Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

01-11-2022 | Original Research Article

BaTiO3-Refined NiCuZn Ferrites Towards Enhanced Pulse Detection Sensitivity for a High-Frequency Current Transformer

Authors: Sen Qian, Chuan Chen, Yan Wang, Hongkang Wang

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High-frequency current transformer (HFCT) sensors are widely used in pulse detection at high frequencies. The sensitivity of the HFCT needs to be improved for low-level pulse detection at high frequencies because their waveforms can rapidly attenuate and disperse. This research shows that refining the ferrites of the magnetic cores can improve their permeability at high frequencies. We employed a two-step sintering technique to refine the nickel-copper-zinc (Ni-Cu-Zn) ferrites by adding barium titanate (BaTiO3). The contribution of the spin rotation to the magnetization was thereby improved. As a result, the transfer functions of the HFCT sensors made from the refined ferrites were improved, significantly improving their sensitivity for pulse detection at high frequencies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Shafiq, I. Kiitam, P. Taklaja, L. Kütt, K. Kauhaniemi, and I. Palu, Identification and location of PD defects in medium voltage underground power cables using high frequency current transformer. IEEE Access 7, 103608 (2019).CrossRef M. Shafiq, I. Kiitam, P. Taklaja, L. Kütt, K. Kauhaniemi, and I. Palu, Identification and location of PD defects in medium voltage underground power cables using high frequency current transformer. IEEE Access 7, 103608 (2019).CrossRef
2.
go back to reference A. Rodrigo-Mor, F.A. Muñoz, and L.C. Castro-Heredia, Principles of charge estimation methods using high-frequency current transformer sensors in partial discharge measurements. Sensors 20, 2520 (2020).CrossRef A. Rodrigo-Mor, F.A. Muñoz, and L.C. Castro-Heredia, Principles of charge estimation methods using high-frequency current transformer sensors in partial discharge measurements. Sensors 20, 2520 (2020).CrossRef
3.
go back to reference G. Bao, X. Gao, R. Jiang, and K. Huang, A novel differential high-frequency current transformer sensor for series arc fault detection. Sensors 19, 3649 (2019).CrossRef G. Bao, X. Gao, R. Jiang, and K. Huang, A novel differential high-frequency current transformer sensor for series arc fault detection. Sensors 19, 3649 (2019).CrossRef
4.
go back to reference J. V. Klüss and A. P. Elg, in 2020 Conference on precision electromagnetic measurements (CPEM) (2020), pp. 1–2 J. V. Klüss and A. P. Elg, in 2020 Conference on precision electromagnetic measurements (CPEM) (2020), pp. 1–2
5.
go back to reference S. Bashir, S. Paul, and J. Chang, Novel core airgap profiles design scheme for winding and thermal loss reduction in high-frequency current transformer sensors. IEEE Sens. J. 20, 892 (2020).CrossRef S. Bashir, S. Paul, and J. Chang, Novel core airgap profiles design scheme for winding and thermal loss reduction in high-frequency current transformer sensors. IEEE Sens. J. 20, 892 (2020).CrossRef
6.
go back to reference Y. Liu, T. Zhao, Y. Han, and F. Lin, Core saturation detection and calibration of a current probe for fast transient currents. IEEE Sens. J. 15, 1395 (2015).CrossRef Y. Liu, T. Zhao, Y. Han, and F. Lin, Core saturation detection and calibration of a current probe for fast transient currents. IEEE Sens. J. 15, 1395 (2015).CrossRef
7.
go back to reference J.V. Klüss, A.P. Elg, and C. Wingqvist, High-frequency current transformer design and implementation considerations for wideband partial discharge applications. IEEE Trans. Instrum. Meas. 70, 1 (2021).CrossRef J.V. Klüss, A.P. Elg, and C. Wingqvist, High-frequency current transformer design and implementation considerations for wideband partial discharge applications. IEEE Trans. Instrum. Meas. 70, 1 (2021).CrossRef
8.
go back to reference D. Nascimento, S.S. Refaat, H. Loschi, Y. Iano, E. Chuma, W. El-Sayed, and A. Madi, Current sensor optimization based on simulated transfer function under partial discharge pulses. Sens. Actuators, A 329, 112825 (2021).CrossRef D. Nascimento, S.S. Refaat, H. Loschi, Y. Iano, E. Chuma, W. El-Sayed, and A. Madi, Current sensor optimization based on simulated transfer function under partial discharge pulses. Sens. Actuators, A 329, 112825 (2021).CrossRef
9.
go back to reference J. Granado, A. Torralba, and C. Álvarez-Arroyo, Effects of dispersion and multi-path propagation in partial discharges location. IEEE Access 8, 219062 (2020).CrossRef J. Granado, A. Torralba, and C. Álvarez-Arroyo, Effects of dispersion and multi-path propagation in partial discharges location. IEEE Access 8, 219062 (2020).CrossRef
10.
go back to reference X. Hu, W.H. Siew, M.D. Judd, A.J. Reid, and B. Sheng, Modeling of high-frequency current transformer based partial discharge detection in high-voltage cables. IEEE Trans. Power Deliv. 34, 1549 (2019).CrossRef X. Hu, W.H. Siew, M.D. Judd, A.J. Reid, and B. Sheng, Modeling of high-frequency current transformer based partial discharge detection in high-voltage cables. IEEE Trans. Power Deliv. 34, 1549 (2019).CrossRef
11.
go back to reference M. Shafiq, G.A. Hussain, L. Kütt, and M. Lehtonen, Effect of geometrical parameters on high frequency performance of Rogowski coil for partial discharge measurements. Measurement 49, 126 (2014).CrossRef M. Shafiq, G.A. Hussain, L. Kütt, and M. Lehtonen, Effect of geometrical parameters on high frequency performance of Rogowski coil for partial discharge measurements. Measurement 49, 126 (2014).CrossRef
12.
go back to reference X. Liu, H. Huang, Y. Cui, Y. Dai, and X. Liu, Mutual inductance between arbitrary conductor and Rogowski coil with circular skeleton and gap compensation. IEEE Sens. J. 19, 4106 (2019).CrossRef X. Liu, H. Huang, Y. Cui, Y. Dai, and X. Liu, Mutual inductance between arbitrary conductor and Rogowski coil with circular skeleton and gap compensation. IEEE Sens. J. 19, 4106 (2019).CrossRef
13.
go back to reference Y. Xu, X. Zou, and X. Wang, Influencing factors and error analysis of pulse current measurement with air-core Rogowski coil. IEEE Trans. Plasma Sci. 48, 4381 (2020).CrossRef Y. Xu, X. Zou, and X. Wang, Influencing factors and error analysis of pulse current measurement with air-core Rogowski coil. IEEE Trans. Plasma Sci. 48, 4381 (2020).CrossRef
14.
go back to reference C. Zachariades, R. Shuttleworth, R. Giussani, and R. MacKinlay, Optimization of a high-frequency current transformer sensor for partial discharge detection using finite-element analysis. IEEE Sens. J. 16, 7526 (2016).CrossRef C. Zachariades, R. Shuttleworth, R. Giussani, and R. MacKinlay, Optimization of a high-frequency current transformer sensor for partial discharge detection using finite-element analysis. IEEE Sens. J. 16, 7526 (2016).CrossRef
15.
go back to reference P. Thakur, S. Taneja, D. Chahar, B. Ravelo, and A. Thakur, Recent advances on synthesis, characterization and high frequency applications of Ni-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 530, 167925 (2021).CrossRef P. Thakur, S. Taneja, D. Chahar, B. Ravelo, and A. Thakur, Recent advances on synthesis, characterization and high frequency applications of Ni-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 530, 167925 (2021).CrossRef
16.
go back to reference N. Aggarwal, and S.B. Narang, X-band microwave analysis and characterization of zinc substituted nickel ferrites prepared by sol–gel citrate route. J. Electron. Mater. 49, 668 (2020).CrossRef N. Aggarwal, and S.B. Narang, X-band microwave analysis and characterization of zinc substituted nickel ferrites prepared by sol–gel citrate route. J. Electron. Mater. 49, 668 (2020).CrossRef
17.
go back to reference H. Javed, F. Iqbal, P.O. Agboola, M.A. Khan, M.F. Warsi, and I. Shakir, Structural, electrical and magnetic parameters evaluation of nanocrystalline rare earth Nd3+-substituted nickel-zinc spinel ferrite particles. Ceram. Int. 45, 11125 (2019).CrossRef H. Javed, F. Iqbal, P.O. Agboola, M.A. Khan, M.F. Warsi, and I. Shakir, Structural, electrical and magnetic parameters evaluation of nanocrystalline rare earth Nd3+-substituted nickel-zinc spinel ferrite particles. Ceram. Int. 45, 11125 (2019).CrossRef
18.
go back to reference A.S. Džunuzović, N.I. Ilić, M.M. Vijatović Petrović, J.D. Bobić, B. Stojadinović, Z. Dohčević-Mitrović, and B.D. Stojanović, Structure and properties of Ni-Zn ferrite obtained by auto-combustion method. J. Magn. Magn. Mater. 374, 245 (2015).CrossRef A.S. Džunuzović, N.I. Ilić, M.M. Vijatović Petrović, J.D. Bobić, B. Stojadinović, Z. Dohčević-Mitrović, and B.D. Stojanović, Structure and properties of Ni-Zn ferrite obtained by auto-combustion method. J. Magn. Magn. Mater. 374, 245 (2015).CrossRef
19.
go back to reference F.S.M. Sinfrônio, P.Y.C. Santana, S.F.N. Coelho, F.C. Silva, A.S. de Menezes, and S.K. Sharma, Magnetic and structural properties of cobalt- and zinc-substituted nickel ferrite synthesized by microwave-assisted hydrothermal method. J. Electron. Mater. 46, 1145 (2017).CrossRef F.S.M. Sinfrônio, P.Y.C. Santana, S.F.N. Coelho, F.C. Silva, A.S. de Menezes, and S.K. Sharma, Magnetic and structural properties of cobalt- and zinc-substituted nickel ferrite synthesized by microwave-assisted hydrothermal method. J. Electron. Mater. 46, 1145 (2017).CrossRef
20.
go back to reference D.L. Zhao, Q. Lv, and Z.M. Shen, Fabrication and microwave absorbing properties of Ni-Zn spinel ferrites. J. Alloy. Compd. 480, 634 (2009).CrossRef D.L. Zhao, Q. Lv, and Z.M. Shen, Fabrication and microwave absorbing properties of Ni-Zn spinel ferrites. J. Alloy. Compd. 480, 634 (2009).CrossRef
21.
go back to reference J. Mürbe and J. Töpfer, High permeability Ni-Cu-Zn ferrites through additive-free low-temperature sintering of nanocrystalline powders. J. Eur. Ceram. Soc. 32, 1091 (2012).CrossRef J. Mürbe and J. Töpfer, High permeability Ni-Cu-Zn ferrites through additive-free low-temperature sintering of nanocrystalline powders. J. Eur. Ceram. Soc. 32, 1091 (2012).CrossRef
22.
go back to reference S.F. Wang, H.C. Yang, Y.F. Hsu, and C.K. Hsieh, Effects of SnO2, WO3, and ZrO2 addition on the magnetic and mechanical properties of NiCuZn ferrites. J. Magn. Magn. Mater. 374, 381 (2015).CrossRef S.F. Wang, H.C. Yang, Y.F. Hsu, and C.K. Hsieh, Effects of SnO2, WO3, and ZrO2 addition on the magnetic and mechanical properties of NiCuZn ferrites. J. Magn. Magn. Mater. 374, 381 (2015).CrossRef
23.
go back to reference A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, and N. Sarami, Influence of CaO and SiO2 co-doping on the magnetic, electrical properties and microstructure of a Ni-Zn ferrite. J. Phys. D Appl. Phys. 48, 145001 (2015).CrossRef A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, and N. Sarami, Influence of CaO and SiO2 co-doping on the magnetic, electrical properties and microstructure of a Ni-Zn ferrite. J. Phys. D Appl. Phys. 48, 145001 (2015).CrossRef
24.
go back to reference Y. Yan, K.D.T. Ngo, D. Hou, M. Mu, Y. Mei, and G.-Q. Lu, Effect of sintering temperature on magnetic core-loss properties of a NiCuZn ferrite for high-frequency power converters. J. Electron. Mater. 44, 3788 (2015).CrossRef Y. Yan, K.D.T. Ngo, D. Hou, M. Mu, Y. Mei, and G.-Q. Lu, Effect of sintering temperature on magnetic core-loss properties of a NiCuZn ferrite for high-frequency power converters. J. Electron. Mater. 44, 3788 (2015).CrossRef
25.
go back to reference X.H. Wang, X.Y. Deng, H.L. Bai, H. Zhou, W.G. Qu, L.T. Li, and I.W. Chen, Two-step sintering of ceramics with constant grain-size, II: BaTiO3 and Ni-Cu-Zn ferrite. J. Am. Ceram. Soc. 89, 438 (2006).CrossRef X.H. Wang, X.Y. Deng, H.L. Bai, H. Zhou, W.G. Qu, L.T. Li, and I.W. Chen, Two-step sintering of ceramics with constant grain-size, II: BaTiO3 and Ni-Cu-Zn ferrite. J. Am. Ceram. Soc. 89, 438 (2006).CrossRef
26.
go back to reference U. Sutharsini, Sintering of functional materials. ed. M. Thanihaichelvan (Rijeka: IntechOpen, 2017), p. 1. U. Sutharsini, Sintering of functional materials. ed. M. Thanihaichelvan (Rijeka: IntechOpen, 2017), p. 1.
27.
go back to reference D. Buscombe, Transferable wavelet method for grain-size distribution from images of sediment surfaces and thin sections, and other natural granular patterns. Sedimentology 60, 1709 (2013).CrossRef D. Buscombe, Transferable wavelet method for grain-size distribution from images of sediment surfaces and thin sections, and other natural granular patterns. Sedimentology 60, 1709 (2013).CrossRef
28.
go back to reference K. Sun, H. Liu, Y. Yang, Z. Yu, C. Chen, G. Wu, X. Jiang, Z. Lan, and L. Li, Contribution of magnetization mechanisms in nickel–zinc ferrites with different grain sizes and its temperature relationship. Mater. Chem. Phys. 175, 131 (2016).CrossRef K. Sun, H. Liu, Y. Yang, Z. Yu, C. Chen, G. Wu, X. Jiang, Z. Lan, and L. Li, Contribution of magnetization mechanisms in nickel–zinc ferrites with different grain sizes and its temperature relationship. Mater. Chem. Phys. 175, 131 (2016).CrossRef
29.
go back to reference X. Hu, W.H. Siew, M.D. Judd, and X. Peng, Transfer function characterization for HFCTs used in partial discharge detection. IEEE Trans. Dielectr. Electr. Insul. 24, 1088 (2017).CrossRef X. Hu, W.H. Siew, M.D. Judd, and X. Peng, Transfer function characterization for HFCTs used in partial discharge detection. IEEE Trans. Dielectr. Electr. Insul. 24, 1088 (2017).CrossRef
30.
go back to reference P. van der Wielen, On-line detection and location of partial discharges in medium-voltage power cables, 1st edn. (Eindhoven University Press, Eindhoven, 2005) P. van der Wielen, On-line detection and location of partial discharges in medium-voltage power cables, 1st edn. (Eindhoven University Press, Eindhoven, 2005)
31.
go back to reference R. Bartnikas, A comment concerning the rise times of partial discharge pulses. IEEE Trans. Dielectr. Electr. Insul. 12, 196 (2005).CrossRef R. Bartnikas, A comment concerning the rise times of partial discharge pulses. IEEE Trans. Dielectr. Electr. Insul. 12, 196 (2005).CrossRef
32.
go back to reference T.V. Koval, V.N. Devyatkov, and N.B. Hung, Enhancement of emission currents in plasma electron sources based on a low-pressure arc discharge. J. Phys. Conf. Ser. 652, 012061 (2015).CrossRef T.V. Koval, V.N. Devyatkov, and N.B. Hung, Enhancement of emission currents in plasma electron sources based on a low-pressure arc discharge. J. Phys. Conf. Ser. 652, 012061 (2015).CrossRef
34.
go back to reference D.M. Hemeda, A. Tawfik, and M.M. El-Shahawy, Some physical properties of BaTiO3-CoFe2O4 composite. Int. J. Mod. Phys. B 25, 2751 (2011).CrossRef D.M. Hemeda, A. Tawfik, and M.M. El-Shahawy, Some physical properties of BaTiO3-CoFe2O4 composite. Int. J. Mod. Phys. B 25, 2751 (2011).CrossRef
35.
go back to reference X. Li, X. Cui, T. Lu, D. Li, B. Chen, and Y. Fu, Influence of air pressure on the detailed characteristics of corona current pulse due to positive corona discharge. Phys. Plasmas 23, 123516 (2016).CrossRef X. Li, X. Cui, T. Lu, D. Li, B. Chen, and Y. Fu, Influence of air pressure on the detailed characteristics of corona current pulse due to positive corona discharge. Phys. Plasmas 23, 123516 (2016).CrossRef
36.
go back to reference R. Sarathi, A. Nandini, and T. Tanaka, Understanding electrical treeing phenomena in XLPE cable insulation under harmonic AC voltages adopting UHF technique. IEEE Trans. Dielectr. Electr. Insul. 19, 903 (2012).CrossRef R. Sarathi, A. Nandini, and T. Tanaka, Understanding electrical treeing phenomena in XLPE cable insulation under harmonic AC voltages adopting UHF technique. IEEE Trans. Dielectr. Electr. Insul. 19, 903 (2012).CrossRef
37.
go back to reference Y. Qin, K. Xie, Y. Zhang, and J. Ouyang, Self-pulsing in a low-current hollow cathode discharge: from townsend to glow discharge. Phys. Plasmas 23, 023501 (2016).CrossRef Y. Qin, K. Xie, Y. Zhang, and J. Ouyang, Self-pulsing in a low-current hollow cathode discharge: from townsend to glow discharge. Phys. Plasmas 23, 023501 (2016).CrossRef
38.
go back to reference H. Okubo and N. Hayakawa, A novel technique for partial discharge and breakdown investigation based on current pulse waveform analysis. IEEE Trans. Dielectr. Electr. Insul. 12, 736 (2005).CrossRef H. Okubo and N. Hayakawa, A novel technique for partial discharge and breakdown investigation based on current pulse waveform analysis. IEEE Trans. Dielectr. Electr. Insul. 12, 736 (2005).CrossRef
39.
go back to reference J. Rubio-serrano, M.V. Rojas-moreno, J. Posada, J.M. Martínez-Tarifa, G. Robles, and J.A. Garcia-souto, Electro-acoustic detection, identification and location of partial discharge sources in oil-paper insulation systems. IEEE Trans. Dielectr. Electr. Insul. 19, 1569 (2012).CrossRef J. Rubio-serrano, M.V. Rojas-moreno, J. Posada, J.M. Martínez-Tarifa, G. Robles, and J.A. Garcia-souto, Electro-acoustic detection, identification and location of partial discharge sources in oil-paper insulation systems. IEEE Trans. Dielectr. Electr. Insul. 19, 1569 (2012).CrossRef
40.
go back to reference M. Janda, Z. Machala, A. Niklová, and V. Martišovitš, The streamer-to-spark transition in a transient spark: a dc-driven nanosecond-pulsed discharge in atmospheric air. Plasma Sources Sci. Technol. 21, 045006 (2012).CrossRef M. Janda, Z. Machala, A. Niklová, and V. Martišovitš, The streamer-to-spark transition in a transient spark: a dc-driven nanosecond-pulsed discharge in atmospheric air. Plasma Sources Sci. Technol. 21, 045006 (2012).CrossRef
Metadata
Title
BaTiO3-Refined NiCuZn Ferrites Towards Enhanced Pulse Detection Sensitivity for a High-Frequency Current Transformer
Authors
Sen Qian
Chuan Chen
Yan Wang
Hongkang Wang
Publication date
01-11-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-10029-7

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue