Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

06-11-2022 | Original Research Article

Impact of Amorphous and Crystalline Tungsten Trioxide (WO3) Thin Films as an Antireflection Material for Silicon (c-Si) Solar Cells

Authors: Sameen Maqsood, Khuram Ali, Zohaib Ali, Iqra Iqbal

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effects of single-layer antireflection coatings (SLARCs) on the performance of crystalline silicon (c-Si)-based solar cells have been analyzed numerically. In this study, amorphous (a-WO3) and crystalline (c-WO3) tungsten trioxide was introduced as a SLARC to investigate the performance of photovoltaic cells. Different antireflection coating (ARC) materials including aluminum trioxide (Al2O3), magnesium fluoride (MgF2), titanium dioxide (TiO2), magnesium oxide (MgO), silicon carbide (SiC), silicon dioxide (SiO2), aluminum-doped zinc oxide (AZO), strontium fluoride (SrF2), and titanium nitride (TiN) were used for simulative comparative analysis with WO3 in the search for the highest efficiency of c-Si solar cells. The PC1D simulator was employed to investigate the impact of these ARC materials on device performance. When compared to other ARC materials, the highest efficiency (η) of 19.35% was achieved for a-WO3 thin film with a thickness of 70.7 nm. The a-WO3 ARC layer yielded an open-circuit voltage (Voc) of 0.6363 V, short-circuit current density (Jsc) of 36.86 mA/cm2, and short-circuit current (Isc) of 3.686 A. The Jsc values obtained are in close agreement with the ARC layers' reflectance values. It is important to recognize that the main factors established in this simulation study about SLARC production will make experimental data cheaper and faster.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.H. Ahmadi, M. Ghazvini, M. Alhuyi Nazari, M.A. Ahmadi, F. Pourfayaz, G. Lorenzini, and T. Ming, Renewable energy harvesting with the application of nanotechnology: a review. Int. J. Eng. Res. 43, 1387 (2019). M.H. Ahmadi, M. Ghazvini, M. Alhuyi Nazari, M.A. Ahmadi, F. Pourfayaz, G. Lorenzini, and T. Ming, Renewable energy harvesting with the application of nanotechnology: a review. Int. J. Eng. Res. 43, 1387 (2019).
2.
go back to reference D. Ürge-Vorsatz, L.F. Cabeza, S. Serrano, C. Barreneche, and K. Petrichenko, Heating and cooling energy trends and drivers in buildings. Renew. Sustain. Energy Rev. 41, 85 (2015).CrossRef D. Ürge-Vorsatz, L.F. Cabeza, S. Serrano, C. Barreneche, and K. Petrichenko, Heating and cooling energy trends and drivers in buildings. Renew. Sustain. Energy Rev. 41, 85 (2015).CrossRef
3.
go back to reference S. Sista, Z. Hong, L.-M. Chen, and Y. Yang, tandem polymer photovoltaic cells—current status, challenges and future outlook. Energy Environ. Sci. 4, 1606 (2011).CrossRef S. Sista, Z. Hong, L.-M. Chen, and Y. Yang, tandem polymer photovoltaic cells—current status, challenges and future outlook. Energy Environ. Sci. 4, 1606 (2011).CrossRef
4.
go back to reference I.S. Jung, J. Choi, D.K. Shah, and M.S. Akhtar, Development and characterization of solar simulator for solar cells. J. Nanoelectron. Optoelectron. 15, 720 (2020).CrossRef I.S. Jung, J. Choi, D.K. Shah, and M.S. Akhtar, Development and characterization of solar simulator for solar cells. J. Nanoelectron. Optoelectron. 15, 720 (2020).CrossRef
5.
go back to reference D.K. Shah, Y.-H. Son, H.-R. Lee, M.S. Akhtar, C.Y. Kim, and O.-B. Yang, A stable gel electrolyte based on poly butyl acrylate (PBA)-co-poly acrylonitrile (PAN) for solid-state dye-sensitized solar cells. Chem. Phys. Lett. 754, 137756 (2020).CrossRef D.K. Shah, Y.-H. Son, H.-R. Lee, M.S. Akhtar, C.Y. Kim, and O.-B. Yang, A stable gel electrolyte based on poly butyl acrylate (PBA)-co-poly acrylonitrile (PAN) for solid-state dye-sensitized solar cells. Chem. Phys. Lett. 754, 137756 (2020).CrossRef
6.
go back to reference L.C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, and L. Redorici, Silicon solar cells: toward the efficiency limits. Adv. Phys. X 4, 1548305 (2019). L.C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, and L. Redorici, Silicon solar cells: toward the efficiency limits. Adv. Phys. X 4, 1548305 (2019).
7.
go back to reference T. Tiedje, E. Yablonovitch, G.D. Cody, and B.G. Brooks, Limiting efficiency of silicon solar cells. IEEE Trans. Electron Devices 31, 711 (1984).CrossRef T. Tiedje, E. Yablonovitch, G.D. Cody, and B.G. Brooks, Limiting efficiency of silicon solar cells. IEEE Trans. Electron Devices 31, 711 (1984).CrossRef
8.
go back to reference M.A. Green, Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic auger processes. IEEE Trans. Electron Devices 31, 671 (1984).CrossRef M.A. Green, Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic auger processes. IEEE Trans. Electron Devices 31, 671 (1984).CrossRef
9.
go back to reference T. Saga, Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater. 2, 96 (2010).CrossRef T. Saga, Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater. 2, 96 (2010).CrossRef
10.
go back to reference A. Tavkhelidze, A. Bibilashvili, L. Jangidze, and N.E. Gorji, Fermi-level tuning of G-doped layers. Nano 11, 505 (2021). A. Tavkhelidze, A. Bibilashvili, L. Jangidze, and N.E. Gorji, Fermi-level tuning of G-doped layers. Nano 11, 505 (2021).
11.
go back to reference D.D. Smith, P. Cousins, S. Westerberg, R. De Jesus-Tabajonda, G. Aniero, and Y.-C. Shen, Toward the practical limits of silicon solar cells. IEEE. J. Photovolt. 4, 1465 (2014).CrossRef D.D. Smith, P. Cousins, S. Westerberg, R. De Jesus-Tabajonda, G. Aniero, and Y.-C. Shen, Toward the practical limits of silicon solar cells. IEEE. J. Photovolt. 4, 1465 (2014).CrossRef
12.
go back to reference R. Sharma, G. Amit, and V. Ajit, Effect of single and double layer antireflection coating to enhance photovoltaic efficiency of silicon solar. J. Nano-Electron. Phys. 9, 2 (2017).CrossRef R. Sharma, G. Amit, and V. Ajit, Effect of single and double layer antireflection coating to enhance photovoltaic efficiency of silicon solar. J. Nano-Electron. Phys. 9, 2 (2017).CrossRef
13.
go back to reference L. Dobrzański, M. Szindler, A. Drygała, and M. Szindler, Silicon solar cells with Al2O3 antireflection coating. Open Phys. 12, 666 (2014).CrossRef L. Dobrzański, M. Szindler, A. Drygała, and M. Szindler, Silicon solar cells with Al2O3 antireflection coating. Open Phys. 12, 666 (2014).CrossRef
14.
go back to reference D. Hocine, M. Belkaid, M. Pasquinelli, L. Escoubas, J. Simon, G. Rivière, and A. Moussi, Improved efficiency of multicrystalline silicon solar cells by TiO2 antireflection coatings derived by APCVD process. Mater. Sci. Semicond. Process. 16, 113 (2013).CrossRef D. Hocine, M. Belkaid, M. Pasquinelli, L. Escoubas, J. Simon, G. Rivière, and A. Moussi, Improved efficiency of multicrystalline silicon solar cells by TiO2 antireflection coatings derived by APCVD process. Mater. Sci. Semicond. Process. 16, 113 (2013).CrossRef
15.
go back to reference B. Dhamodharan and D.S. Periyasamy, Analysis of solar cell with MGO anti-reflective coating. Int. J. Sci. Res. Dev. 4, 415 (2016). B. Dhamodharan and D.S. Periyasamy, Analysis of solar cell with MGO anti-reflective coating. Int. J. Sci. Res. Dev. 4, 415 (2016).
16.
go back to reference A. Sultanov, K. Nussupov, and N. Beisenkhanov, Investigation of SiC based antireflection coatings for Si solar cells by numerical FTDT simulations. Mater. Today Proc. 49, 2511 (2022).CrossRef A. Sultanov, K. Nussupov, and N. Beisenkhanov, Investigation of SiC based antireflection coatings for Si solar cells by numerical FTDT simulations. Mater. Today Proc. 49, 2511 (2022).CrossRef
17.
go back to reference K. Sobahan, Y.J. Park, J.J. Kim, and C.K. Hwangbo, Nanostructured porous SiO2 films for antireflection coatings. Opt. Commun. 284, 873 (2011).CrossRef K. Sobahan, Y.J. Park, J.J. Kim, and C.K. Hwangbo, Nanostructured porous SiO2 films for antireflection coatings. Opt. Commun. 284, 873 (2011).CrossRef
18.
go back to reference P.A. Ilenikhena, Fabrication and optical characterization of improved electroless chemically deposited strontium fluoride (SrF2) thin films at 320 K. J. Niger. Assoc. Math. Phys. 11, 415 (2007). P.A. Ilenikhena, Fabrication and optical characterization of improved electroless chemically deposited strontium fluoride (SrF2) thin films at 320 K. J. Niger. Assoc. Math. Phys. 11, 415 (2007).
19.
go back to reference N. Venugopal, V.S. Gerasimov, A.E. Ershov, S.V. Karpov, and S.P. Polyutov, Titanium nitride as light trapping plasmonic material in silicon solar cell. Opt. Mater. 72, 397 (2017).CrossRef N. Venugopal, V.S. Gerasimov, A.E. Ershov, S.V. Karpov, and S.P. Polyutov, Titanium nitride as light trapping plasmonic material in silicon solar cell. Opt. Mater. 72, 397 (2017).CrossRef
20.
go back to reference N.M. Saeed and A.M. Suhail, Enhancement the optical properties of zinc sulfide thin films for solar cell applications. Iraqi J. Sci. 53, 88 (2012). N.M. Saeed and A.M. Suhail, Enhancement the optical properties of zinc sulfide thin films for solar cell applications. Iraqi J. Sci. 53, 88 (2012).
21.
go back to reference F. Haque, K.S. Rahman, M.A. Islam, Y. Yusoff, N.A. Khan, A.A. Nasser, and N. Amin, Effects of growth temperatures on the structural and optoelectronic properties of sputtered zinc sulfide thin films for solar cell applications. Optical. Quan. Electr. 51, 1 (2019). F. Haque, K.S. Rahman, M.A. Islam, Y. Yusoff, N.A. Khan, A.A. Nasser, and N. Amin, Effects of growth temperatures on the structural and optoelectronic properties of sputtered zinc sulfide thin films for solar cell applications. Optical. Quan. Electr. 51, 1 (2019).
22.
go back to reference M. Chinnasamy, R. Rathanasamy, S. Sivaraj, G.V. Kaliyannan, M.S. Anbupalani, and S.K. Jaganathan, Influence of ZnSe surface coatings for enhancing the performance of multicrystalline silicon solar cells. J. Electron. Mater. 51, 2833 (2022).CrossRef M. Chinnasamy, R. Rathanasamy, S. Sivaraj, G.V. Kaliyannan, M.S. Anbupalani, and S.K. Jaganathan, Influence of ZnSe surface coatings for enhancing the performance of multicrystalline silicon solar cells. J. Electron. Mater. 51, 2833 (2022).CrossRef
23.
go back to reference R.R. Phillips, V. Haynes, D.A. Naylor, and P. Ade, Simple method for antireflection coating ZnSe in the 20 μm wavelength range. Appl. Opt. 47, 870 (2008).CrossRef R.R. Phillips, V. Haynes, D.A. Naylor, and P. Ade, Simple method for antireflection coating ZnSe in the 20 μm wavelength range. Appl. Opt. 47, 870 (2008).CrossRef
25.
go back to reference M.A. Eghfeli, S.A. Hadi, N.E. Atab, and A. Nayfeh, Presented at the 2016 IEEE 43rd photovoltaic specialists conference (2016), p. 2765. M.A. Eghfeli, S.A. Hadi, N.E. Atab, and A. Nayfeh, Presented at the 2016 IEEE 43rd photovoltaic specialists conference (2016), p. 2765.
26.
go back to reference Y. Lu, X. Zhang, J. Huang, J. Li, T. Wei, P. Lan, Y. Yang, H. Xu, and W. Song, Investigation on antireflection coatings for Al: ZnO in silicon thin-film solar cells. Opt. Int. J. Light Electron Opt. 124, 3392 (2013).CrossRef Y. Lu, X. Zhang, J. Huang, J. Li, T. Wei, P. Lan, Y. Yang, H. Xu, and W. Song, Investigation on antireflection coatings for Al: ZnO in silicon thin-film solar cells. Opt. Int. J. Light Electron Opt. 124, 3392 (2013).CrossRef
27.
go back to reference J.R. Sharma, G. Das, A.B. Roy, S. Bose, and S. Mukhopadhyay, Design analysis of heterojunction solar cells with aligned AZO nanorods embedded in p-type Si wafer. Silicon 12, 305 (2020).CrossRef J.R. Sharma, G. Das, A.B. Roy, S. Bose, and S. Mukhopadhyay, Design analysis of heterojunction solar cells with aligned AZO nanorods embedded in p-type Si wafer. Silicon 12, 305 (2020).CrossRef
28.
go back to reference R. Tällberg, B.P. Jelle, R. Loonen, T. Gao, and M. Hamdy, Comparison of the energy saving potential of adaptive and controllable smart windows: a state-of-the-art review and simulation studies of thermochromic, photochromic and electrochromic technologies. Sol. Energy Mater. Sol. Cells 200, 109828 (2019).CrossRef R. Tällberg, B.P. Jelle, R. Loonen, T. Gao, and M. Hamdy, Comparison of the energy saving potential of adaptive and controllable smart windows: a state-of-the-art review and simulation studies of thermochromic, photochromic and electrochromic technologies. Sol. Energy Mater. Sol. Cells 200, 109828 (2019).CrossRef
29.
go back to reference S. Green, J. Backholm, P. Georén, C.-G. Granqvist, and G. Niklasson, Electrochromism in nickel oxide and tungsten oxide thin films: ion intercalation from different electrolytes. Sol. Energy Mater. Sol. Cells 93, 2050 (2009).CrossRef S. Green, J. Backholm, P. Georén, C.-G. Granqvist, and G. Niklasson, Electrochromism in nickel oxide and tungsten oxide thin films: ion intercalation from different electrolytes. Sol. Energy Mater. Sol. Cells 93, 2050 (2009).CrossRef
30.
go back to reference R.J. Mortimer, Electrochromic materials. Annu. Rev. Mater. Res. 41, 241 (2011).CrossRef R.J. Mortimer, Electrochromic materials. Annu. Rev. Mater. Res. 41, 241 (2011).CrossRef
31.
go back to reference C.G. Granqvist, Electrochromics for smart windows: oxide-based thin films and devices. Thin Solid Films 564, 1 (2014).CrossRef C.G. Granqvist, Electrochromics for smart windows: oxide-based thin films and devices. Thin Solid Films 564, 1 (2014).CrossRef
32.
go back to reference M. Lahav and M.E. van der Boom, Polypyridyl metallo-organic assemblies for electrochromic applications. Adv. Mater. 30, 1706641 (2018).CrossRef M. Lahav and M.E. van der Boom, Polypyridyl metallo-organic assemblies for electrochromic applications. Adv. Mater. 30, 1706641 (2018).CrossRef
33.
go back to reference W. Wu, M. Wang, J. Ma, Y. Cao, and Y. Deng, Electrochromic metal oxides: recent progress and prospect. Adv. Electron. Mater. 4, 1800185 (2018).CrossRef W. Wu, M. Wang, J. Ma, Y. Cao, and Y. Deng, Electrochromic metal oxides: recent progress and prospect. Adv. Electron. Mater. 4, 1800185 (2018).CrossRef
34.
go back to reference K. Sadeghi, J.-Y. Yoon, and J. Seo, Chromogenic polymers and their packaging applications: a review. Polym. Rev. 60, 442 (2020).CrossRef K. Sadeghi, J.-Y. Yoon, and J. Seo, Chromogenic polymers and their packaging applications: a review. Polym. Rev. 60, 442 (2020).CrossRef
35.
go back to reference G.-F. Cai, J.-P. Tu, J. Zhang, Y.-J. Mai, Y. Lu, C.-D. Gu, and X.-L. Wang, An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties. Nanoscale 4, 5724 (2012).CrossRef G.-F. Cai, J.-P. Tu, J. Zhang, Y.-J. Mai, Y. Lu, C.-D. Gu, and X.-L. Wang, An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties. Nanoscale 4, 5724 (2012).CrossRef
36.
go back to reference G. Cai, J. Tu, D. Zhou, L. Li, J. Zhang, X. Wang, and C. Gu, Constructed TiO2/NiO core/shell nanorod array for efficient electrochromic application. J. Phys. Chem. C 118, 6690 (2014).CrossRef G. Cai, J. Tu, D. Zhou, L. Li, J. Zhang, X. Wang, and C. Gu, Constructed TiO2/NiO core/shell nanorod array for efficient electrochromic application. J. Phys. Chem. C 118, 6690 (2014).CrossRef
37.
go back to reference J.-H. Zhang, G.-F. Cai, D. Zhou, H. Tang, X.-L. Wang, C.-D. Gu, and J.-P. Tu, Co-doped NiO nanoflake array films with enhanced electrochromic properties. J. Mater. Chem. C 2, 7013 (2014).CrossRef J.-H. Zhang, G.-F. Cai, D. Zhou, H. Tang, X.-L. Wang, C.-D. Gu, and J.-P. Tu, Co-doped NiO nanoflake array films with enhanced electrochromic properties. J. Mater. Chem. C 2, 7013 (2014).CrossRef
38.
go back to reference J. Kim, G.K. Ong, Y. Wang, G. LeBlanc, T.E. Williams, T.M. Mattox, B.A. Helms, and D.J. Milliron, Nanocomposite architecture for rapid, spectrally-selective electrochromic modulation of solar transmittance. Nano Lett. 15, 5574 (2015).CrossRef J. Kim, G.K. Ong, Y. Wang, G. LeBlanc, T.E. Williams, T.M. Mattox, B.A. Helms, and D.J. Milliron, Nanocomposite architecture for rapid, spectrally-selective electrochromic modulation of solar transmittance. Nano Lett. 15, 5574 (2015).CrossRef
39.
go back to reference D. Zhou, F. Shi, D. Xie, D. Wang, X. Xia, X. Wang, C. Gu, and J. Tu, Bi-functional Mo-doped WO3 nanowire array electrochromism-plus electrochemical energy storage. J. Colloid Interface Sci. 465, 112 (2016).CrossRef D. Zhou, F. Shi, D. Xie, D. Wang, X. Xia, X. Wang, C. Gu, and J. Tu, Bi-functional Mo-doped WO3 nanowire array electrochromism-plus electrochemical energy storage. J. Colloid Interface Sci. 465, 112 (2016).CrossRef
40.
go back to reference D. Wei, M.R. Scherer, C. Bower, P. Andrew, T. Ryhänen, and U. Steiner, A nanostructured electrochromic supercapacitor. Nano Lett. 12, 1857 (2012).CrossRef D. Wei, M.R. Scherer, C. Bower, P. Andrew, T. Ryhänen, and U. Steiner, A nanostructured electrochromic supercapacitor. Nano Lett. 12, 1857 (2012).CrossRef
41.
go back to reference A. Llordés, G. Garcia, J. Gazquez, and D.J. Milliron, Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500, 323 (2013).CrossRef A. Llordés, G. Garcia, J. Gazquez, and D.J. Milliron, Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500, 323 (2013).CrossRef
42.
go back to reference S. Cong, Y. Tian, Q. Li, Z. Zhao, and F. Geng, Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Adv. Mater. 26, 4260 (2014).CrossRef S. Cong, Y. Tian, Q. Li, Z. Zhao, and F. Geng, Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Adv. Mater. 26, 4260 (2014).CrossRef
43.
go back to reference J.-L. Wang, Y.-R. Lu, H.-H. Li, J.-W. Liu, and S.-H. Yu, Large area co-assembly of nanowires for flexible transparent smart windows. J. Am. Chem. Soc. 139, 9921 (2017).CrossRef J.-L. Wang, Y.-R. Lu, H.-H. Li, J.-W. Liu, and S.-H. Yu, Large area co-assembly of nanowires for flexible transparent smart windows. J. Am. Chem. Soc. 139, 9921 (2017).CrossRef
44.
go back to reference G.A. Niklasson and C.G. Granqvist, Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 17, 127 (2007).CrossRef G.A. Niklasson and C.G. Granqvist, Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 17, 127 (2007).CrossRef
45.
go back to reference C.C. Mardare and A.W. Hassel, Review on the versatility of tungsten oxide coatings. Phys. Status. Solidi. (a) 216, 1900047 (2019).CrossRef C.C. Mardare and A.W. Hassel, Review on the versatility of tungsten oxide coatings. Phys. Status. Solidi. (a) 216, 1900047 (2019).CrossRef
46.
go back to reference C.M. Lampert and C.-G. Granqvist, Presented at the society of photo-optical instrumentation engineers (SPIE) conference series, (1990). C.M. Lampert and C.-G. Granqvist, Presented at the society of photo-optical instrumentation engineers (SPIE) conference series, (1990).
47.
go back to reference A. Agrawal, J.P. Cronin, and R. Zhang, Review of solid state electrochromic coatings produced using sol-gel techniques. Sol. Energy Mater. Sol. Cells 31, 9 (1993).CrossRef A. Agrawal, J.P. Cronin, and R. Zhang, Review of solid state electrochromic coatings produced using sol-gel techniques. Sol. Energy Mater. Sol. Cells 31, 9 (1993).CrossRef
48.
go back to reference A. Akl, H. Kamal, and K. Abdel-Hady, Characterization of tungsten oxide films of different crystallinity prepared by RF sputtering. Phys. B Condens. Matter. 325, 65 (2003).CrossRef A. Akl, H. Kamal, and K. Abdel-Hady, Characterization of tungsten oxide films of different crystallinity prepared by RF sputtering. Phys. B Condens. Matter. 325, 65 (2003).CrossRef
49.
go back to reference E. Özkan and F. Tepehan, Optical and structural characteristics of sol–gel-deposited tungsten oxide and vanadium-doped tungsten oxide films. Sol. Energy Mater. Sol. Cells 68, 265 (2001).CrossRef E. Özkan and F. Tepehan, Optical and structural characteristics of sol–gel-deposited tungsten oxide and vanadium-doped tungsten oxide films. Sol. Energy Mater. Sol. Cells 68, 265 (2001).CrossRef
50.
go back to reference M. Regragui, M. Addou, A. Outzourhit, K.A. El-Idrissi Elb, and A. Bougrine, Sol. Energy Mater. Sol. Cells 77, 341 (2003).CrossRef M. Regragui, M. Addou, A. Outzourhit, K.A. El-Idrissi Elb, and A. Bougrine, Sol. Energy Mater. Sol. Cells 77, 341 (2003).CrossRef
51.
go back to reference H. Kamal, A. Akl, and K. Abdel-Hady, Influence of proton insertion on the conductivity, structural and optical properties of amorphous and crystalline electrochromic WO3 films. Phys. B Condens. Matter 349, 192 (2004).CrossRef H. Kamal, A. Akl, and K. Abdel-Hady, Influence of proton insertion on the conductivity, structural and optical properties of amorphous and crystalline electrochromic WO3 films. Phys. B Condens. Matter 349, 192 (2004).CrossRef
52.
go back to reference M.G. Hutchins, O. Abu-Alkhair, M. El-Nahass, and K. Abdel-Hady, Electrical conduction mechanisms in thermally evaporated tungsten trioxide (WO3) Thin films. J. Phys. Condens. Matter 18, 9987 (2006).CrossRef M.G. Hutchins, O. Abu-Alkhair, M. El-Nahass, and K. Abdel-Hady, Electrical conduction mechanisms in thermally evaporated tungsten trioxide (WO3) Thin films. J. Phys. Condens. Matter 18, 9987 (2006).CrossRef
53.
go back to reference K.H. Tsui, Q. Lin, H. Chou, Q. Zhang, H. Fu, P. Qi, and Z. Fan, Low-cost, flexible, and self-cleaning 3D nanocone anti-reflection films for high-efficiency photovoltaics. Adv. Mater. 26, 2805 (2014).CrossRef K.H. Tsui, Q. Lin, H. Chou, Q. Zhang, H. Fu, P. Qi, and Z. Fan, Low-cost, flexible, and self-cleaning 3D nanocone anti-reflection films for high-efficiency photovoltaics. Adv. Mater. 26, 2805 (2014).CrossRef
54.
go back to reference D. Kc, D.K. Shah, A.M. Alanazi, and M.S. Akhtar, Impact of different antireflection layers on cadmium telluride (CdTe) solar cells: a PC1D simulation study. J. Electron. Mater. 50, 2199 (2021).CrossRef D. Kc, D.K. Shah, A.M. Alanazi, and M.S. Akhtar, Impact of different antireflection layers on cadmium telluride (CdTe) solar cells: a PC1D simulation study. J. Electron. Mater. 50, 2199 (2021).CrossRef
55.
go back to reference B. Hussain, A. Ebong, and I. Ferguson, Zinc oxide as an active n-layer and antireflection coating for silicon based heterojunction solar cell. Sol. Energy Mater. Sol. Cells 139, 95 (2015).CrossRef B. Hussain, A. Ebong, and I. Ferguson, Zinc oxide as an active n-layer and antireflection coating for silicon based heterojunction solar cell. Sol. Energy Mater. Sol. Cells 139, 95 (2015).CrossRef
56.
go back to reference G.S. Thirunavukkarasu, M. Seyedmahmoudian, J. Chandran, A. Stojcevski, M. Subramanian, R. Marnadu, S. Alfaify, and M. Shkir, Optimization of mono-crystalline silicon solar cell devices using PC1D simulation. Energies 14, 4986 (2021).CrossRef G.S. Thirunavukkarasu, M. Seyedmahmoudian, J. Chandran, A. Stojcevski, M. Subramanian, R. Marnadu, S. Alfaify, and M. Shkir, Optimization of mono-crystalline silicon solar cell devices using PC1D simulation. Energies 14, 4986 (2021).CrossRef
57.
go back to reference X. Cai, X. Zhou, Z. Liu, F. Jiang, and Q. Yu, An in-depth analysis of the silicon solar cell key parameters’ optimal magnitudes using PC1D simulations. Optik 164, 105 (2018).CrossRef X. Cai, X. Zhou, Z. Liu, F. Jiang, and Q. Yu, An in-depth analysis of the silicon solar cell key parameters’ optimal magnitudes using PC1D simulations. Optik 164, 105 (2018).CrossRef
58.
go back to reference T. Zhang, L. Wang, J. Zhu, J. Liu, and S. Guo, Electron transport and electrical properties in poly (p-Phenylene Vinylene): methanofullerene bulk-heterojunction solar cells. J. Nanoelectron. Optoelectron. 14, 227 (2019).CrossRef T. Zhang, L. Wang, J. Zhu, J. Liu, and S. Guo, Electron transport and electrical properties in poly (p-Phenylene Vinylene): methanofullerene bulk-heterojunction solar cells. J. Nanoelectron. Optoelectron. 14, 227 (2019).CrossRef
59.
go back to reference D. Kc, D.K. Shah, M.S. Akhtar, M. Park, C.Y. Kim, O.-B. Yang, and B. Pant, Numerical investigation of graphene as a back surface field layer on the performance of cadmium telluride solar cell. Molecules 26, 3275 (2021).CrossRef D. Kc, D.K. Shah, M.S. Akhtar, M. Park, C.Y. Kim, O.-B. Yang, and B. Pant, Numerical investigation of graphene as a back surface field layer on the performance of cadmium telluride solar cell. Molecules 26, 3275 (2021).CrossRef
60.
go back to reference M. Basher, M.K. Hossain, and M. Akand, Effect of surface texturization on minority carrier lifetime and photovoltaic performance of monocrystalline silicon solar cell. Optik 176, 93 (2019).CrossRef M. Basher, M.K. Hossain, and M. Akand, Effect of surface texturization on minority carrier lifetime and photovoltaic performance of monocrystalline silicon solar cell. Optik 176, 93 (2019).CrossRef
61.
go back to reference T.M. Clarke and J.R. Durrant, Charge photogeneration in organic solar cells. Chem. Rev. 110, 6736 (2010).CrossRef T.M. Clarke and J.R. Durrant, Charge photogeneration in organic solar cells. Chem. Rev. 110, 6736 (2010).CrossRef
62.
go back to reference E. Alarousu, A.M. El-Zohry, J. Yin, A.A. Zhumekenov, C. Yang, E. Alhabshi, I. Gereige, A. AlSaggaf, A.V. Malko, and O.M. Bakr, Ultralong radiative states in hybrid perovskite crystals: compositions for submillimeter diffusion lengths. J. Phys. Chem. Lett. 8, 4386 (2017).CrossRef E. Alarousu, A.M. El-Zohry, J. Yin, A.A. Zhumekenov, C. Yang, E. Alhabshi, I. Gereige, A. AlSaggaf, A.V. Malko, and O.M. Bakr, Ultralong radiative states in hybrid perovskite crystals: compositions for submillimeter diffusion lengths. J. Phys. Chem. Lett. 8, 4386 (2017).CrossRef
63.
go back to reference G. Hashmi, M.J. Rashid, Z.H. Mahmood, M. Hoq, and M. Rahman, Investigation of the impact of different ARC layers using PC1D simulation: application to crystalline silicon solar cells. J. Theor. Appl. Phys. 12, 327 (2018).CrossRef G. Hashmi, M.J. Rashid, Z.H. Mahmood, M. Hoq, and M. Rahman, Investigation of the impact of different ARC layers using PC1D simulation: application to crystalline silicon solar cells. J. Theor. Appl. Phys. 12, 327 (2018).CrossRef
64.
go back to reference L.R.-D. Marcos, J.I. Larruquert, J.A. Aznárez, M. Fernandez-Perea, R. Soufli, J.A. Méndez, S.L. Baker, and E.M. Gullikson, Optical constants of SrF2 thin films in the 25–780-eV spectral range. J. Appl. Phys. 113, 143501 (2013).CrossRef L.R.-D. Marcos, J.I. Larruquert, J.A. Aznárez, M. Fernandez-Perea, R. Soufli, J.A. Méndez, S.L. Baker, and E.M. Gullikson, Optical constants of SrF2 thin films in the 25–780-eV spectral range. J. Appl. Phys. 113, 143501 (2013).CrossRef
65.
go back to reference E. Shkondin, T. Repän, O. Takayama, and A. Lavrinenko, High aspect ratio titanium nitride trench structures as plasmonic biosensor. Opt. Mater. Express 7, 4171 (2017).CrossRef E. Shkondin, T. Repän, O. Takayama, and A. Lavrinenko, High aspect ratio titanium nitride trench structures as plasmonic biosensor. Opt. Mater. Express 7, 4171 (2017).CrossRef
66.
go back to reference T. Amotchkina, M. Trubetskov, D. Hahner, and V. Pervak, Characterization of e-beam evaporated Ge, YbF3, ZnS, and LaF3 thin films for laser-oriented coatings. Appl. Opt. 59, A40 (2020).CrossRef T. Amotchkina, M. Trubetskov, D. Hahner, and V. Pervak, Characterization of e-beam evaporated Ge, YbF3, ZnS, and LaF3 thin films for laser-oriented coatings. Appl. Opt. 59, A40 (2020).CrossRef
67.
go back to reference M.-S. Kim, K.-G. Yim, J.-S. Son, and J.-Y. Leem, Effects of Al concentration on structural and optical properties of Al-doped ZnO thin films. Bull. Korean Chem. Soc. 33, 1235 (2012).CrossRef M.-S. Kim, K.-G. Yim, J.-S. Son, and J.-Y. Leem, Effects of Al concentration on structural and optical properties of Al-doped ZnO thin films. Bull. Korean Chem. Soc. 33, 1235 (2012).CrossRef
Metadata
Title
Impact of Amorphous and Crystalline Tungsten Trioxide (WO3) Thin Films as an Antireflection Material for Silicon (c-Si) Solar Cells
Authors
Sameen Maqsood
Khuram Ali
Zohaib Ali
Iqra Iqbal
Publication date
06-11-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09939-3

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue