Calo, D. Cazorla-Amoros, and A. Linares-Solano, Carbon Activation with KOH as Explored by Temperature Programmed Techniques, and the Effects of Hydrogen. Carbon 45, 2529 (2007).CrossRef
49.
go back to reference E. Raymundo-Pinero, P. Azais, T. Cacciaguerra, D. Cazorla-Amoros, A. Linares-Solano, and F. Beguin, KOH and NaOH Activation Mechanisms of Multiwalled Carbon Nanotubes with Different Structural Organisation. Carbon 43, 786 (2005).CrossRef E. Raymundo-Pinero, P. Azais, T. Cacciaguerra, D. Cazorla-Amoros, A. Linares-Solano, and F. Beguin, KOH and NaOH Activation Mechanisms of Multiwalled Carbon Nanotubes with Different Structural Organisation. Carbon 43, 786 (2005).CrossRef
50.
go back to reference L. Hou, Z. Hu, X. Wang, L. Qiang, Y. Zhou, L. Lv, and S. Li, Hierarchically Porous and Heteroatom Self-Doped Graphitic Biomass Carbon for Supercapacitors. J. Colloid Interf. Sci. 540, 88 (2019).CrossRef L. Hou, Z. Hu, X. Wang, L. Qiang, Y. Zhou, L. Lv, and S. Li, Hierarchically Porous and Heteroatom Self-Doped Graphitic Biomass Carbon for Supercapacitors. J. Colloid Interf. Sci. 540, 88 (2019).CrossRef
51.
go back to reference G. Jiang, S. Osman, R. Senthil, Y. Sun, X. Tan, and J. Pan, Hierarchically Porous Carbon Derived from Magnesium-Based Metal-Organic Frameworks as Advanced Active Material for Supercapacitor. J. Energy Storage 49, 104071 (2022).CrossRef G. Jiang, S. Osman, R. Senthil, Y. Sun, X. Tan, and J. Pan, Hierarchically Porous Carbon Derived from Magnesium-Based Metal-Organic Frameworks as Advanced Active Material for Supercapacitor. J. Energy Storage 49, 104071 (2022).CrossRef
52.
go back to reference F. Yu, Z. Ye, W. Chen, Q. Wang, H. Wang, H. Zhang, and C. Peng, Plane Tree Bark-Derived Mesopore-Dominant Hierarchical Carbon for High-Voltage Supercapacitors. Appl. Surf. Sci. 507, 145190 (2020).CrossRef F. Yu, Z. Ye, W. Chen, Q. Wang, H. Wang, H. Zhang, and C. Peng, Plane Tree Bark-Derived Mesopore-Dominant Hierarchical Carbon for High-Voltage Supercapacitors. Appl. Surf. Sci. 507, 145190 (2020).CrossRef
53.
go back to reference D. Tang, Y. Luo, W. Lei, Q. Xiang, W. Ren, W. Song, K. Chen, and J. Sun, Hierarchical Porous Carbon Materials Derived from waste Lentinus Edodes by a Hybrid Hydrothermal and Molten Salt Process for Supercapacitor Applications. Appl. Surf. Sci. 462, 862 (2018).CrossRef D. Tang, Y. Luo, W. Lei, Q. Xiang, W. Ren, W. Song, K. Chen, and J. Sun, Hierarchical Porous Carbon Materials Derived from waste Lentinus Edodes by a Hybrid Hydrothermal and Molten Salt Process for Supercapacitor Applications. Appl. Surf. Sci. 462, 862 (2018).CrossRef
54.
go back to reference J. Du, Y. Zhang, H. Wu, S. Hou, and A. Chen, N-Doped Hollow Mesoporous Carbon Spheres by Improved Dissolution-Capture for Supercapacitors. Carbon 156, 523 (2020).CrossRef J. Du, Y. Zhang, H. Wu, S. Hou, and A. Chen, N-Doped Hollow Mesoporous Carbon Spheres by Improved Dissolution-Capture for Supercapacitors. Carbon 156, 523 (2020).CrossRef
55.
go back to reference Y. Chen, S. He, Y. Liu, D. Wang, and Y. Wang, A Self-Sacrificed Template Synthesis of Porous N Doped Carbon Nanosheets and Their Electrochemical Properties. Mater. Lett. 230, 16 (2018).CrossRef Y. Chen, S. He, Y. Liu, D. Wang, and Y. Wang, A Self-Sacrificed Template Synthesis of Porous N Doped Carbon Nanosheets and Their Electrochemical Properties. Mater. Lett. 230, 16 (2018).CrossRef
56.
go back to reference Z. Bian, C. Wu, C. Yuan, Y. Wang, G. Zhao, H. Wang, Y. Xie, C. Wang, G. Zhu, and C. Chen, One-Step Production of N-O–P–S Co-Doped Porous Carbon from Bean Worms for Supercapacitors with High performance. RSC Adv. 10, 30756 (2020).CrossRef Z. Bian, C. Wu, C. Yuan, Y. Wang, G. Zhao, H. Wang, Y. Xie, C. Wang, G. Zhu, and C. Chen, One-Step Production of N-O–P–S Co-Doped Porous Carbon from Bean Worms for Supercapacitors with High performance. RSC Adv. 10, 30756 (2020).CrossRef
57.
go back to reference G. Xu, J. Han, B. Ding, P. Nie, J. Pan, H. Dou, H. Li, and X. Zhang, Biomass-Derived Porous Carbon Materials with Sulfur and Nitrogen Dual-Doping for Energy Storage. Green Chem. 17, 1668 (2015).CrossRef G. Xu, J. Han, B. Ding, P. Nie, J. Pan, H. Dou, H. Li, and X. Zhang, Biomass-Derived Porous Carbon Materials with Sulfur and Nitrogen Dual-Doping for Energy Storage. Green Chem. 17, 1668 (2015).CrossRef
58.
go back to reference X. Liang, R. Liu, and X. Wu, Biomass Waste Derived Functionalized Hierarchical Porous Carbon with High Gravimetric and Volumetric Capacitances for Supercapacitors. Microporous Mesoporous Mater. 310, 110659 (2021).CrossRef X. Liang, R. Liu, and X. Wu, Biomass Waste Derived Functionalized Hierarchical Porous Carbon with High Gravimetric and Volumetric Capacitances for Supercapacitors. Microporous Mesoporous Mater. 310, 110659 (2021).CrossRef
59.
go back to reference C. Lu, Y. Huang, Y. Wu, J. Li, and J. Cheng, Camellia Pollen-Derived Carbon for Supercapacitor Electrode Material. J. Power Source. 394, 9 (2018).CrossRef C. Lu, Y. Huang, Y. Wu, J. Li, and J. Cheng, Camellia Pollen-Derived Carbon for Supercapacitor Electrode Material. J. Power Source. 394, 9 (2018).CrossRef
60.
go back to reference U. Thubsuang, S. Laebang, N. Manmuanpom, S. Wongkasemjit, and T. Chaisuwan, Tuning Pore Characteristics of Porous Carbon Monoliths Prepared from Rubber Wood Waste Treated with H3PO4 or NaOH and their Potential as Supercapacitor Electrode Materials. J. Mater. Sci. 52, 6837 (2017).CrossRef U. Thubsuang, S. Laebang, N. Manmuanpom, S. Wongkasemjit, and T. Chaisuwan, Tuning Pore Characteristics of Porous Carbon Monoliths Prepared from Rubber Wood Waste Treated with H3PO4 or NaOH and their Potential as Supercapacitor Electrode Materials. J. Mater. Sci. 52, 6837 (2017).CrossRef
61.
go back to reference J. Qu, C. Geng, S. Lv, G. Shao, S. Ma, and M. Wu, Nitrogen, Oxygen and Phosphorus Decorated Porous Carbons Derived from Shrimp Shells for Supercapacitors. Electrochim. Acta 176, 982 (2015).CrossRef J. Qu, C. Geng, S. Lv, G. Shao, S. Ma, and M. Wu, Nitrogen, Oxygen and Phosphorus Decorated Porous Carbons Derived from Shrimp Shells for Supercapacitors. Electrochim. Acta 176, 982 (2015).CrossRef
62.
go back to reference K. Wang, N. Zhao, S. Lei, R. Yan, X. Tian, J. Wang, Y. Song, D. Xu, Q. Guo, and L. Liu, Promising Biomass-based Activated Carbons Derived from Willow Catkins for High Performance Supercapacitors. Electrochim. Acta 166, 1 (2015).CrossRef K. Wang, N. Zhao, S. Lei, R. Yan, X. Tian, J. Wang, Y. Song, D. Xu, Q. Guo, and L. Liu, Promising Biomass-based Activated Carbons Derived from Willow Catkins for High Performance Supercapacitors. Electrochim. Acta 166, 1 (2015).CrossRef
63.
go back to reference J. Wang, L. Shen, B. Ding, P. Nie, H. Deng, H. Dou, and X. Zhang, Fabrication of Porous Carbon Spheres for High-Performance Electrochemical Capacitors. RSC Adv. 4, 7538 (2014).CrossRef J. Wang, L. Shen, B. Ding, P. Nie, H. Deng, H. Dou, and X. Zhang, Fabrication of Porous Carbon Spheres for High-Performance Electrochemical Capacitors. RSC Adv. 4, 7538 (2014).CrossRef
64.
go back to reference N. Sylla, N.M. Ndiaye, B. Ngom, B.K. Mutuma, D. Momodu, M. Chaker, and N. Manyala, Ex-situ Nitrogen-Doped Porous Carbons as Electrode Materials for High Performance Supercapacitor. J. Colloid Interf. Sci. 569, 332 (2020).CrossRef N. Sylla, N.M. Ndiaye, B. Ngom, B.K. Mutuma, D. Momodu, M. Chaker, and N. Manyala, Ex-situ Nitrogen-Doped Porous Carbons as Electrode Materials for High Performance Supercapacitor. J. Colloid Interf. Sci. 569, 332 (2020).CrossRef
65.
go back to reference S. Kong, B. Jin, X. Quan, G. Zhang, X. Guo, Q. Zhu, F. Yang, K. Cheng, G. Wang, and D. Cao, MnO2 Nanosheets Decorated Porous active Carbon Derived from Wheat Bran for high-Performance Asymmetric Supercapacitor. J. Electroanal. Chem. 850, 113412 (2019).CrossRef S. Kong, B. Jin, X. Quan, G. Zhang, X. Guo, Q. Zhu, F. Yang, K. Cheng, G. Wang, and D. Cao, MnO2 Nanosheets Decorated Porous active Carbon Derived from Wheat Bran for high-Performance Asymmetric Supercapacitor. J. Electroanal. Chem. 850, 113412 (2019).CrossRef
66.
go back to reference C. Long, L. Jiang, X. Wu, Y. Jiang, D. Yang, C. Wang, T. Wei, and Z. Fan, Facile Synthesis of Functionalized Porous Carbon With Three-Dimensional Interconnected Pore Structure for High Volumetric Performance Supercapacitors. Carbon 93, 412 (2015).CrossRef C. Long, L. Jiang, X. Wu, Y. Jiang, D. Yang, C. Wang, T. Wei, and Z. Fan, Facile Synthesis of Functionalized Porous Carbon With Three-Dimensional Interconnected Pore Structure for High Volumetric Performance Supercapacitors. Carbon 93, 412 (2015).CrossRef
67.
go back to reference X. Wang, M. Wang, X. Zhang, H. Li, and X. Guo, Low-Cost, Green Synthesis of Highly porous Carbons Derived from Lotus root Shell as Superior Performance Electrode Materials in Supercapacitor. Energy Chem. 25, 26 (2016).CrossRef X. Wang, M. Wang, X. Zhang, H. Li, and X. Guo, Low-Cost, Green Synthesis of Highly porous Carbons Derived from Lotus root Shell as Superior Performance Electrode Materials in Supercapacitor. Energy Chem. 25, 26 (2016).CrossRef
Metadata
Title
K2FeO4-Assisted Preparation of Discarded Badminton Shuttlecock Feather-Derived Hierarchical Porous Carbon for High-Performance Supercapacitors
Authors
Xinru Liu
Jianwei Yang
Zhentao Bian
Xuanxuan Zhao
Yanyan Zhu
Hongyan Wang
Lei Song
Juncai Chu
Ying Zhang
Ziyan Ye
Publication date
11-10-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-10000-6

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue