Skip to main content
Top
Published in: Journal of Electronic Materials 1/2023

18-10-2022 | Original Research Article

Titanium Carbide/Carbon-Supported Platinum Nanoparticles Boost Oxygen Reduction Reaction for Fuel Cells

Authors: Cheng Zheng, Xueqin Sun, Yanxi Qin, Yan Guo, Jingjing Yan, Xili Tong

Published in: Journal of Electronic Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The weak interaction between common carbon support and Pt nanoparticles results in low efficiency for the oxygen reduction reaction (ORR) with high overpotentials, which greatly limits the practical application of proton exchange membrane fuel cells. Employing strong metal–support interaction (SMSI) is a promising method for tuning the electronic structure of Pt to boost the ORR, accompanied by rapid improvement in durability. Herein, titanium carbide (TiC) was grown on the surface of carbon black by the sol–gel method coupled with high-temperature treatment (denoted as TiC-C). Based on the SMSI that occurred between TiC and Pt, the obtained Pt/TiC-C catalyst exhibits higher mass ORR activity, which is twice that of the commercial Pt/C-JM under the same conditions. In addition, the Pt/TiC-C exhibits superior durability relative to the Pt/C-JM by preventing the aggregation and dissolution of Pt nanoparticles during the ORR process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Y. Shao, J.-P. Dodelet, G. Wu, and P. Zelenay, PGM-Free Cathode Catalysts for PEM Fuel Cells: A Mini-Review on Stability Challenges. Adv. Mater. 31, 1807615 (2019).CrossRef Y. Shao, J.-P. Dodelet, G. Wu, and P. Zelenay, PGM-Free Cathode Catalysts for PEM Fuel Cells: A Mini-Review on Stability Challenges. Adv. Mater. 31, 1807615 (2019).CrossRef
2.
go back to reference X.X. Wang, M.T. Swihart, and G. Wu, Achievements Challenges and Perspectives on Cathode Catalysts in Proton Exchange Membrane Fuel Cells for Transportation. Nat. Catal. 2, 7 (2019).CrossRef X.X. Wang, M.T. Swihart, and G. Wu, Achievements Challenges and Perspectives on Cathode Catalysts in Proton Exchange Membrane Fuel Cells for Transportation. Nat. Catal. 2, 7 (2019).CrossRef
3.
go back to reference J. Chang, G. Wang, M. Wang, Q. Wang, B. Li, H. Zhou, Y. Zhu, W. Zhang, M. Omer, N. Orlovskaya, Q. Ma, M. Gu, Z. Feng, G. Wang, and Y. Yang, Improving Pd-N-C Fuel Cell Electrocatalysts Through Fluorination-Driven Rearrangements of Local Coordination Environment. Nat. Energy 6, 1144 (2021).CrossRef J. Chang, G. Wang, M. Wang, Q. Wang, B. Li, H. Zhou, Y. Zhu, W. Zhang, M. Omer, N. Orlovskaya, Q. Ma, M. Gu, Z. Feng, G. Wang, and Y. Yang, Improving Pd-N-C Fuel Cell Electrocatalysts Through Fluorination-Driven Rearrangements of Local Coordination Environment. Nat. Energy 6, 1144 (2021).CrossRef
4.
go back to reference L.-M. Guo, D.-F. Zhang, and L. Guo, Structure Design Reveals the Role of Au for ORR Catalytic Performance Optimization in PtCo-Based Catalysts. Adv. Func. Mater. 30, 2001575 (2020).CrossRef L.-M. Guo, D.-F. Zhang, and L. Guo, Structure Design Reveals the Role of Au for ORR Catalytic Performance Optimization in PtCo-Based Catalysts. Adv. Func. Mater. 30, 2001575 (2020).CrossRef
5.
go back to reference J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, and H. Jónsson, Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 108, 17886 (2004).CrossRef J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, and H. Jónsson, Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 108, 17886 (2004).CrossRef
6.
go back to reference V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross, and N.M. Markovic, Trends in Electrocatalysis on Extended and Nanoscale Pt-Bimetallic Alloy Surfaces. Nat. Mater. 6, 3 (2007).CrossRef V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross, and N.M. Markovic, Trends in Electrocatalysis on Extended and Nanoscale Pt-Bimetallic Alloy Surfaces. Nat. Mater. 6, 3 (2007).CrossRef
7.
go back to reference W. Li, D. Wang, Y. Zhang, L. Tao, T. Wang, Y. Zou, Y. Wang, R. Chen, and S. Wang, Defect Engineering for Fuel-Cell Electrocatalysts. Adv. Mater. 32, 1907879 (2020).CrossRef W. Li, D. Wang, Y. Zhang, L. Tao, T. Wang, Y. Zou, Y. Wang, R. Chen, and S. Wang, Defect Engineering for Fuel-Cell Electrocatalysts. Adv. Mater. 32, 1907879 (2020).CrossRef
8.
go back to reference M. Xie, Z. Lyu, R. Chen, M. Shen, Z. Cao, and Y. Xia, Pt–Co@Pt Octahedral Nanocrystals: Enhancing Their Activity and Durability Toward Oxygen Reduction with an Intermetallic Core and an Ultrathin Shell. J. Am. Chem. Soc. 143, 8509 (2021).CrossRef M. Xie, Z. Lyu, R. Chen, M. Shen, Z. Cao, and Y. Xia, Pt–Co@Pt Octahedral Nanocrystals: Enhancing Their Activity and Durability Toward Oxygen Reduction with an Intermetallic Core and an Ultrathin Shell. J. Am. Chem. Soc. 143, 8509 (2021).CrossRef
9.
go back to reference B. Cai, R. Hübner, K. Sasaki, Y. Zhang, D. Su, C. Ziegler, M.B. Vukmirovic, B. Rellinghaus, R.R. Adzic, and A. Eychmüller, Core-Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 57, 2963 (2018).CrossRef B. Cai, R. Hübner, K. Sasaki, Y. Zhang, D. Su, C. Ziegler, M.B. Vukmirovic, B. Rellinghaus, R.R. Adzic, and A. Eychmüller, Core-Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 57, 2963 (2018).CrossRef
10.
go back to reference L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li, J. Yao, T. Wu, G. Lu, J. Ma, D. Su, and X. Huang, Mass-Selected Nanoparticles of PtxY as Model Catalysts for Oxygen Electroreduction. Science 354, 1410 (2016).CrossRef L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li, J. Yao, T. Wu, G. Lu, J. Ma, D. Su, and X. Huang, Mass-Selected Nanoparticles of PtxY as Model Catalysts for Oxygen Electroreduction. Science 354, 1410 (2016).CrossRef
11.
go back to reference M. Escudero-Escribano, A. Verdaguer-Casadevall, P. Malacrida, U. Grønbjerg, B.P. Knudsen, A.K. Jepsen, J. Rossmeisl, I.E.L. Stephens, and I. Chorkendorff, Pt5Gd as a Highly Active and Stable Catalyst for Oxygen Electroreduction. J. Am. Chem. Soc. 134, 16476 (2012).CrossRef M. Escudero-Escribano, A. Verdaguer-Casadevall, P. Malacrida, U. Grønbjerg, B.P. Knudsen, A.K. Jepsen, J. Rossmeisl, I.E.L. Stephens, and I. Chorkendorff, Pt5Gd as a Highly Active and Stable Catalyst for Oxygen Electroreduction. J. Am. Chem. Soc. 134, 16476 (2012).CrossRef
12.
go back to reference P. Hernandez-Fernandez, F. Masini, D.N. McCarthy, C.E. Strebel, D. Friebel, D. Deiana, P. Malacrida, A. Nierhoff, A. Bodin, A.M. Wise, J.H. Nielsen, T.W. Hansen, A. Nilsson, I.E.L. Stephens, and I. Chorkendorff, Mass-Selected Nanoparticles of PtxY as Model Catalysts for Oxygen Electroreduction. Nat. Chem. 6, 732 (2014).CrossRef P. Hernandez-Fernandez, F. Masini, D.N. McCarthy, C.E. Strebel, D. Friebel, D. Deiana, P. Malacrida, A. Nierhoff, A. Bodin, A.M. Wise, J.H. Nielsen, T.W. Hansen, A. Nilsson, I.E.L. Stephens, and I. Chorkendorff, Mass-Selected Nanoparticles of PtxY as Model Catalysts for Oxygen Electroreduction. Nat. Chem. 6, 732 (2014).CrossRef
13.
go back to reference A. Velázquez-Palenzuela, F. Masini, A.F. Pedersen, M. Escudero-Escribano, D. Deiana, P. Malacrida, T.W. Hansen, D. Friebel, A. Nilsson, I.E.L. Stephens, and I. Chorkendorff, The Enhanced Activity of Mass-Selected PtxGd Nanoparticles for Oxygen Electroreduction. J. Catal. 328, 297 (2015).CrossRef A. Velázquez-Palenzuela, F. Masini, A.F. Pedersen, M. Escudero-Escribano, D. Deiana, P. Malacrida, T.W. Hansen, D. Friebel, A. Nilsson, I.E.L. Stephens, and I. Chorkendorff, The Enhanced Activity of Mass-Selected PtxGd Nanoparticles for Oxygen Electroreduction. J. Catal. 328, 297 (2015).CrossRef
14.
go back to reference M. Li, Z. Zhao, T. Cheng, A. Fortunelli, C. Chen, R. Yu, Q. Zhang, L. Gu, B.V. Merinov, Z. Lin, E. Zhu, T. Yu, Q. Jia, J. Guo, L. Zhang, W.A. Goddard, Y. Huang, and X. Duan, Ultrafine Jagged Platinum Nanowires Enable Ultrahigh Mass Activity for the Oxygen Reduction Reaction. Science 354, 1414 (2016).CrossRef M. Li, Z. Zhao, T. Cheng, A. Fortunelli, C. Chen, R. Yu, Q. Zhang, L. Gu, B.V. Merinov, Z. Lin, E. Zhu, T. Yu, Q. Jia, J. Guo, L. Zhang, W.A. Goddard, Y. Huang, and X. Duan, Ultrafine Jagged Platinum Nanowires Enable Ultrahigh Mass Activity for the Oxygen Reduction Reaction. Science 354, 1414 (2016).CrossRef
15.
go back to reference B. Lim, M. Jiang, P.H.C. Camargo, E.C. Cho, J. Tao, X. Lu, Y. Zhu, and Y. Xia, Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science 324, 1302 (2009).CrossRef B. Lim, M. Jiang, P.H.C. Camargo, E.C. Cho, J. Tao, X. Lu, Y. Zhu, and Y. Xia, Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science 324, 1302 (2009).CrossRef
16.
go back to reference H. Tang, Y. Su, B. Chi, J. Zhao, D. Dang, X. Tian, S. Liao, and G.-R. Li, Nodal PtNi Nanowires with Pt Skin and Controllable Near-Surface Composition for Enhanced Oxygen Reduction Electrocatalysis in Fuel Cells. Chem. Eng. J. 418, 129322 (2021).CrossRef H. Tang, Y. Su, B. Chi, J. Zhao, D. Dang, X. Tian, S. Liao, and G.-R. Li, Nodal PtNi Nanowires with Pt Skin and Controllable Near-Surface Composition for Enhanced Oxygen Reduction Electrocatalysis in Fuel Cells. Chem. Eng. J. 418, 129322 (2021).CrossRef
17.
go back to reference J. Zhu, M. Xie, Z. Chen, Z. Lyu, M. Chi, W. Jin, and Y. Xia, Pt-Ir-Pd Trimetallic Nanocages as a Dual Catalyst for Efficient Oxygen Reduction and Evolution Reactions in Acidic Media. Adv. Energy Mater. 10, 1904114 (2020).CrossRef J. Zhu, M. Xie, Z. Chen, Z. Lyu, M. Chi, W. Jin, and Y. Xia, Pt-Ir-Pd Trimetallic Nanocages as a Dual Catalyst for Efficient Oxygen Reduction and Evolution Reactions in Acidic Media. Adv. Energy Mater. 10, 1904114 (2020).CrossRef
18.
go back to reference J. Zhu, A.O. Elnabawy, Z. Lyu, M. Xie, E.A. Murray, Z. Chen, W. Jin, M. Mavrikakis, and Y. Xia, Facet-Controlled Pt–Ir Nanocrystals with Substantially Enhanced Activity and Durability towards Oxygen Reduction. Mater. Today 35, 69 (2020).CrossRef J. Zhu, A.O. Elnabawy, Z. Lyu, M. Xie, E.A. Murray, Z. Chen, W. Jin, M. Mavrikakis, and Y. Xia, Facet-Controlled Pt–Ir Nanocrystals with Substantially Enhanced Activity and Durability towards Oxygen Reduction. Mater. Today 35, 69 (2020).CrossRef
19.
go back to reference W. Liu, S. Di, F. Wang, and H. Zhu, Ionic Liquid Modified Fct-PtCo/C@ILs as High Activity and Durability Electrocatalyst for Oxygen Reduction Reaction. Int. J. Hydrogen Energy 47, 6312 (2022).CrossRef W. Liu, S. Di, F. Wang, and H. Zhu, Ionic Liquid Modified Fct-PtCo/C@ILs as High Activity and Durability Electrocatalyst for Oxygen Reduction Reaction. Int. J. Hydrogen Energy 47, 6312 (2022).CrossRef
20.
go back to reference Z. Qiao, C. Wang, Y. Zeng, J.S. Spendelow, and G. Wu, Advanced Nanocarbons for Enhanced Performance and Durability of Platinum Catalysts in Proton Exchange Membrane Fuel Cells. Small 17, 2006805 (2021).CrossRef Z. Qiao, C. Wang, Y. Zeng, J.S. Spendelow, and G. Wu, Advanced Nanocarbons for Enhanced Performance and Durability of Platinum Catalysts in Proton Exchange Membrane Fuel Cells. Small 17, 2006805 (2021).CrossRef
21.
go back to reference K. Huang, P. Xu, X. He, R. Wang, Y. Wang, H. Yang, R. Zhang, M. Lei, and H. Tang, Annealing-Free Platinum−Cobalt Alloy Nanoparticles on Nitrogen-Doped Mesoporous Carbon with Boosted Oxygen Electroreduction Performance. Chem. Electro. Chem. 7, 3341 (2020). K. Huang, P. Xu, X. He, R. Wang, Y. Wang, H. Yang, R. Zhang, M. Lei, and H. Tang, Annealing-Free Platinum−Cobalt Alloy Nanoparticles on Nitrogen-Doped Mesoporous Carbon with Boosted Oxygen Electroreduction Performance. Chem. Electro. Chem. 7, 3341 (2020).
22.
go back to reference S.J. Tauster, S.C. Fung, and R.L. Garten, Strong Metal-Support Interactions Group. 8 Noble Metals Supported on Titanium Dioxide. J. Am. Chem. Soc. 100, 170 (1978).CrossRef S.J. Tauster, S.C. Fung, and R.L. Garten, Strong Metal-Support Interactions Group. 8 Noble Metals Supported on Titanium Dioxide. J. Am. Chem. Soc. 100, 170 (1978).CrossRef
23.
go back to reference J.A. Horsley, A Molecular Orbital Study of Strong Metal-Support Interaction between Platinum and Titanium Dioxide. J. Am. Chem. Soc. 101, 2870 (1979).CrossRef J.A. Horsley, A Molecular Orbital Study of Strong Metal-Support Interaction between Platinum and Titanium Dioxide. J. Am. Chem. Soc. 101, 2870 (1979).CrossRef
24.
go back to reference S.J. Tauster, S.C. Fung, R.T.K. Baker, and J.A. Horsley, Strong Interactions in Supported-Metal Catalysts. Science 211, 1121 (1981).CrossRef S.J. Tauster, S.C. Fung, R.T.K. Baker, and J.A. Horsley, Strong Interactions in Supported-Metal Catalysts. Science 211, 1121 (1981).CrossRef
25.
go back to reference H. Wang, L. Wang, D. Lin, X. Feng, Y. Niu, B. Zhang, and F.-S. Xiao, Strong Metal-Support Interactions on Gold Nanoparticle Catalysts Achieved through Le Chatelier’s Principle. Nat. Catal. 4, 5 (2021).CrossRef H. Wang, L. Wang, D. Lin, X. Feng, Y. Niu, B. Zhang, and F.-S. Xiao, Strong Metal-Support Interactions on Gold Nanoparticle Catalysts Achieved through Le Chatelier’s Principle. Nat. Catal. 4, 5 (2021).CrossRef
26.
go back to reference R. Li, Z. Liu, Q.T. Trinh, Z. Miao, S. Chen, K. Qian, R.J. Wong, S. Xi, Y. Yan, A. Borgna, S. Liang, T. Wei, Y. Dai, P. Wang, Y. Tang, X. Yan, T.S. Choksi, and W. Liu, Strong Metal-Support Interaction for 2D Materials: Application in Noble Metal/TiB2 Heterointerfaces and Their Enhanced Catalytic Performance for Formic Acid Dehydrogenation. Adv. Mater. 33, 2101536 (2021).CrossRef R. Li, Z. Liu, Q.T. Trinh, Z. Miao, S. Chen, K. Qian, R.J. Wong, S. Xi, Y. Yan, A. Borgna, S. Liang, T. Wei, Y. Dai, P. Wang, Y. Tang, X. Yan, T.S. Choksi, and W. Liu, Strong Metal-Support Interaction for 2D Materials: Application in Noble Metal/TiB2 Heterointerfaces and Their Enhanced Catalytic Performance for Formic Acid Dehydrogenation. Adv. Mater. 33, 2101536 (2021).CrossRef
27.
go back to reference A. Bruix, J.A. Rodriguez, P.J. Ramírez, S.D. Senanayake, J. Evans, J.B. Park, D. Stacchiola, P. Liu, J. Hrbek, and F. Illas, A New Type of Strong Metal-Support Interaction and the Production of H2 through the Transformation of Water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) Catalysts. J. Am. Chem. Soc. 134, 8968 (2012).CrossRef A. Bruix, J.A. Rodriguez, P.J. Ramírez, S.D. Senanayake, J. Evans, J.B. Park, D. Stacchiola, P. Liu, J. Hrbek, and F. Illas, A New Type of Strong Metal-Support Interaction and the Production of H2 through the Transformation of Water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) Catalysts. J. Am. Chem. Soc. 134, 8968 (2012).CrossRef
28.
go back to reference Q. Jia, S. Ghoshal, J. Li, W. Liang, G. Meng, H. Che, S. Zhang, Z.-F. Ma, and S. Mukerjee, Metal and Metal Oxide Interactions and Their Catalytic Consequences for Oxygen Reduction Reaction. J. Am. Chem. Soc. 139, 7893 (2017).CrossRef Q. Jia, S. Ghoshal, J. Li, W. Liang, G. Meng, H. Che, S. Zhang, Z.-F. Ma, and S. Mukerjee, Metal and Metal Oxide Interactions and Their Catalytic Consequences for Oxygen Reduction Reaction. J. Am. Chem. Soc. 139, 7893 (2017).CrossRef
29.
go back to reference M. Zhu, P. Tian, R. Kurtz, T. Lunkenbein, J. Xu, R. Schlögl, I.E. Wachs, and Y.-F. Han, Strong Metal-Support Interactions between Copper and Iron Oxide during the High-Temperature Water-Gas Shift Reaction. Angew. Chem. 131, 9181 (2019).CrossRef M. Zhu, P. Tian, R. Kurtz, T. Lunkenbein, J. Xu, R. Schlögl, I.E. Wachs, and Y.-F. Han, Strong Metal-Support Interactions between Copper and Iron Oxide during the High-Temperature Water-Gas Shift Reaction. Angew. Chem. 131, 9181 (2019).CrossRef
30.
go back to reference W. Shi, A.-H. Park, Z. Li, S. Xu, J.M. Kim, P.J. Yoo, and Y.-U. Kwon, Sub-Nanometer Thin TiO2-Coating on Carbon Support for Boosting Oxygen Reduction Activity and Durability of Pt Nanoparticles. Electrochim. Acta 394, 139127 (2021).CrossRef W. Shi, A.-H. Park, Z. Li, S. Xu, J.M. Kim, P.J. Yoo, and Y.-U. Kwon, Sub-Nanometer Thin TiO2-Coating on Carbon Support for Boosting Oxygen Reduction Activity and Durability of Pt Nanoparticles. Electrochim. Acta 394, 139127 (2021).CrossRef
31.
go back to reference X. Liu, M.-H. Liu, Y.-C. Luo, C.-Y. Mou, S.D. Lin, H. Cheng, J.-M. Chen, J.-F. Lee, and T.-S. Lin, Strong Metal-Support Interactions between Gold Nanoparticles and ZnO Nanorods in CO Oxidation. J. Am. Chem. Soc. 134, 10251 (2012).CrossRef X. Liu, M.-H. Liu, Y.-C. Luo, C.-Y. Mou, S.D. Lin, H. Cheng, J.-M. Chen, J.-F. Lee, and T.-S. Lin, Strong Metal-Support Interactions between Gold Nanoparticles and ZnO Nanorods in CO Oxidation. J. Am. Chem. Soc. 134, 10251 (2012).CrossRef
32.
go back to reference J. Dong, Q. Fu, Z. Jiang, B. Mei, and X. Bao, Carbide-Supported Au Catalysts for Water-Gas Shift Reactions: A New Territory for the Strong Metal-Support Interaction Effect. J. Am. Chem. Soc. 140, 13808 (2018).CrossRef J. Dong, Q. Fu, Z. Jiang, B. Mei, and X. Bao, Carbide-Supported Au Catalysts for Water-Gas Shift Reactions: A New Territory for the Strong Metal-Support Interaction Effect. J. Am. Chem. Soc. 140, 13808 (2018).CrossRef
33.
go back to reference Z. Chen, X. Zeng, X. Li, Z. Lv, J. Li, and Y. Zhang, Strong Metal Phosphide-Phosphate Support Interaction for Enhanced Non-Noble Metal Catalysis. Adv. Mater. 34, 2106724 (2022).CrossRef Z. Chen, X. Zeng, X. Li, Z. Lv, J. Li, and Y. Zhang, Strong Metal Phosphide-Phosphate Support Interaction for Enhanced Non-Noble Metal Catalysis. Adv. Mater. 34, 2106724 (2022).CrossRef
34.
go back to reference N. Shakibi Nia, A. Martucci, G. Granozzi, G. García, E. Pastor, S. Penner, J. Bernardi, N. Alonso-Vante, and J. Kunze-Liebhäuser, DEMS Studies of the Ethanol Electro-Oxidation on TiOC Supported Pt Catalysts-Support Effects for Higher CO2 Efficiency. Electrochim. Acta 304, 80 (2019).CrossRef N. Shakibi Nia, A. Martucci, G. Granozzi, G. García, E. Pastor, S. Penner, J. Bernardi, N. Alonso-Vante, and J. Kunze-Liebhäuser, DEMS Studies of the Ethanol Electro-Oxidation on TiOC Supported Pt Catalysts-Support Effects for Higher CO2 Efficiency. Electrochim. Acta 304, 80 (2019).CrossRef
35.
go back to reference Z.-W. Wei, H.-J. Wang, C. Zhang, K. Xu, X.-L. Lu, and T.-B. Lu, Reversed Charge Transfer and Enhanced Hydrogen Spillover in Platinum Nanoclusters Anchored on Titanium Oxide with Rich Oxygen Vacancies Boost Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 60, 16622 (2021).CrossRef Z.-W. Wei, H.-J. Wang, C. Zhang, K. Xu, X.-L. Lu, and T.-B. Lu, Reversed Charge Transfer and Enhanced Hydrogen Spillover in Platinum Nanoclusters Anchored on Titanium Oxide with Rich Oxygen Vacancies Boost Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 60, 16622 (2021).CrossRef
36.
go back to reference A. Touni, X. Liu, X. Kang, P.A. Carvalho, S. Diplas, K.G. Both, S. Sotiropoulos, and A. Chatzitakis, Galvanic Deposition of Pt Nanoparticles on Black TiO2 Nanotubes for Hydrogen Evolving Cathodes. Chemsuschem 14, 4993 (2021).CrossRef A. Touni, X. Liu, X. Kang, P.A. Carvalho, S. Diplas, K.G. Both, S. Sotiropoulos, and A. Chatzitakis, Galvanic Deposition of Pt Nanoparticles on Black TiO2 Nanotubes for Hydrogen Evolving Cathodes. Chemsuschem 14, 4993 (2021).CrossRef
37.
go back to reference Y. Ji, Y. il Cho, Y. Jeon, C. Lee, D.-H. Park, and Y.-G. Shul, Design of Active Pt on TiO2 Based Nanofibrous Cathode for Superior PEMFC Performance and Durability at High Temperature. Appl. Catal. B: Environ. 204, 421 (2017).CrossRef Y. Ji, Y. il Cho, Y. Jeon, C. Lee, D.-H. Park, and Y.-G. Shul, Design of Active Pt on TiO2 Based Nanofibrous Cathode for Superior PEMFC Performance and Durability at High Temperature. Appl. Catal. B: Environ. 204, 421 (2017).CrossRef
38.
go back to reference J. Dong et al., Reaction-Induced Strong Metal-Support Interactions between Metals and Inert Boron Nitride Nanosheets. J. Am. Chem. Soc. 142, 17167 (2020).CrossRef J. Dong et al., Reaction-Induced Strong Metal-Support Interactions between Metals and Inert Boron Nitride Nanosheets. J. Am. Chem. Soc. 142, 17167 (2020).CrossRef
39.
go back to reference B. Avasarala, T. Murray, W. Li, and P. Haldar, Titanium Nitride Nanoparticles Based Electrocatalysts for Proton Exchange Membrane Fuel Cells. J. Mater. Chem. 19, 1803 (2009).CrossRef B. Avasarala, T. Murray, W. Li, and P. Haldar, Titanium Nitride Nanoparticles Based Electrocatalysts for Proton Exchange Membrane Fuel Cells. J. Mater. Chem. 19, 1803 (2009).CrossRef
40.
go back to reference G. Bai, C. Liu, Z. Gao, B. Lu, X. Tong, X. Guo, and N. Yang, Atomic Carbon Layers Supported Pt Nanoparticles for Minimized CO Poisoning and Maximized Methanol Oxidation. Small 15, 1902951 (2019).CrossRef G. Bai, C. Liu, Z. Gao, B. Lu, X. Tong, X. Guo, and N. Yang, Atomic Carbon Layers Supported Pt Nanoparticles for Minimized CO Poisoning and Maximized Methanol Oxidation. Small 15, 1902951 (2019).CrossRef
41.
go back to reference Y.-F. Xia, P. Guo, J.-Z. Li, L. Zhao, X.-L. Sui, Y. Wang, and Z.-B. Wang, How to Appropriately Assess the Oxygen Reduction Reaction Activity of Platinum Group Metal Catalysts with Rotating Disk Electrode. IScience 24, 103024 (2021).CrossRef Y.-F. Xia, P. Guo, J.-Z. Li, L. Zhao, X.-L. Sui, Y. Wang, and Z.-B. Wang, How to Appropriately Assess the Oxygen Reduction Reaction Activity of Platinum Group Metal Catalysts with Rotating Disk Electrode. IScience 24, 103024 (2021).CrossRef
42.
go back to reference C. Liu, G. Bai, Z. Jiao, B. Lv, Y. Wang, X. Tong, and N. Yang, Particle Size-Control Enables Extraordinary Activity of Ruthenium Nanoparticles/Multiwalled Carbon Nanotube Catalysts towards the Oxygen Reduction Reaction. Nanoscale 11, 13968 (2019).CrossRef C. Liu, G. Bai, Z. Jiao, B. Lv, Y. Wang, X. Tong, and N. Yang, Particle Size-Control Enables Extraordinary Activity of Ruthenium Nanoparticles/Multiwalled Carbon Nanotube Catalysts towards the Oxygen Reduction Reaction. Nanoscale 11, 13968 (2019).CrossRef
43.
go back to reference G. Rahmaningsih, J. Gunlazuardi, and M. Khalil, Facile Synthesis and Growth Mechanism of Mesoporous Anatase Titanium Dioxide Nanoparticles via Sol-Gel Method. IOP Conf. Ser. Mater. Sci. Eng. 763, 012046 (2020).CrossRef G. Rahmaningsih, J. Gunlazuardi, and M. Khalil, Facile Synthesis and Growth Mechanism of Mesoporous Anatase Titanium Dioxide Nanoparticles via Sol-Gel Method. IOP Conf. Ser. Mater. Sci. Eng. 763, 012046 (2020).CrossRef
44.
go back to reference Y. Qin, X. Yang, R. Li, S. Chen, Y. Wang, Z. Yu, Y. Wang, X. Liu, and X. Tong, Carbon Nanoparticle Coated by Silicon Dioxide Supported Platinum Nanoparticles towards Oxygen Reduction Reaction. Mater. Res. Bull. 139, 111268 (2021).CrossRef Y. Qin, X. Yang, R. Li, S. Chen, Y. Wang, Z. Yu, Y. Wang, X. Liu, and X. Tong, Carbon Nanoparticle Coated by Silicon Dioxide Supported Platinum Nanoparticles towards Oxygen Reduction Reaction. Mater. Res. Bull. 139, 111268 (2021).CrossRef
45.
go back to reference H. Liu, F. Wang, Y. Zhao, and H. Fong, Mechanically Resilient Electrospun TiC Nanofibrous Mats Surface-Decorated with Pt Nanoparticles for Oxygen Reduction Reaction with Enhanced Electrocatalytic Activities. Nanoscale 5, 3643 (2013).CrossRef H. Liu, F. Wang, Y. Zhao, and H. Fong, Mechanically Resilient Electrospun TiC Nanofibrous Mats Surface-Decorated with Pt Nanoparticles for Oxygen Reduction Reaction with Enhanced Electrocatalytic Activities. Nanoscale 5, 3643 (2013).CrossRef
46.
go back to reference A.C. Ferrari, Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun. 143, 47 (2007).CrossRef A.C. Ferrari, Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun. 143, 47 (2007).CrossRef
47.
go back to reference M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, and R. Saito, Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. Phys. Chem. Chem. Phys. 9, 1276 (2007).CrossRef M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, and R. Saito, Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. Phys. Chem. Chem. Phys. 9, 1276 (2007).CrossRef
48.
go back to reference X. Yang, Q. Wang, S. Qing, Z. Gao, X. Tong, and N. Yang, Modulating Electronic Structure of an Au-Nanorod-Core-PdPt-Alloy-Shell Catalyst for Efficient Alcohol Electro-Oxidation. Adv. Energy Mater. 11, 2100812 (2021).CrossRef X. Yang, Q. Wang, S. Qing, Z. Gao, X. Tong, and N. Yang, Modulating Electronic Structure of an Au-Nanorod-Core-PdPt-Alloy-Shell Catalyst for Efficient Alcohol Electro-Oxidation. Adv. Energy Mater. 11, 2100812 (2021).CrossRef
49.
go back to reference M. Roca-Ayats, G. García, J.L. Galante, M.A. Peña, and M.V. Martínez-Huerta, TiC, TiCN, and TiN Supported Pt Electrocatalysts for CO and Methanol Oxidation in Acidic and Alkaline Media. J. Phys. Chem. C 117, 20769 (2013).CrossRef M. Roca-Ayats, G. García, J.L. Galante, M.A. Peña, and M.V. Martínez-Huerta, TiC, TiCN, and TiN Supported Pt Electrocatalysts for CO and Methanol Oxidation in Acidic and Alkaline Media. J. Phys. Chem. C 117, 20769 (2013).CrossRef
50.
go back to reference M. Song, D. Chen, Y. Yang, M. Xiang, Q. Zhu, H. Zhao, L. Ward, and X.-B. Chen, Crystal Facet Engineering of Single-Crystalline TiC Nanocubes for Improved Hydrogen Evolution Reaction. Adv. Funct. Mater. 31, 2008028 (2021).CrossRef M. Song, D. Chen, Y. Yang, M. Xiang, Q. Zhu, H. Zhao, L. Ward, and X.-B. Chen, Crystal Facet Engineering of Single-Crystalline TiC Nanocubes for Improved Hydrogen Evolution Reaction. Adv. Funct. Mater. 31, 2008028 (2021).CrossRef
51.
go back to reference N. Heide, B. Siemensmeyer, and J.W. Schultze, Surface Characterization and Electrochemical Behaviour of Nitrogen- and Carbon-Implanted Titanium. Surf. Interface Anal. 19, 423 (1992).CrossRef N. Heide, B. Siemensmeyer, and J.W. Schultze, Surface Characterization and Electrochemical Behaviour of Nitrogen- and Carbon-Implanted Titanium. Surf. Interface Anal. 19, 423 (1992).CrossRef
Metadata
Title
Titanium Carbide/Carbon-Supported Platinum Nanoparticles Boost Oxygen Reduction Reaction for Fuel Cells
Authors
Cheng Zheng
Xueqin Sun
Yanxi Qin
Yan Guo
Jingjing Yan
Xili Tong
Publication date
18-10-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09993-x

Other articles of this Issue 1/2023

Journal of Electronic Materials 1/2023 Go to the issue