Skip to main content
Erschienen in: Journal of Electronic Materials 9/2022

25.06.2022 | Original Research Article

Role of Deep Defects on the Transport Properties of Polycrystalline Thermoelectric Alloys and Composites

verfasst von: Remo A. Masut

Erschienen in: Journal of Electronic Materials | Ausgabe 9/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deep traps at grain boundaries, or within grains, of polycrystalline alloys optimized for large-scale thermoelectric applications affect their transport properties. For an accurate description of these properties, defects require appropriate statistical treatment at the basic level, so that the chemical potential can be obtained as a function of temperature. This work reports on polycrystalline p- and n-type bulk hot-extruded ternary alloys and composites containing Bi, Sb, Te and Se which have advantageous mechanical properties and thermoelectric performance below 500 K. Calculations of the electrical transport properties of heavily doped ternary alloys taking into account their polycrystalline nature provide excellent accord to Hall effect transport measurements in the plane perpendicular to the extrusion axis in the range from 10 K to 440 K. To do so, a statistical treatment of deep donor traps at grain boundaries in p-type composites is required. Ignoring their role may lead to incorrect interpretation of transport measurements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics: basic principles and new materials developments (Berlin: Springer, 2001).CrossRef G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics: basic principles and new materials developments (Berlin: Springer, 2001).CrossRef
2.
Zurück zum Zitat Yu. Pan, Y. Qiu, I. Witting, L. Zhang, Fu. Chenguang, J.-W. Li, Yi. Huang, F.-H. Sun, G. Jiaqing He, J. Snyder, C. Felser, and J.-F. Li, Synergistic Modulation of Mobility and Thermal Conductivity in (Bi, Sb)2Te3 Towards High Thermoelectric Performance. Energy. Environ. Sci. 12, 624 (2019).CrossRef Yu. Pan, Y. Qiu, I. Witting, L. Zhang, Fu. Chenguang, J.-W. Li, Yi. Huang, F.-H. Sun, G. Jiaqing He, J. Snyder, C. Felser, and J.-F. Li, Synergistic Modulation of Mobility and Thermal Conductivity in (Bi, Sb)2Te3 Towards High Thermoelectric Performance. Energy. Environ. Sci. 12, 624 (2019).CrossRef
3.
Zurück zum Zitat H.-L. Zhuang, J. Pei, B. Cai, J. Dong, Hu. Haihua, Yu. Fu-Hua Sun, G.J. Pan, and J.-F. Snyder, Thermoelectric Performance Enhancement in BiSbTe Alloy by Microstructure Modulation Via Cyclic Spark Plasma Sintering with Liquid Phase. Adv. Funct. Mat. 31, 2009681 (2021).CrossRef H.-L. Zhuang, J. Pei, B. Cai, J. Dong, Hu. Haihua, Yu. Fu-Hua Sun, G.J. Pan, and J.-F. Snyder, Thermoelectric Performance Enhancement in BiSbTe Alloy by Microstructure Modulation Via Cyclic Spark Plasma Sintering with Liquid Phase. Adv. Funct. Mat. 31, 2009681 (2021).CrossRef
4.
Zurück zum Zitat F. Shi, H. Wang, Q. Zhang, X. Tan, Y. Yin, Hu. Haoyang, Z. Li, J.G. Noudem, G. Liu, and J. Jiang, Improved Thermoelectric Properties of BiSbTe-AgBiSe2 Alloys by Suppressing Bipolar Excitation. ACS Appl. Energy. Matter. 4, 2944 (2021).CrossRef F. Shi, H. Wang, Q. Zhang, X. Tan, Y. Yin, Hu. Haoyang, Z. Li, J.G. Noudem, G. Liu, and J. Jiang, Improved Thermoelectric Properties of BiSbTe-AgBiSe2 Alloys by Suppressing Bipolar Excitation. ACS Appl. Energy. Matter. 4, 2944 (2021).CrossRef
5.
Zurück zum Zitat P. Roy Chowdhury, J. Shi, T. Feng, and X. Ruan, Prediction of Bi2Te3-Sb2Te3 Interfacial Conductance and Superlattice Thermal Conductivity Using Molecular Dynamics Simulations. ACS Appl. Mater. Interfaces 13, 4636 (2021).CrossRef P. Roy Chowdhury, J. Shi, T. Feng, and X. Ruan, Prediction of Bi2Te3-Sb2Te3 Interfacial Conductance and Superlattice Thermal Conductivity Using Molecular Dynamics Simulations. ACS Appl. Mater. Interfaces 13, 4636 (2021).CrossRef
6.
Zurück zum Zitat B.-Z. Tian, J. Chen, X.-P. Jiang, J. Tang, D.-L. Zhou, Q. Sun, L. Yang, and Z.-G. Chen, Enhanced Thermoelectric Performance of SnTe-Based Materials Via Interface Engineering. ACS Appl. Mater. Interfaces. 13, 50057 (2021).CrossRef B.-Z. Tian, J. Chen, X.-P. Jiang, J. Tang, D.-L. Zhou, Q. Sun, L. Yang, and Z.-G. Chen, Enhanced Thermoelectric Performance of SnTe-Based Materials Via Interface Engineering. ACS Appl. Mater. Interfaces. 13, 50057 (2021).CrossRef
7.
Zurück zum Zitat J.K. Lee, S. Park, B. Ryu, H.S. Lee, J. Park, and S. Park, Effect of Defect Interactions with Interstitial Ag in the Lattice of Bi2xSb2-xTe3 Alloys and their Thermoelectric Properties. Appl. Phys. Lett. 118, 5202 (2021). J.K. Lee, S. Park, B. Ryu, H.S. Lee, J. Park, and S. Park, Effect of Defect Interactions with Interstitial Ag in the Lattice of Bi2xSb2-xTe3 Alloys and their Thermoelectric Properties. Appl. Phys. Lett. 118, 5202 (2021).
8.
Zurück zum Zitat H.-S. Kim, N.A. Heinz, Z.M. Gibbs, Y. Tang, S.D. Kang, and G. Jeffrey Snyder, High Thermoelectric Performance in (Bi0.25Sb0.75)2Te3 Due to Band Convergence and Improved by Carrier Concentration Control. Mater. Today. 20, 452 (2017).CrossRef H.-S. Kim, N.A. Heinz, Z.M. Gibbs, Y. Tang, S.D. Kang, and G. Jeffrey Snyder, High Thermoelectric Performance in (Bi0.25Sb0.75)2Te3 Due to Band Convergence and Improved by Carrier Concentration Control. Mater. Today. 20, 452 (2017).CrossRef
9.
Zurück zum Zitat T.-H. An, Y.S. Lim, M.J. Park, J.-Y. Tak, S. Lee, H.K. Cho, J.-Y. Cho, C. Park, and W.-S. Seo, Composition-Dependent Charge Transport and Temperature-Dependent Density of State Effective Mass Interpreted by Temperature-Normalized Pisarenko Plot in Bi2−xSbxTe3 Compounds. APL. Mater. 4, 104812 (2016).CrossRef T.-H. An, Y.S. Lim, M.J. Park, J.-Y. Tak, S. Lee, H.K. Cho, J.-Y. Cho, C. Park, and W.-S. Seo, Composition-Dependent Charge Transport and Temperature-Dependent Density of State Effective Mass Interpreted by Temperature-Normalized Pisarenko Plot in Bi2−xSbxTe3 Compounds. APL. Mater. 4, 104812 (2016).CrossRef
10.
Zurück zum Zitat R.A. Masut, C. André, D. Vasilevskiy, and S. Turenne, Charge Transport Anisotropy in Hot Extruded Bismuth Telluride: Scattering by Acoustic Phonons. J. Appl. Phys. 128, 115106 (2020).CrossRef R.A. Masut, C. André, D. Vasilevskiy, and S. Turenne, Charge Transport Anisotropy in Hot Extruded Bismuth Telluride: Scattering by Acoustic Phonons. J. Appl. Phys. 128, 115106 (2020).CrossRef
11.
Zurück zum Zitat C. Andre, D. Vasilevskiy, S. Turenne, and R.A. Masut, Extruded Bismuth-Telluride-Based n-Type Alloys for Waste Heat Thermoelectric Recovery Applications. J. Electron. Mat. 38, 1061 (2009).CrossRef C. Andre, D. Vasilevskiy, S. Turenne, and R.A. Masut, Extruded Bismuth-Telluride-Based n-Type Alloys for Waste Heat Thermoelectric Recovery Applications. J. Electron. Mat. 38, 1061 (2009).CrossRef
12.
Zurück zum Zitat M.K. Keshavarz, D. Vasilevskiy, R.A. Masut, and S. Turenne, p-Type Bismuth Telluride-Based Composite Thermoelectric Materials Produced by Mechanical Alloying and Hot Extrusion. J. Electron. Mat. 42, 1429–1435 (2013).CrossRef M.K. Keshavarz, D. Vasilevskiy, R.A. Masut, and S. Turenne, p-Type Bismuth Telluride-Based Composite Thermoelectric Materials Produced by Mechanical Alloying and Hot Extrusion. J. Electron. Mat. 42, 1429–1435 (2013).CrossRef
13.
Zurück zum Zitat M.K. Keshavarz, D. Vasilevskiy, R.A. Masut, and S. Turenne, Mechanical Properties of Bismuth Telluride Based Alloys with Embedded MoS2 Nano-Particles. Mat. Design 103, 114 (2016).CrossRef M.K. Keshavarz, D. Vasilevskiy, R.A. Masut, and S. Turenne, Mechanical Properties of Bismuth Telluride Based Alloys with Embedded MoS2 Nano-Particles. Mat. Design 103, 114 (2016).CrossRef
14.
Zurück zum Zitat R.A. Masut, D. Vasilevskiy, and M.K. Keshavarz, Elastic Modulus and Internal Friction of Thermoelectric Composites: Enthalpy-Entropy Compensation. J. Appl. Phys. 129, 1 (2021). R.A. Masut, D. Vasilevskiy, and M.K. Keshavarz, Elastic Modulus and Internal Friction of Thermoelectric Composites: Enthalpy-Entropy Compensation. J. Appl. Phys. 129, 1 (2021).
15.
Zurück zum Zitat D. Vasilevskiy, O. Bourbia, S. Gosselin, S. Turenne, and R.A. Masut, Nanostructure Characterization of Bismuth Telluride Based Powders and Extruded Alloys by Various Experimental Methods. J. Electron. Mat. 40, 1046 (2011).CrossRef D. Vasilevskiy, O. Bourbia, S. Gosselin, S. Turenne, and R.A. Masut, Nanostructure Characterization of Bismuth Telluride Based Powders and Extruded Alloys by Various Experimental Methods. J. Electron. Mat. 40, 1046 (2011).CrossRef
16.
Zurück zum Zitat B.-L. Huang, and M. Kaviany, Ab Initio and Molecular Dynamics Predictions for Electron and Phonon Transport in Bismuth Telluride. Phys. Rev. B 77, 125209 (2008).CrossRef B.-L. Huang, and M. Kaviany, Ab Initio and Molecular Dynamics Predictions for Electron and Phonon Transport in Bismuth Telluride. Phys. Rev. B 77, 125209 (2008).CrossRef
17.
Zurück zum Zitat G. Wang, and T. Cagin, Electronic Structure of the Thermoelectric Materials Bi2Te3 and Sb2Te3 from First-Principles Calculations. Phys. Rev. B 76, 075201 (2007).CrossRef G. Wang, and T. Cagin, Electronic Structure of the Thermoelectric Materials Bi2Te3 and Sb2Te3 from First-Principles Calculations. Phys. Rev. B 76, 075201 (2007).CrossRef
18.
Zurück zum Zitat R. Deng, Su. Xianli, Z. Zheng, W. Liu, Y. Yan, Q. Zhang, V.P. Dravid, C. Uher, M.G. Kanatzidis, and X. Tang, Thermal Conductivity in Bi0.5Sb1.5Te3+x and the Role of Dense Dislocation Arrays at Grain Boundaries. Sci. Adv. 4, 5606 (2018).CrossRef R. Deng, Su. Xianli, Z. Zheng, W. Liu, Y. Yan, Q. Zhang, V.P. Dravid, C. Uher, M.G. Kanatzidis, and X. Tang, Thermal Conductivity in Bi0.5Sb1.5Te3+x and the Role of Dense Dislocation Arrays at Grain Boundaries. Sci. Adv. 4, 5606 (2018).CrossRef
19.
Zurück zum Zitat I.T. Witting, J.A. Grovogui, V.P. Dravid, and G. Jeffrey Snyder, Thermoelectric Transport Enhancement of Te-Rich Bismuth Antimony Telluride (Bi0.5Sb1.5Te3+x) Through Controlled Porosity. J. Materiom. 6, 532 (2020).CrossRef I.T. Witting, J.A. Grovogui, V.P. Dravid, and G. Jeffrey Snyder, Thermoelectric Transport Enhancement of Te-Rich Bismuth Antimony Telluride (Bi0.5Sb1.5Te3+x) Through Controlled Porosity. J. Materiom. 6, 532 (2020).CrossRef
20.
Zurück zum Zitat J. Volger, Note on the Hall Potential Across an Inhomogeneous Conductor. Phys. Rev. 79, 1023 (1950).CrossRef J. Volger, Note on the Hall Potential Across an Inhomogeneous Conductor. Phys. Rev. 79, 1023 (1950).CrossRef
21.
Zurück zum Zitat J. Heleskivi, and T. Salo, On the Hall Voltage in an Inhomogeneous Material. J. Appl. Phys. 43, 740 (1972).CrossRef J. Heleskivi, and T. Salo, On the Hall Voltage in an Inhomogeneous Material. J. Appl. Phys. 43, 740 (1972).CrossRef
22.
Zurück zum Zitat J.Y.W. Seto, The Electrical Properties of Polycrystalline Silicon Films. J. Appl. Phys. 46, 5247 (1975).CrossRef J.Y.W. Seto, The Electrical Properties of Polycrystalline Silicon Films. J. Appl. Phys. 46, 5247 (1975).CrossRef
23.
Zurück zum Zitat W. Zawadsky, R. Kowalczyk, and J. Kolodziejczak, The Generalized Fermi-Dirac Integrals. Phys. Stat. Sol. 10, 513 (1965).CrossRef W. Zawadsky, R. Kowalczyk, and J. Kolodziejczak, The Generalized Fermi-Dirac Integrals. Phys. Stat. Sol. 10, 513 (1965).CrossRef
Metadaten
Titel
Role of Deep Defects on the Transport Properties of Polycrystalline Thermoelectric Alloys and Composites
verfasst von
Remo A. Masut
Publikationsdatum
25.06.2022
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 9/2022
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09748-8

Weitere Artikel der Ausgabe 9/2022

Journal of Electronic Materials 9/2022 Zur Ausgabe

Neuer Inhalt