Skip to main content
Erschienen in: Journal of Coatings Technology and Research 2/2020

28.10.2019

Synthesis of conducting PANi/SiO2 nanocomposites and their effect on electrical and mechanical properties of antistatic waterborne epoxy coating

verfasst von: Anh Son Nguyen, Thuy Duong Nguyen, Thu Thuy Thai, Anh Truc Trinh, Gia Vu Pham, Hoang Thai, Dai Lam Tran, Thi Xuan Hang To, Duy Trinh Nguyen

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polyaniline (PANi) has been intensively incorporated in epoxy coatings as a conducting material. However, epoxy coatings containing PANi have poor mechanical properties. In this study, polyaniline/silica (PANi/SiO2) nanocomposites with different contents of silica were prepared via in situ chemical oxidative polymerization method. Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and zeta potential measurements were used to examine the structure and the morphology of synthesized PANi/SiO2 nanocomposites. The thermal and electrical properties of the nanocomposite were studied by thermogravimetric analysis (TGA) and standard four-probe electrode method. It was shown that silica (SiO2) nanoparticles were covered by PANi in PANi/SiO2 nanocomposites and the electrical conductivity of nanocomposites decreased with the increase in SiO2 content. The PANi/SiO2 nanocomposite with 4.1 wt% SiO2 had a conductivity of 7.6 × 10−2 S/cm and that of PANi was 8.7 × 10−2 S/cm. Consequently, epoxy coatings containing 30 wt% PANi/SiO2 nanocomposites displayed a higher surface and volume resistance than the one containing pure PANi. In contrast, the increase in SiO2 content in PANi/SiO2 nanocomposite enhanced the mechanical properties of the epoxy coating, compared to epoxy coating containing pure PANi. The coating containing PANi/SiO2 nanocomposite with 17.2 wt% silica presented good mechanical properties (20 L/mil abrasion resistance, 100 kg cm impact strength) and admissible surface and volume resistivity (1.3 × 1011 Ω/cm2 and 6.6 × 1010 Ω cm, respectively) for antistatic coatings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Shi, X, Nguyen, TA, Suo, Z, Liu, Y, Avci, R, “Effect of Nanoparticles on the Anticorrosion and Mechanical Properties of Epoxy Coating.” Surf. Coat. Tech., 204 (3) 237–245 (2009)CrossRef Shi, X, Nguyen, TA, Suo, Z, Liu, Y, Avci, R, “Effect of Nanoparticles on the Anticorrosion and Mechanical Properties of Epoxy Coating.” Surf. Coat. Tech., 204 (3) 237–245 (2009)CrossRef
2.
Zurück zum Zitat Pourhashem, S, Vaezi, MR, Rashidi, A, Bagherzadeh, MR, “Exploring Corrosion Protection Properties of Solvent Based Epoxy-Graphene Oxide Nanocomposite Coatings on Mild Steel.” Corros. Sci., 115 78–92 (2017)CrossRef Pourhashem, S, Vaezi, MR, Rashidi, A, Bagherzadeh, MR, “Exploring Corrosion Protection Properties of Solvent Based Epoxy-Graphene Oxide Nanocomposite Coatings on Mild Steel.” Corros. Sci., 115 78–92 (2017)CrossRef
3.
Zurück zum Zitat Nguyen, TD, Tran, BA, Vu, KO, Nguyen, AS, Trinh, AT, Pham, GV, To, TTX, Phan, MV, Phan, TT, “Corrosion Protection of Carbon Steel Using Hydrotalcite/Graphene Oxide Hybrid.” J. Coat. Technol. Res., 16 (2) 585–595 (2019)CrossRef Nguyen, TD, Tran, BA, Vu, KO, Nguyen, AS, Trinh, AT, Pham, GV, To, TTX, Phan, MV, Phan, TT, “Corrosion Protection of Carbon Steel Using Hydrotalcite/Graphene Oxide Hybrid.” J. Coat. Technol. Res., 16 (2) 585–595 (2019)CrossRef
4.
Zurück zum Zitat Rahateka, SS, Zammarano, M, Matko, S, Koziol, KK, Windle, AH, Nyden, M, Kashiwagi, T, Gilman, JW, “Effect of Carbon Nanotubes and Montmorillonite on the Flammability of Epoxy Nanocomposite.” Polym. Degrad. Stab., 95 (5) 870–879 (2010)CrossRef Rahateka, SS, Zammarano, M, Matko, S, Koziol, KK, Windle, AH, Nyden, M, Kashiwagi, T, Gilman, JW, “Effect of Carbon Nanotubes and Montmorillonite on the Flammability of Epoxy Nanocomposite.” Polym. Degrad. Stab., 95 (5) 870–879 (2010)CrossRef
5.
Zurück zum Zitat Dorigato, A, Pegoretti, A, “Development and Thermo-Mechanical Behavior of Nanocomposite Epoxy Adhesives.” Polym. Adv. Technol., 23 (3) 660–668 (2012)CrossRef Dorigato, A, Pegoretti, A, “Development and Thermo-Mechanical Behavior of Nanocomposite Epoxy Adhesives.” Polym. Adv. Technol., 23 (3) 660–668 (2012)CrossRef
6.
Zurück zum Zitat Wernik, JM, Meguid, SA, “On the Mechanical Characterization of Carbon Nanotube Reinforced Epoxy Adhesives.” Mater. Des., 59 19–32 (2014)CrossRef Wernik, JM, Meguid, SA, “On the Mechanical Characterization of Carbon Nanotube Reinforced Epoxy Adhesives.” Mater. Des., 59 19–32 (2014)CrossRef
7.
Zurück zum Zitat Iyer, G, Gorur, RS, Richert, R, Krivda, A, Schmidt, LE, “Dielectrical Properties of Epoxy Based Nanocomposites for High Voltage Insulation.” IEEE Trans. Dielect. Electr. Insul., 18 (3) 659–666 (2011)CrossRef Iyer, G, Gorur, RS, Richert, R, Krivda, A, Schmidt, LE, “Dielectrical Properties of Epoxy Based Nanocomposites for High Voltage Insulation.” IEEE Trans. Dielect. Electr. Insul., 18 (3) 659–666 (2011)CrossRef
8.
Zurück zum Zitat Bell, M, Krentz, T, Nelson, JK, Schadler, L, Wu, K, Breneman, C, Zhao, S, Hillborg, H, Benicewicz, B, “Investigation of Dielectric Breakdown in Silica-Epoxy Nanocomposites Using Designed Interfaces.” J. Colloid Interface Sci., 495 130–139 (2017)CrossRef Bell, M, Krentz, T, Nelson, JK, Schadler, L, Wu, K, Breneman, C, Zhao, S, Hillborg, H, Benicewicz, B, “Investigation of Dielectric Breakdown in Silica-Epoxy Nanocomposites Using Designed Interfaces.” J. Colloid Interface Sci., 495 130–139 (2017)CrossRef
9.
Zurück zum Zitat Oyharcabal, M, Olinga, T, Foulc, MP, Vigneras, V, “Polyaniline/Clay as Nanostructured Conductive Filler for Electrically Conductive Epoxy Composites. Influence of Filler Morphology, Chemical Nature of Reagents, and Curing Conditions on Composite Conductivity.” Synth. Met., 162 555–562 (2012)CrossRef Oyharcabal, M, Olinga, T, Foulc, MP, Vigneras, V, “Polyaniline/Clay as Nanostructured Conductive Filler for Electrically Conductive Epoxy Composites. Influence of Filler Morphology, Chemical Nature of Reagents, and Curing Conditions on Composite Conductivity.” Synth. Met., 162 555–562 (2012)CrossRef
10.
Zurück zum Zitat Zabet, M, Moradian, S, Ranjbar, Z, Zanganeh, N, “Effect of Carbon Nanotubes on Electrical and Mechanical Properties of Multiwalled Carbon Nanotubes/Epoxy Coatings.” J. Coat. Technol. Res., 13 (1) 191–200 (2016)CrossRef Zabet, M, Moradian, S, Ranjbar, Z, Zanganeh, N, “Effect of Carbon Nanotubes on Electrical and Mechanical Properties of Multiwalled Carbon Nanotubes/Epoxy Coatings.” J. Coat. Technol. Res., 13 (1) 191–200 (2016)CrossRef
11.
Zurück zum Zitat Micheli, D, Vricella, A, Pastore, R, Delfini, A, Giusti, A, Albano, M, Marchetti, M, Moglie, F, Primiani, VM, “Ballistic and Electromagnetic Shielding Behaviour of Multifunctional Kevlar Fiber Reinforced Epoxy Composites Modified by Carbon Nanotubes.” Carbon, 104 141–156 (2016)CrossRef Micheli, D, Vricella, A, Pastore, R, Delfini, A, Giusti, A, Albano, M, Marchetti, M, Moglie, F, Primiani, VM, “Ballistic and Electromagnetic Shielding Behaviour of Multifunctional Kevlar Fiber Reinforced Epoxy Composites Modified by Carbon Nanotubes.” Carbon, 104 141–156 (2016)CrossRef
12.
Zurück zum Zitat Zhu, A, Wang, H, Sun, S, Zhang, C, “The Synthesis and Antistatic, Anticorrosive Properties of Polyaniline Composite Coating.” Prog. Org. Coat., 122 270–279 (2018)CrossRef Zhu, A, Wang, H, Sun, S, Zhang, C, “The Synthesis and Antistatic, Anticorrosive Properties of Polyaniline Composite Coating.” Prog. Org. Coat., 122 270–279 (2018)CrossRef
13.
Zurück zum Zitat Aal, NA, El-Tantawy, F, Al-Hajry, A, Bououdina, M, “New Antistatic Charge and Electromagnetic Shielding Effectiveness from Conductive Epoxy Resin/Plasticized Carbon Black Composites.” Polym. Compos., 29 (2) 125–132 (2008)CrossRef Aal, NA, El-Tantawy, F, Al-Hajry, A, Bououdina, M, “New Antistatic Charge and Electromagnetic Shielding Effectiveness from Conductive Epoxy Resin/Plasticized Carbon Black Composites.” Polym. Compos., 29 (2) 125–132 (2008)CrossRef
14.
Zurück zum Zitat Wu, S, Ladani, RB, Zhang, J, Bafekrpour, E, Ghorbani, K, Mouritz, AP, Kinloch, AJ, Wang, CH, “Aligning Multilayer Graphene Flakes with an External Electric Field to Improve Multifunctional Properties of Epoxy Nanocomposites.” Carbon, 91 607–618 (2015)CrossRef Wu, S, Ladani, RB, Zhang, J, Bafekrpour, E, Ghorbani, K, Mouritz, AP, Kinloch, AJ, Wang, CH, “Aligning Multilayer Graphene Flakes with an External Electric Field to Improve Multifunctional Properties of Epoxy Nanocomposites.” Carbon, 91 607–618 (2015)CrossRef
15.
Zurück zum Zitat Boumedienne, N, Faska, Y, Maaroufi, A, Pinto, G, Vicente, L, Benavente, R, “Thermo-Structural Analysis and Electrical Conductivity Behavior Of Epoxy/Metals Composites.” J. Phys. Chem. Solids, 104 185–191 (2017)CrossRef Boumedienne, N, Faska, Y, Maaroufi, A, Pinto, G, Vicente, L, Benavente, R, “Thermo-Structural Analysis and Electrical Conductivity Behavior Of Epoxy/Metals Composites.” J. Phys. Chem. Solids, 104 185–191 (2017)CrossRef
16.
Zurück zum Zitat Jang, J, Bae, J, Lee, K, “Synthesis and Characterization of Polyaniline Nanorods as Curing Agent and Nanofiller for Epoxy Matrix Composite.” Polymer, 46 3677–3684 (2005)CrossRef Jang, J, Bae, J, Lee, K, “Synthesis and Characterization of Polyaniline Nanorods as Curing Agent and Nanofiller for Epoxy Matrix Composite.” Polymer, 46 3677–3684 (2005)CrossRef
17.
Zurück zum Zitat Tsotra, P, Friedrich, K, “Electrical and Dielectric Properties of Epoxy Resin/Polyaniline-DBSA Blends.” J. Mater. Sci., 40 4415–4417 (2005)CrossRef Tsotra, P, Friedrich, K, “Electrical and Dielectric Properties of Epoxy Resin/Polyaniline-DBSA Blends.” J. Mater. Sci., 40 4415–4417 (2005)CrossRef
18.
Zurück zum Zitat Imani, A, Arabi, M, Farzi, G, “Effect of In Situ Oxidative Preparation on Electrical Properties of Epoxy/PANi/MWCNTs Nanocomposites.” J. Mater. Sci. Mater. Electron., 27 10364–10370 (2016)CrossRef Imani, A, Arabi, M, Farzi, G, “Effect of In Situ Oxidative Preparation on Electrical Properties of Epoxy/PANi/MWCNTs Nanocomposites.” J. Mater. Sci. Mater. Electron., 27 10364–10370 (2016)CrossRef
19.
Zurück zum Zitat Tsotra, P, Friedrich, K, “Thermal, Mechanical, and Electrical Properties of Epoxy Resin/Polyaniline-Dodecylbenzenesulfonic Acid Blends.” Synth. Met., 143 237–242 (2004)CrossRef Tsotra, P, Friedrich, K, “Thermal, Mechanical, and Electrical Properties of Epoxy Resin/Polyaniline-Dodecylbenzenesulfonic Acid Blends.” Synth. Met., 143 237–242 (2004)CrossRef
20.
Zurück zum Zitat Gu, H, Tadakamalla, S, Huang, Y, Colorado, HA, Luo, Z, Haldolaarachchige, N, Young, DP, Wei, S, Guo, Z, “Polyaniline Stabilized Magnetite Nanoparticle Reinforced Epoxy Nanocomposites.” ACS Appl. Mater. Interfaces, 4 5613–5624 (2012)CrossRef Gu, H, Tadakamalla, S, Huang, Y, Colorado, HA, Luo, Z, Haldolaarachchige, N, Young, DP, Wei, S, Guo, Z, “Polyaniline Stabilized Magnetite Nanoparticle Reinforced Epoxy Nanocomposites.” ACS Appl. Mater. Interfaces, 4 5613–5624 (2012)CrossRef
21.
Zurück zum Zitat Samad, UA, Alam, MA, Chafidz, A, Al-Zahrani, SM, Alharthi, NH, “Enhancing Mechanical Properties of Epoxy/Polyaniline Coating with Addition of ZnO Nanoparticles: Nanoindentation Characterization.” Prog. Org. Coat., 119 109–115 (2018)CrossRef Samad, UA, Alam, MA, Chafidz, A, Al-Zahrani, SM, Alharthi, NH, “Enhancing Mechanical Properties of Epoxy/Polyaniline Coating with Addition of ZnO Nanoparticles: Nanoindentation Characterization.” Prog. Org. Coat., 119 109–115 (2018)CrossRef
22.
Zurück zum Zitat Nakamura, Y, Yamaguchi, M, Okubo, M, Matsumoto, T, “Effects of Particles Size on Mechanical and Impact Properties of Epoxy Resin Filled Spherical Silica.” J. Appl. Polym., 45 (7) 1281–1289 (1992)CrossRef Nakamura, Y, Yamaguchi, M, Okubo, M, Matsumoto, T, “Effects of Particles Size on Mechanical and Impact Properties of Epoxy Resin Filled Spherical Silica.” J. Appl. Polym., 45 (7) 1281–1289 (1992)CrossRef
23.
Zurück zum Zitat Chen, C, Justice, RS, Schaefer, DW, Baur, JW, “Highly Dispersed Nanosilica-Epoxy Resins with Enhanced Mechanical Properties.” Polymer, 49 (17) 3805–3815 (2008)CrossRef Chen, C, Justice, RS, Schaefer, DW, Baur, JW, “Highly Dispersed Nanosilica-Epoxy Resins with Enhanced Mechanical Properties.” Polymer, 49 (17) 3805–3815 (2008)CrossRef
24.
Zurück zum Zitat Rao, KS, El-Hami, K, Kodaki, T, Matsushige, K, Makino, K, “A Novel Method for Synthesis of Silica Nanoparticles.” J. Colloid Interface Sci., 289 125–131 (2005)CrossRef Rao, KS, El-Hami, K, Kodaki, T, Matsushige, K, Makino, K, “A Novel Method for Synthesis of Silica Nanoparticles.” J. Colloid Interface Sci., 289 125–131 (2005)CrossRef
25.
Zurück zum Zitat Bousse, L, Mostarshed, S, Shoot, BVD, de Rooij, NF, Gimmel, P, Gopel, W, “Zeta Potential Measurement of Ta2O5 and SiO2 Thin Films.” J. Colloid Interface Sci., 147 (1) 22–32 (1991)CrossRef Bousse, L, Mostarshed, S, Shoot, BVD, de Rooij, NF, Gimmel, P, Gopel, W, “Zeta Potential Measurement of Ta2O5 and SiO2 Thin Films.” J. Colloid Interface Sci., 147 (1) 22–32 (1991)CrossRef
26.
Zurück zum Zitat Liu, P, Liu, W, Xue, Q, “In Situ Chemical Oxidative Graft Polymerization of Aniline from Silica Nanoparticles.” Mater. Chem. Phys., 87 109–113 (2004)CrossRef Liu, P, Liu, W, Xue, Q, “In Situ Chemical Oxidative Graft Polymerization of Aniline from Silica Nanoparticles.” Mater. Chem. Phys., 87 109–113 (2004)CrossRef
27.
Zurück zum Zitat Babazadeh, M, Zalloi, F, Olad, A, “Fabrication of Conductive Polyaniline Nanocomposites Based on Silica Nanoparticles via In Situ Chemical Oxidative Polymerization Technique.” Synth. React. Inorg. Met. Org. Nano-Met. Chem., 45 86–91 (2015)CrossRef Babazadeh, M, Zalloi, F, Olad, A, “Fabrication of Conductive Polyaniline Nanocomposites Based on Silica Nanoparticles via In Situ Chemical Oxidative Polymerization Technique.” Synth. React. Inorg. Met. Org. Nano-Met. Chem., 45 86–91 (2015)CrossRef
28.
Zurück zum Zitat Kang, ET, Neoh, KG, Tan, KL, “Polyaniline: A Polymer with Many Interesting Intrinsic Redox States.” Prog. Polym. Sci., 23 277–324 (1998)CrossRef Kang, ET, Neoh, KG, Tan, KL, “Polyaniline: A Polymer with Many Interesting Intrinsic Redox States.” Prog. Polym. Sci., 23 277–324 (1998)CrossRef
29.
Zurück zum Zitat Liu, BT, Syu, JR, Wang, DH, “Conductive Polyurethane Composites Containing Polyaniline-Coated Nano-silica.” J. Colloid Interface Sci., 393 138–142 (2013)CrossRef Liu, BT, Syu, JR, Wang, DH, “Conductive Polyurethane Composites Containing Polyaniline-Coated Nano-silica.” J. Colloid Interface Sci., 393 138–142 (2013)CrossRef
30.
Zurück zum Zitat Gonzalez, M, Soares, B, Magioli, M, Marins, JA, Rieumont, J, “Facile Method for Synthesis of Polyaniline/Silica Hybrid Composites by Simultaneous Sol–Gel Process and “In Situ” Polymerization of Aniline.” J. Sol-Gel Sci. Technol., 63 373–381 (2012)CrossRef Gonzalez, M, Soares, B, Magioli, M, Marins, JA, Rieumont, J, “Facile Method for Synthesis of Polyaniline/Silica Hybrid Composites by Simultaneous Sol–Gel Process and “In Situ” Polymerization of Aniline.” J. Sol-Gel Sci. Technol., 63 373–381 (2012)CrossRef
31.
Zurück zum Zitat Huang, J, “Syntheses and Applications of Conducting Polymer Polyaniline Nanofibers.” Pure Appl. Chem., 78 (1) 15–27 (2006)CrossRef Huang, J, “Syntheses and Applications of Conducting Polymer Polyaniline Nanofibers.” Pure Appl. Chem., 78 (1) 15–27 (2006)CrossRef
32.
Zurück zum Zitat Ferchichi, K, Hbaieb, S, Amdouni, N, Pralong, V, Chevalier, Y, “Structural and Electrochemical Characterization of Polyaniline/LiCoO2 Nanocomposites Prepared via a Pickering Emulsion.” J. Solid State Electrochem., 17 1435–1447 (2013)CrossRef Ferchichi, K, Hbaieb, S, Amdouni, N, Pralong, V, Chevalier, Y, “Structural and Electrochemical Characterization of Polyaniline/LiCoO2 Nanocomposites Prepared via a Pickering Emulsion.” J. Solid State Electrochem., 17 1435–1447 (2013)CrossRef
33.
Zurück zum Zitat Wu, Z, Xiang, H, Kim, T, Chun, MS, Lee, K, “Surface Properties of Submicrometer Silica Spheres Modified with Aminopropyltriethoxysilane and Phenyltriethoxysilane.” J. Colloid Interface Sci., 304 119–124 (2006)CrossRef Wu, Z, Xiang, H, Kim, T, Chun, MS, Lee, K, “Surface Properties of Submicrometer Silica Spheres Modified with Aminopropyltriethoxysilane and Phenyltriethoxysilane.” J. Colloid Interface Sci., 304 119–124 (2006)CrossRef
Metadaten
Titel
Synthesis of conducting PANi/SiO2 nanocomposites and their effect on electrical and mechanical properties of antistatic waterborne epoxy coating
verfasst von
Anh Son Nguyen
Thuy Duong Nguyen
Thu Thuy Thai
Anh Truc Trinh
Gia Vu Pham
Hoang Thai
Dai Lam Tran
Thi Xuan Hang To
Duy Trinh Nguyen
Publikationsdatum
28.10.2019
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 2/2020
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-019-00279-2

Weitere Artikel der Ausgabe 2/2020

Journal of Coatings Technology and Research 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.