Skip to main content
Erschienen in: Journal of Electronic Materials 6/2022

19.03.2022 | Original Research Article

Porous Silicon Composite ZnO Nanoparticles as Supercapacitor Electrodes

verfasst von: Daohan Ge, Yue Wang, Zhou Hu, Abubakar A. Babangida, Liqiang Zhang

Erschienen in: Journal of Electronic Materials | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Porous electrode composite materials with a large surface area and suitable pore size, as well as a short diffusion distance of electrolyte ions in the pore channels, are greatly desired for supercapacitor electrodes. Porous silicon composite zinc oxide nanoparticles with a high cycling performance and stability have been prepared by vacuum filtration, combined with homogenizing and hydrothermal methods. The composite material has a 3.9 mF/g specific capacitance, which is an increase of 40 times when compared to pure porous silicon. The results show that the composite materials can effectively passivate the porous silicon surface, improving the porous silicon capacitor's characteristics and stability. This investigation is helpful in understanding the surface modification of porous silicon, and also indicates a potential method for designing porous electrode composite materials based on porous silicon and zinc oxide nanoparticles.

Graphical Abstract

The vacuum filtration was chosen to prepare porous silicon composite ZnO nanoparticles materials. It shows that ZnO adheres to the surface of the porous silicon and the inside of the pore walls more uniformly. The specific capacitance of the composite material is 3.9 mF/g, which is 40 times higher than that of pure porous silicon. The modified electrode not only has improved capacitance characteristics but also has good stability. Testing the impedance of the electrode shows that the modified electrode resistance has been improved to a certain extent, while the surface stability and the charge and discharge performance of the composite electrode have been greatly improved. Experiments showed that the use of ZnO can effectively improve the electrical properties of porous silicon, which provides ideas and experimental references for further expanding the application fields of porous silicon.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Z. Ciplak and N. Yildiz, Polyaniline-Au nanocomposite as electrode material for supercapacitor applications. Synth. Met. 256, 116150 (2019).CrossRef Z. Ciplak and N. Yildiz, Polyaniline-Au nanocomposite as electrode material for supercapacitor applications. Synth. Met. 256, 116150 (2019).CrossRef
2.
Zurück zum Zitat D.W. Wang, Y.G. Min, Y.H. Yu, and B. Peng, A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors. J. Colloid Interface Sci. 417, 270 (2014).CrossRef D.W. Wang, Y.G. Min, Y.H. Yu, and B. Peng, A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors. J. Colloid Interface Sci. 417, 270 (2014).CrossRef
3.
Zurück zum Zitat P. Simon and Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008).CrossRef P. Simon and Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008).CrossRef
4.
Zurück zum Zitat L.L. Zhang and X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520 (2009).CrossRef L.L. Zhang and X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520 (2009).CrossRef
5.
Zurück zum Zitat X.X. Li, S.J. Xiao, Y.N. Ma, and S.J. Luo, Sudy on electrochemical properties of MXene based microsupercapacitors with high performance. J. Synth. Cryst. 49, 526 (2020). X.X. Li, S.J. Xiao, Y.N. Ma, and S.J. Luo, Sudy on electrochemical properties of MXene based microsupercapacitors with high performance. J. Synth. Cryst. 49, 526 (2020).
6.
Zurück zum Zitat Y.H. Wang, R.N. Liu, Y.D. Tian, Z. Sun, Z.H. Huang, X.L. Wu, and B. Li, Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors. Chem. Eng. J. 384, 123263 (2020).CrossRef Y.H. Wang, R.N. Liu, Y.D. Tian, Z. Sun, Z.H. Huang, X.L. Wu, and B. Li, Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors. Chem. Eng. J. 384, 123263 (2020).CrossRef
7.
Zurück zum Zitat P.M. Yu, M. Coll, R. Amade, I. Alshaikh, F. Pantoja-Suarez, E. Pascual, J.L. Andujar, and E.B. Serra, Homogeneous Fe2O3 coatings on carbon nanotube structures for supercapacitors. Dalton. Trans. 49, 4136 (2020).CrossRef P.M. Yu, M. Coll, R. Amade, I. Alshaikh, F. Pantoja-Suarez, E. Pascual, J.L. Andujar, and E.B. Serra, Homogeneous Fe2O3 coatings on carbon nanotube structures for supercapacitors. Dalton. Trans. 49, 4136 (2020).CrossRef
8.
Zurück zum Zitat S. Yaglikci, Y. Gokce, E. Yagmur, and Z. Aktas, The performance of sulphur doped activated carbon supercapacitors prepared from waste tea. Environ. Technol. 41, 36 (2020).CrossRef S. Yaglikci, Y. Gokce, E. Yagmur, and Z. Aktas, The performance of sulphur doped activated carbon supercapacitors prepared from waste tea. Environ. Technol. 41, 36 (2020).CrossRef
9.
Zurück zum Zitat K. Grigoras, J. Keskinen, L. Gronberg, E. Yli-Rantala, S. Laakso, H. Valimaki, P. Kauranen, J. Ahopelto, and M. Prunnila, Conformal titanium nitride in a porous silicon matrix: a nanomaterial for in-chip supercapacitors. Nano Energy 26, 340 (2016).CrossRef K. Grigoras, J. Keskinen, L. Gronberg, E. Yli-Rantala, S. Laakso, H. Valimaki, P. Kauranen, J. Ahopelto, and M. Prunnila, Conformal titanium nitride in a porous silicon matrix: a nanomaterial for in-chip supercapacitors. Nano Energy 26, 340 (2016).CrossRef
10.
Zurück zum Zitat K.P. Konin, O.Y. Gudymenko, V.P. Klad’ko, O.O. Lytvynenko, and D.V. Morozovs’ka, Residual deformations and mechanical stresses in macroporous and nonporous silicon under normal etching conditions. J. Electron. Mater. 49, 5240 (2020).CrossRef K.P. Konin, O.Y. Gudymenko, V.P. Klad’ko, O.O. Lytvynenko, and D.V. Morozovs’ka, Residual deformations and mechanical stresses in macroporous and nonporous silicon under normal etching conditions. J. Electron. Mater. 49, 5240 (2020).CrossRef
11.
Zurück zum Zitat S.E. Rowlands, R.J. Latham, and W.S. Schlindwein, Supercapacitor devices using porous silicon electrodes. Ionics 5, 144 (1999).CrossRef S.E. Rowlands, R.J. Latham, and W.S. Schlindwein, Supercapacitor devices using porous silicon electrodes. Ionics 5, 144 (1999).CrossRef
12.
Zurück zum Zitat H. Hu, X.G. Sun, W. Chen, C.C. Wei, Y.P. Huang, and G.D. Liang, Lithium-Ion capacitor with three-dimensional porous HAC/SP/PVDF as positive electrode. J. Electron. Mater. 48, 11 (2019). H. Hu, X.G. Sun, W. Chen, C.C. Wei, Y.P. Huang, and G.D. Liang, Lithium-Ion capacitor with three-dimensional porous HAC/SP/PVDF as positive electrode. J. Electron. Mater. 48, 11 (2019).
13.
Zurück zum Zitat R.J. Riikonen, M. Salomaki, J. van Wonderen, M. Kemell, W. Xu, O. Korhonen, M. Ritala, F. MacMillan, J. Salonen, and V.P. Lehto, Surface chemistry, reactivity, and pore structure of porous silicon oxidized by various methods. Langmuir 28, 10573 (2012).CrossRef R.J. Riikonen, M. Salomaki, J. van Wonderen, M. Kemell, W. Xu, O. Korhonen, M. Ritala, F. MacMillan, J. Salonen, and V.P. Lehto, Surface chemistry, reactivity, and pore structure of porous silicon oxidized by various methods. Langmuir 28, 10573 (2012).CrossRef
14.
Zurück zum Zitat F. Thissandier, L. Dupre, P. Gentile, T. Brousse, G. Bidan, D. Buttard, and S. Sadki, Ultra-dense and highly doped SiNWs for micro-supercapacitors electrodes. Electrochim. Acta 117, 159 (2014).CrossRef F. Thissandier, L. Dupre, P. Gentile, T. Brousse, G. Bidan, D. Buttard, and S. Sadki, Ultra-dense and highly doped SiNWs for micro-supercapacitors electrodes. Electrochim. Acta 117, 159 (2014).CrossRef
15.
Zurück zum Zitat J.A. Yan, E. Khoo, A. Sumboja, and P.S. Lee, Facile coating of man-ganese oxide on tin oxide nanowires with high-performance capac-itive behavior. ACS Nano 4, 4247 (2010).CrossRef J.A. Yan, E. Khoo, A. Sumboja, and P.S. Lee, Facile coating of man-ganese oxide on tin oxide nanowires with high-performance capac-itive behavior. ACS Nano 4, 4247 (2010).CrossRef
16.
Zurück zum Zitat S. Najib and E. Erdem, Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv. 1, 2817 (2019).CrossRef S. Najib and E. Erdem, Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv. 1, 2817 (2019).CrossRef
17.
Zurück zum Zitat B. Pant, M. Park, G.P. Ojha, J. Park, Y.S. Kuk, E.J. Lee, H.Y. Kim, and S.J. Park, Carbon nanofibers wrapped with zinc oxide nano-flakes as promising electrode material for supercapacitors. J. Colloid Interface Sci. 522, 40 (2018).CrossRef B. Pant, M. Park, G.P. Ojha, J. Park, Y.S. Kuk, E.J. Lee, H.Y. Kim, and S.J. Park, Carbon nanofibers wrapped with zinc oxide nano-flakes as promising electrode material for supercapacitors. J. Colloid Interface Sci. 522, 40 (2018).CrossRef
18.
Zurück zum Zitat A.U. Ameen, I.D. Yildirim, F. Bakan, and E. Erdem, ZnO and MXenes as electrode materials for supercapacitor devices. Beilstein J. Nanotech. 12, 49 (2021).CrossRef A.U. Ameen, I.D. Yildirim, F. Bakan, and E. Erdem, ZnO and MXenes as electrode materials for supercapacitor devices. Beilstein J. Nanotech. 12, 49 (2021).CrossRef
19.
Zurück zum Zitat S. Najib, F. Bakan, N. Abdullayeva, R. Bahariqushchi, S. Kasap, G. Franzo, M. Sankir, N.D. Sankir, S. Mirabella, and E. Erdem, Tailoring morphology to control defect structures in ZnO electrodes for high-performance supercapacitor devices. Nanoscale 12, 16162 (2020).CrossRef S. Najib, F. Bakan, N. Abdullayeva, R. Bahariqushchi, S. Kasap, G. Franzo, M. Sankir, N.D. Sankir, S. Mirabella, and E. Erdem, Tailoring morphology to control defect structures in ZnO electrodes for high-performance supercapacitor devices. Nanoscale 12, 16162 (2020).CrossRef
20.
Zurück zum Zitat S. Kasap, I.I. Kaya, S. Repp, and E. Erdem, Superbat: battery-like supercapacitor utilized by graphene foam and zinc oxide (ZnO) electrodes induced by structural defects. Nanoscale Adv. 1, 2586 (2019).CrossRef S. Kasap, I.I. Kaya, S. Repp, and E. Erdem, Superbat: battery-like supercapacitor utilized by graphene foam and zinc oxide (ZnO) electrodes induced by structural defects. Nanoscale Adv. 1, 2586 (2019).CrossRef
21.
Zurück zum Zitat M. Toufani, S. Kasap, A. Tufani, F. Bakan, S. Weber, and E. Erdem, Synergy of nano-ZnO and 3D-graphene foam electrodes for asymmetric supercapacitor devices. Nanoscale 12, 12790 (2020).CrossRef M. Toufani, S. Kasap, A. Tufani, F. Bakan, S. Weber, and E. Erdem, Synergy of nano-ZnO and 3D-graphene foam electrodes for asymmetric supercapacitor devices. Nanoscale 12, 12790 (2020).CrossRef
22.
Zurück zum Zitat F. Naeem, S. Naeem, Z. Zhao, G.Q. Shu, J. Zhang, Y.F. Mei, and G.S. Huang, Atomic layer deposition synthesized ZnO nanomembranes: a facile route towards stable supercapacitor electrode for high capacitance. J. Power Sources 451, 227740 (2020).CrossRef F. Naeem, S. Naeem, Z. Zhao, G.Q. Shu, J. Zhang, Y.F. Mei, and G.S. Huang, Atomic layer deposition synthesized ZnO nanomembranes: a facile route towards stable supercapacitor electrode for high capacitance. J. Power Sources 451, 227740 (2020).CrossRef
23.
Zurück zum Zitat E. Erdem, Microwave power, temperature, atmospheric and light dependence of intrinsic defects in ZnO nanoparticles: a study of electron paramagnetic resonance (EPR) spectroscopy. J. Alloy. Compd. 605, 34 (2014).CrossRef E. Erdem, Microwave power, temperature, atmospheric and light dependence of intrinsic defects in ZnO nanoparticles: a study of electron paramagnetic resonance (EPR) spectroscopy. J. Alloy. Compd. 605, 34 (2014).CrossRef
24.
Zurück zum Zitat H. Kaftelen, K. Ocakoglu, R. Thomann, S. Tu, S. Weber, and E. Erdem, EPR and photoluminescence spectroscopy studies on the defect structure of ZnO nanocrystals. Phys. Rev. B 86, 014113 (2012).CrossRef H. Kaftelen, K. Ocakoglu, R. Thomann, S. Tu, S. Weber, and E. Erdem, EPR and photoluminescence spectroscopy studies on the defect structure of ZnO nanocrystals. Phys. Rev. B 86, 014113 (2012).CrossRef
25.
Zurück zum Zitat E. Samuel, B. Joshi, Y.I. Kim, A. Aldalbahi, M. Rahaman, and S.S. Yoon, ZnO/MnOx nanoflowers for high-performance supercapacitor electrodes. ACS Sustain. Chem. Eng. 8, 3697 (2020).CrossRef E. Samuel, B. Joshi, Y.I. Kim, A. Aldalbahi, M. Rahaman, and S.S. Yoon, ZnO/MnOx nanoflowers for high-performance supercapacitor electrodes. ACS Sustain. Chem. Eng. 8, 3697 (2020).CrossRef
26.
Zurück zum Zitat P. Anandhi, V.J.S. Kumar, and S. Harikrishnan, Improved electrochemical behavior of metal oxides-based nanocomposites for supercapacitor. Funct. Mater. Lett. 12, 1950064 (2019).CrossRef P. Anandhi, V.J.S. Kumar, and S. Harikrishnan, Improved electrochemical behavior of metal oxides-based nanocomposites for supercapacitor. Funct. Mater. Lett. 12, 1950064 (2019).CrossRef
27.
Zurück zum Zitat M. Taherkhani, N. Naderi, P. Fallahazad, M.J. Eshraghi, and A. Kolahi, Development and optical properties of ZnO nanoflowers on porous silicon for photovoltaic applications. J. Electron. Mater. 48, 6647 (2019).CrossRef M. Taherkhani, N. Naderi, P. Fallahazad, M.J. Eshraghi, and A. Kolahi, Development and optical properties of ZnO nanoflowers on porous silicon for photovoltaic applications. J. Electron. Mater. 48, 6647 (2019).CrossRef
28.
Zurück zum Zitat C.A. Betty, K. Sehra, K.C. Barick, and S. Choudhury, Facile preparation of silicon/ZnO thin film heterostructures and ultrasensitive toxic gas sensing at room temperature: substrate dependence on specificity. Anal. Chim. Acta. 1039, 82 (2018).CrossRef C.A. Betty, K. Sehra, K.C. Barick, and S. Choudhury, Facile preparation of silicon/ZnO thin film heterostructures and ultrasensitive toxic gas sensing at room temperature: substrate dependence on specificity. Anal. Chim. Acta. 1039, 82 (2018).CrossRef
29.
Zurück zum Zitat T.V.K. Karthik, L. Martinez, and V. Agarwal, Porous silicon ZnO/SnO2 structures for CO2 detection. J. Alloy. Compd. 731, 853 (2018).CrossRef T.V.K. Karthik, L. Martinez, and V. Agarwal, Porous silicon ZnO/SnO2 structures for CO2 detection. J. Alloy. Compd. 731, 853 (2018).CrossRef
30.
Zurück zum Zitat M. Pavlenko, V. Myndrul, G. Gottardi, E. Coy, M. Jancelewicz, and I. Iatsunskyi, Porous silicon-zinc oxide nanocomposites prepared by atomic layer depo-sition for biophotonic applications. Materials 13, 1987 (2020).CrossRef M. Pavlenko, V. Myndrul, G. Gottardi, E. Coy, M. Jancelewicz, and I. Iatsunskyi, Porous silicon-zinc oxide nanocomposites prepared by atomic layer depo-sition for biophotonic applications. Materials 13, 1987 (2020).CrossRef
Metadaten
Titel
Porous Silicon Composite ZnO Nanoparticles as Supercapacitor Electrodes
verfasst von
Daohan Ge
Yue Wang
Zhou Hu
Abubakar A. Babangida
Liqiang Zhang
Publikationsdatum
19.03.2022
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 6/2022
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09555-1

Weitere Artikel der Ausgabe 6/2022

Journal of Electronic Materials 6/2022 Zur Ausgabe

Neuer Inhalt