Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

26-10-2022 | Original Article

Various Physical Properties of Piperic Acid: A Potential Biomaterial for Future Electronics Applications

Authors: Ishrat Gowsia, Feroz A. Mir, Javid A. Banday

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Alkaline hydrolysis of piperine yields piperic acid, which has been studied for its structural, optical, and thermal properties. X-ray diffraction studies revealed an orthorhombic crystal structure for the compound. Morphological studies carried out by scanning electron microscopy revealed that the compound has a fibrous structure. Fourier-transform infrared spectroscopy confirms its associated vibrational groups at expected positions. In its UV–visible spectrum, the compound displayed direct forbidden and indirect allowed transitions. The optical band gap (Eg) was calculated at around 3.42 eV, indicating that indirect allowed transitions are followed by the compound. Photoluminescence studies show that, with excitation in the UV region, the compound emits in the violet and red regions of the visible spectrum. Melting point, stability, and other important thermodynamic parameters were obtained from thermal studies of the compound. Various properties shown by the compound have also been compared with piperine (parent compound). Piperic acid shows a significant improvement in these properties in comparison with piperine. Both piperine and piperic acid were subjected to theoretical calculations using density function theory. These theoretical calculations and experimental results mostly correlate with each other. Further, as per the observed properties, a diode-like structure of piperic acid was prepared and characterized for electric properties under various illumination conditions displaying good rectifying behavior. Variation of capacitance and loss of this device was also studied and is briefly explained. The studies carried out on piperic acid project it a suitable candidate for optoelectronic device operation.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P. Ravindran, Black Pepper: Piper nigrum (Boca Raton: CRC Press Florida, 2000).CrossRef P. Ravindran, Black Pepper: Piper nigrum (Boca Raton: CRC Press Florida, 2000).CrossRef
2.
go back to reference K. Hirasa and M. Takemasa, Spice Science and Technology (Boca Raton: CRC Press Florida, 1998).CrossRef K. Hirasa and M. Takemasa, Spice Science and Technology (Boca Raton: CRC Press Florida, 1998).CrossRef
3.
go back to reference Z. Zarai, E. Boujelbene, N.B. Salem, Y. Gargouri, and A. Sayari, Antioxidant and Antimicrobial Activities of Various Solvent Extracts, Piperine and Piperic Acid from Piper nigrum. LWT - Food Sci. Technol. 50, 634 (2013).CrossRef Z. Zarai, E. Boujelbene, N.B. Salem, Y. Gargouri, and A. Sayari, Antioxidant and Antimicrobial Activities of Various Solvent Extracts, Piperine and Piperic Acid from Piper nigrum. LWT - Food Sci. Technol. 50, 634 (2013).CrossRef
4.
go back to reference A. Tiwari, K.R. Mahadik, and S.Y. Gabhe, Piperine: A Comprehensive Review of Methods of Isolation, Purification, and Biological Properties. Med. Drug Discov. 7, 100027 (2020).CrossRef A. Tiwari, K.R. Mahadik, and S.Y. Gabhe, Piperine: A Comprehensive Review of Methods of Isolation, Purification, and Biological Properties. Med. Drug Discov. 7, 100027 (2020).CrossRef
5.
go back to reference A.N. Milenković and L.P. Stanojević, Black Pepper: Chemical Composition and Biological Activities. Adv. Technol. 10, 40 (2021).CrossRef A.N. Milenković and L.P. Stanojević, Black Pepper: Chemical Composition and Biological Activities. Adv. Technol. 10, 40 (2021).CrossRef
6.
go back to reference M. Meghwal and T.K. Goswami, Nutritional Constituent of Black Pepper as Medicinal Molecules: A Review. Open Access Sci. Rep. 1, 1 (2012). M. Meghwal and T.K. Goswami, Nutritional Constituent of Black Pepper as Medicinal Molecules: A Review. Open Access Sci. Rep. 1, 1 (2012).
7.
go back to reference K. Platel and K. Srinivasan, Influence of Dietary Spices and Their Active Principles on Pancreatic Digestive Enzymes in Albino Rats. Food Nahrung 44, 42 (2000).CrossRef K. Platel and K. Srinivasan, Influence of Dietary Spices and Their Active Principles on Pancreatic Digestive Enzymes in Albino Rats. Food Nahrung 44, 42 (2000).CrossRef
8.
go back to reference K. Mueller and J. Hingst, The Athlete’s Guide to Sports Supplements. .J Hum. Kinet. (2013) K. Mueller and J. Hingst, The Athlete’s Guide to Sports Supplements. .J Hum. Kinet. (2013)
9.
go back to reference C. Ulbricht, W. Chao, D. Costa, E. Rusie-Seamon, W. Weissner, and J. Woods, Clinical Evidence of Herb-Drug Interactions: A Systematic Review by the Natural Standard Research Collaboration. Curr. Drug Metab. 9, 1063 (2008).CrossRef C. Ulbricht, W. Chao, D. Costa, E. Rusie-Seamon, W. Weissner, and J. Woods, Clinical Evidence of Herb-Drug Interactions: A Systematic Review by the Natural Standard Research Collaboration. Curr. Drug Metab. 9, 1063 (2008).CrossRef
10.
go back to reference E. Zaini, A. Afriyani, L. Fitriani, F. Ismed, A. Horikawa, and H. Uekusa, Improved Solubility and Dissolution Rates in Novel Multicomponent Crystals of Piperine with Succinic Acid. Sci. Pharm. 88, 21 (2020).CrossRef E. Zaini, A. Afriyani, L. Fitriani, F. Ismed, A. Horikawa, and H. Uekusa, Improved Solubility and Dissolution Rates in Novel Multicomponent Crystals of Piperine with Succinic Acid. Sci. Pharm. 88, 21 (2020).CrossRef
11.
go back to reference P. Choochana, J. Moungjaroen, N. Jongkon, W. Gritsanapan, and P. Tangyuenyongwatana, Development of Piperic Acid Derivatives from Piper nigrum as UV Protection Agents. Pharm. Biol. 53, 477 (2015).CrossRef P. Choochana, J. Moungjaroen, N. Jongkon, W. Gritsanapan, and P. Tangyuenyongwatana, Development of Piperic Acid Derivatives from Piper nigrum as UV Protection Agents. Pharm. Biol. 53, 477 (2015).CrossRef
12.
go back to reference F. Yang, X.L. Zhang, K. Sun, M.J. Xiong, P.F. Xia, Z.J. Cao, and Z.H. Li, Enhanced Electroluminescent Properties of Triarylamine-Endcapped X-Branched Oligofluorine. Syn. Met. 158, 988 (2008).CrossRef F. Yang, X.L. Zhang, K. Sun, M.J. Xiong, P.F. Xia, Z.J. Cao, and Z.H. Li, Enhanced Electroluminescent Properties of Triarylamine-Endcapped X-Branched Oligofluorine. Syn. Met. 158, 988 (2008).CrossRef
13.
go back to reference W.J. Yang, D.Y. Kim, M.Y. Jeong, H.M. Kim, Y.K. Lee, X.Z. Fang, S.J. Jeon, and B.R. Cho, Two-Photon Absorption Properties of 2,6-Bis(styryl)anthracene Derivatives: Effects of Donor-Acceptor Substituents and the pi-Center. Chem. Eur. J. 11, 4191 (2005).CrossRef W.J. Yang, D.Y. Kim, M.Y. Jeong, H.M. Kim, Y.K. Lee, X.Z. Fang, S.J. Jeon, and B.R. Cho, Two-Photon Absorption Properties of 2,6-Bis(styryl)anthracene Derivatives: Effects of Donor-Acceptor Substituents and the pi-Center. Chem. Eur. J. 11, 4191 (2005).CrossRef
14.
go back to reference H. Zhang, Y. Tianzhi, Z. Yuling, F. Duowang, X. Yangjun, Z. Peng, Q. Yongqing, and L. Chen, Synthesis, Crystal Structure and Photoluminescence of 3-(4-(Anthracen-10-yl)-Benzo [5,6] Coumarin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 75, 325 (2010).CrossRef H. Zhang, Y. Tianzhi, Z. Yuling, F. Duowang, X. Yangjun, Z. Peng, Q. Yongqing, and L. Chen, Synthesis, Crystal Structure and Photoluminescence of 3-(4-(Anthracen-10-yl)-Benzo [5,6] Coumarin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 75, 325 (2010).CrossRef
15.
go back to reference F.A. Mir, A.A. Peerzada, U. Faheem, M.N. Mudasar, and G. Baseerat, Structural, Optical & Diode Studies of PVA-Coumarin Composite. Optik 221, 165344 (2020).CrossRef F.A. Mir, A.A. Peerzada, U. Faheem, M.N. Mudasar, and G. Baseerat, Structural, Optical & Diode Studies of PVA-Coumarin Composite. Optik 221, 165344 (2020).CrossRef
16.
go back to reference M.N. Mudasar, F.A. Mir, U. Faheem, A.A. Peerzada, and G. Baseerat, A Brief Study on Structural, Optical and Photovoltaic Properties of Lithium Sulfate Monohydrate Single Crystals. J. Mater. Sci. Mater. Electron. 31, 11855 (2020).CrossRef M.N. Mudasar, F.A. Mir, U. Faheem, A.A. Peerzada, and G. Baseerat, A Brief Study on Structural, Optical and Photovoltaic Properties of Lithium Sulfate Monohydrate Single Crystals. J. Mater. Sci. Mater. Electron. 31, 11855 (2020).CrossRef
17.
go back to reference F.A. Mir, S. Rehman, K. Asoken, and S.H. Khan, Structural, Optical and Transport Properties of 4-Hydroxycoumarin: An Organic Schttky Diode. Appl. Phys. A. 116, 1017 (2014).CrossRef F.A. Mir, S. Rehman, K. Asoken, and S.H. Khan, Structural, Optical and Transport Properties of 4-Hydroxycoumarin: An Organic Schttky Diode. Appl. Phys. A. 116, 1017 (2014).CrossRef
18.
go back to reference F.A. Mir, Optical and Schottky Diode Performance of Au/4-Hydroxycoumarin / ITO Heterojunction. Optik 126, 24 (2015).CrossRef F.A. Mir, Optical and Schottky Diode Performance of Au/4-Hydroxycoumarin / ITO Heterojunction. Optik 126, 24 (2015).CrossRef
19.
go back to reference F.A. Mir, Spectrophotometric and Electrical Properties of Imperatorin: An Organic Molecule. Appl. Phys. A. 120, 1659 (2015).CrossRef F.A. Mir, Spectrophotometric and Electrical Properties of Imperatorin: An Organic Molecule. Appl. Phys. A. 120, 1659 (2015).CrossRef
20.
go back to reference J.A. Banday, F.A. Mir, S. Farooq, M.A. Qurishi, S. Koul, and T.K. Razdan, Structural, Thermal and Optical Studies of Oxypeucedanin Hydrate Monoacetate Micro-Crystals from Prangos pabularia. Am. J. Anal. Chem. 3, 204 (2012).CrossRef J.A. Banday, F.A. Mir, S. Farooq, M.A. Qurishi, S. Koul, and T.K. Razdan, Structural, Thermal and Optical Studies of Oxypeucedanin Hydrate Monoacetate Micro-Crystals from Prangos pabularia. Am. J. Anal. Chem. 3, 204 (2012).CrossRef
21.
go back to reference N.F. Motta, and E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed., (Oxford: Clarendon Press, 2012). N.F. Motta, and E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed., (Oxford: Clarendon Press, 2012).
22.
go back to reference S.R. Trenor, A.R. Shultz, B.J. Love, and T.E. Long, Coumarins in Polymers: From Light Harvesting to Photo-Cross-Linkable Tissue Scaffolds. Chem. Rev. 104, 3059 (2004).CrossRef S.R. Trenor, A.R. Shultz, B.J. Love, and T.E. Long, Coumarins in Polymers: From Light Harvesting to Photo-Cross-Linkable Tissue Scaffolds. Chem. Rev. 104, 3059 (2004).CrossRef
23.
go back to reference V. Meenatchi, K. Muthu, M. Rajasekar, S.P. Meenakshisundaram, and S.C. Mojumdar, Crystal Growth, Structure and Characterization of O-Hydroxybenzoic Acid Single Crystals. J. Therm. Anal. Calorim. 108, 895 (2012).CrossRef V. Meenatchi, K. Muthu, M. Rajasekar, S.P. Meenakshisundaram, and S.C. Mojumdar, Crystal Growth, Structure and Characterization of O-Hydroxybenzoic Acid Single Crystals. J. Therm. Anal. Calorim. 108, 895 (2012).CrossRef
24.
go back to reference A. Patterson, The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 56, 978 (1939).CrossRef A. Patterson, The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 56, 978 (1939).CrossRef
25.
go back to reference K. Sangwal, Effects of Impurities on Crystal Growth Processes. Prog. Cryst. Growth Charact. 32, 3 (1996).CrossRef K. Sangwal, Effects of Impurities on Crystal Growth Processes. Prog. Cryst. Growth Charact. 32, 3 (1996).CrossRef
26.
go back to reference D.S. Sabirov, Anisotropy of Polarizability of Fullerene Higher Adducts for Assessing the Efficiency of Their Use in Organic Solar Cells. J. Phys. Chem. C. 117, 9148 (2013).CrossRef D.S. Sabirov, Anisotropy of Polarizability of Fullerene Higher Adducts for Assessing the Efficiency of Their Use in Organic Solar Cells. J. Phys. Chem. C. 117, 9148 (2013).CrossRef
27.
go back to reference A.S. Robert, Y. Yang, B.C. Thompson, and M. Iain, Capacitance Spectroscopy of Light Induced Trap States in Organic Solar Cells. J. Phys. Chem. C. 120, 22169 (2016).CrossRef A.S. Robert, Y. Yang, B.C. Thompson, and M. Iain, Capacitance Spectroscopy of Light Induced Trap States in Organic Solar Cells. J. Phys. Chem. C. 120, 22169 (2016).CrossRef
Metadata
Title
Various Physical Properties of Piperic Acid: A Potential Biomaterial for Future Electronics Applications
Authors
Ishrat Gowsia
Feroz A. Mir
Javid A. Banday
Publication date
26-10-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-10004-2

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue