Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2022

21-09-2021

Experimental and Numerical Study on Ductile Fracture Prediction of Aluminum Alloy 6016-T6 Sheets Using a Phenomenological Model

Authors: Zhe Jia, Lei Mu, Ben Guan, Ling-Yun Qian, Yong Zang

Published in: Journal of Materials Engineering and Performance | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A phenomenological ductile fracture model is proposed by a careful consideration of void nucleation, growth and coalescence during plastic deformation. Within the model framework, void nucleation is controlled by an equivalent plastic strain function. Void growth takes place through two ways, namely void dilation and void elongation, which are characterized by the normalized hydrostatic stress and normalized maximum shear stress, respectively. Void coalescence is characterized by the maximum shear stress. Aluminum alloy (AA) 6016-T6 sheets are selected to conduct ductile fracture (DF) experiments on specimens with different geometries, which can cover a wide range of stress states from simple shear to balanced biaxial tension. Subsequently, the new DF model is calibrated by using a robust hybrid numerical-experimental approach with a three-dimensional (3D) fracture surface constructed for AA 6016-T6. Ductile fracture data of other two aluminum alloys (AA 2024-T351 and AA 5083-O) are also used to evaluate DF model performance by establishing their 3D fracture surfaces. Finally, a cup drawing test is conducted and simulated as a case study showing how an applicable way of using the new model. Furthermore, the predictive accuracy of the proposed DF model for fracture initiation is compared with other three uncoupled models (modified Mohr–Coulomb criterion (MMC), Lou-Yoon-Huh model and Mu-Zang model) by ABAQUS/Explicit with a user subroutine (VUMAT), which shows a good performance of the proposed DF model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference M.B. Gorji and D. Mohr, Predicting Shear Fracture of Aluminum 6016–T4 During Deep Drawing: Combining Yld-2000 Plasticity With Hosford-Coulomb Fracture Model, Int. J. Mech. Sci., 2018, 137, p 105–120.CrossRef M.B. Gorji and D. Mohr, Predicting Shear Fracture of Aluminum 6016–T4 During Deep Drawing: Combining Yld-2000 Plasticity With Hosford-Coulomb Fracture Model, Int. J. Mech. Sci., 2018, 137, p 105–120.CrossRef
2.
go back to reference P.N.C. Leonardo, J.P. Magrinho, I.M.F. Bragança, M.B. Silva, C.M.A. Silva and P.A.F. Martins, Formability Limits in Sheet-Bulk Forming, Int. J. Mach. Tool Manu., 2020, 149, p 1035.CrossRef P.N.C. Leonardo, J.P. Magrinho, I.M.F. Bragança, M.B. Silva, C.M.A. Silva and P.A.F. Martins, Formability Limits in Sheet-Bulk Forming, Int. J. Mach. Tool Manu., 2020, 149, p 1035.CrossRef
3.
go back to reference A. Roatta, M. Stout and J.W. Signorelli, Determination of the Forming-Limit Diagram from Deformations Within Necking Instability: A Digital Image Correlation-Based Approach, J. Mater. Eng. Perform., 2020, 29(6), p 4018–4031.CrossRef A. Roatta, M. Stout and J.W. Signorelli, Determination of the Forming-Limit Diagram from Deformations Within Necking Instability: A Digital Image Correlation-Based Approach, J. Mater. Eng. Perform., 2020, 29(6), p 4018–4031.CrossRef
4.
go back to reference F. Ozturk and D. Lee, A New Methodology for Ductile Fracture Criteria to Predict the Forming Limits, J. Mater. Eng. Perform., 2007, 16(2), p 224–228.CrossRef F. Ozturk and D. Lee, A New Methodology for Ductile Fracture Criteria to Predict the Forming Limits, J. Mater. Eng. Perform., 2007, 16(2), p 224–228.CrossRef
5.
go back to reference H. Li, M.W. Fu, J. Lu and H. Yang, Ductile Fracture: Experiments and Computations, Int. J. Plast., 2011, 27(2), p 147–180.CrossRef H. Li, M.W. Fu, J. Lu and H. Yang, Ductile Fracture: Experiments and Computations, Int. J. Plast., 2011, 27(2), p 147–180.CrossRef
6.
go back to reference A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I-Yield Criteria and Flow Rules for Porous Ductile Media, J. Eng. Mater. Technol., 1977, 99(1), p 2–15.CrossRef A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I-Yield Criteria and Flow Rules for Porous Ductile Media, J. Eng. Mater. Technol., 1977, 99(1), p 2–15.CrossRef
7.
go back to reference C.C. Chu and A. Needleman, Void Nucleation Effects in Biaxially Stretched Sheets, J. Eng. Mater. Technol., 1980, 120(3), p 249–256.CrossRef C.C. Chu and A. Needleman, Void Nucleation Effects in Biaxially Stretched Sheets, J. Eng. Mater. Technol., 1980, 120(3), p 249–256.CrossRef
8.
go back to reference A. Needleman and V. Tvergaard, An Analysis of Ductile Rupture in Notched Bars, J. Mech. Phys. Solids, 1984, 32(6), p 461–490.CrossRef A. Needleman and V. Tvergaard, An Analysis of Ductile Rupture in Notched Bars, J. Mech. Phys. Solids, 1984, 32(6), p 461–490.CrossRef
9.
go back to reference K. Nahshon and J.W. Hutchinson, Modification of the Gurson Model for Shear Failure, Eur. J. Mech. A-Solids, 2008, 27, p 1–17.CrossRef K. Nahshon and J.W. Hutchinson, Modification of the Gurson Model for Shear Failure, Eur. J. Mech. A-Solids, 2008, 27, p 1–17.CrossRef
10.
go back to reference L. Xue, Constitutive Modeling of Void Shearing Effect in Ductile Fracture of Porous Materials, Eng. Fract. Mech., 2008, 75, p 3343–3366.CrossRef L. Xue, Constitutive Modeling of Void Shearing Effect in Ductile Fracture of Porous Materials, Eng. Fract. Mech., 2008, 75, p 3343–3366.CrossRef
11.
go back to reference J. Lemaitre, A Continuous Damage Mechanics Model for Ductile Fracture, J. Eng. Mater. Technol., 1985, 107(1), p 83–89.CrossRef J. Lemaitre, A Continuous Damage Mechanics Model for Ductile Fracture, J. Eng. Mater. Technol., 1985, 107(1), p 83–89.CrossRef
12.
go back to reference T.S. Cao, J.M. Gachet, P. Montmitonnet and P.O. Bouchard, A Lode-Dependent Enhanced Lemaitre Model For Ductile Fracture Prediction at Low Stress Triaxiality, Eng. Fract. Mech., 2014, 124–125, p 80–96.CrossRef T.S. Cao, J.M. Gachet, P. Montmitonnet and P.O. Bouchard, A Lode-Dependent Enhanced Lemaitre Model For Ductile Fracture Prediction at Low Stress Triaxiality, Eng. Fract. Mech., 2014, 124–125, p 80–96.CrossRef
13.
go back to reference A.M. Freudenthal, The Inelastic Behavior of Engineering Materials and Structures, John Wiley & Sons, NewYork, 1950. A.M. Freudenthal, The Inelastic Behavior of Engineering Materials and Structures, John Wiley & Sons, NewYork, 1950.
14.
go back to reference M. Oyane, T. Sato, K. Okimoto and S. Shima, Criteria for Ductile Fracture And Their Applications, J. Mech. Work. Technol., 1980, 4, p 65–81.CrossRef M. Oyane, T. Sato, K. Okimoto and S. Shima, Criteria for Ductile Fracture And Their Applications, J. Mech. Work. Technol., 1980, 4, p 65–81.CrossRef
15.
go back to reference J.R. Rice and D.A. Tracey, On the Ductile Enlargement of Voids in Triaxial Stress Fields, J. Mech. Phys. Solids, 1969, 17, p 201–217.CrossRef J.R. Rice and D.A. Tracey, On the Ductile Enlargement of Voids in Triaxial Stress Fields, J. Mech. Phys. Solids, 1969, 17, p 201–217.CrossRef
16.
go back to reference M. Cockcroft and D. Latham, Ductility and the Workability of Metals, J. Inst. Met., 1968, 96(1), p 33–39. M. Cockcroft and D. Latham, Ductility and the Workability of Metals, J. Inst. Met., 1968, 96(1), p 33–39.
17.
go back to reference P. Brozzo, B. Deluca, R. Rendina A New Method for the Prediction of Formability Limits in Metal Sheets. Proceedings of the 7th Biennial Conference of the International Deep Drawing Research Group. Amsterdam, Netherlands, 1972 P. Brozzo, B. Deluca, R. Rendina A New Method for the Prediction of Formability Limits in Metal Sheets. Proceedings of the 7th Biennial Conference of the International Deep Drawing Research Group. Amsterdam, Netherlands, 1972
18.
go back to reference H.N. Han and K. Kim, A Ductile Fracture Criterion in Sheet Metal Forming Process, J. Mater. Process. Technol., 2003, 142(1), p 231–238.CrossRef H.N. Han and K. Kim, A Ductile Fracture Criterion in Sheet Metal Forming Process, J. Mater. Process. Technol., 2003, 142(1), p 231–238.CrossRef
19.
go back to reference Y. Bao and T. Wierzbicki, On the Cut-Off Value of Negative Triaxiality for Fracture, Eng. Fract. Mech., 2005, 72(7), p 1049–1069.CrossRef Y. Bao and T. Wierzbicki, On the Cut-Off Value of Negative Triaxiality for Fracture, Eng. Fract. Mech., 2005, 72(7), p 1049–1069.CrossRef
20.
go back to reference Y. Bai and T. Wierzbicki, Application of Extended Mohr-Coulomb Criterion to Ductile Fracture, Int. J. Fract., 2009, 161, p 1–20.CrossRef Y. Bai and T. Wierzbicki, Application of Extended Mohr-Coulomb Criterion to Ductile Fracture, Int. J. Fract., 2009, 161, p 1–20.CrossRef
21.
go back to reference Y.S. Lou, H. Huh, S.J. Lim and K. Pack, New Ductile Fracture Criterion for Prediction of Fracture Forming Limit Diagrams of Sheet Metals, Int. J. Solids Struct., 2012, 49, p 3605–3615.CrossRef Y.S. Lou, H. Huh, S.J. Lim and K. Pack, New Ductile Fracture Criterion for Prediction of Fracture Forming Limit Diagrams of Sheet Metals, Int. J. Solids Struct., 2012, 49, p 3605–3615.CrossRef
22.
go back to reference Y. Lou, J.W. Yoon and H. Huh, Modeling of Shear Ductile Fracture Considering a Changeable Cut-Off Value for Stress Triaxiality, Int. J. Plast., 2014, 54, p 56–80.CrossRef Y. Lou, J.W. Yoon and H. Huh, Modeling of Shear Ductile Fracture Considering a Changeable Cut-Off Value for Stress Triaxiality, Int. J. Plast., 2014, 54, p 56–80.CrossRef
23.
go back to reference D. Mohr and S.J. Marcadet, Micromechanically-Motivated Phenomenological Hosford-Coulomb Model for Predicting Ductile Fracture Initiation at Low Stress Triaxialities, Int. J. Solids Struct., 2015, 67–68, p 40–55.CrossRef D. Mohr and S.J. Marcadet, Micromechanically-Motivated Phenomenological Hosford-Coulomb Model for Predicting Ductile Fracture Initiation at Low Stress Triaxialities, Int. J. Solids Struct., 2015, 67–68, p 40–55.CrossRef
24.
go back to reference L. Mu, Y. Zang, Y. Wang, X.L. Li and P.M. Araujo Stemler, Phenomenological Uncoupled Ductile Fracture Model Considering Different Void Deformation Modes For Sheet Metal Forming, Int. J. Mech. Sci., 2018, 141, p 408–423.CrossRef L. Mu, Y. Zang, Y. Wang, X.L. Li and P.M. Araujo Stemler, Phenomenological Uncoupled Ductile Fracture Model Considering Different Void Deformation Modes For Sheet Metal Forming, Int. J. Mech. Sci., 2018, 141, p 408–423.CrossRef
25.
go back to reference L. Mu, Z. Jia, Z.W. Ma, F.H. Shen, Y.K. Sun and Y. Zang, A Theoretical Prediction Framework for the Construction of a Fracture Forming Limit Curve Accounting For Fracture Pattern Transition, Int. J. Plast., 2020, 129, p 102706.CrossRef L. Mu, Z. Jia, Z.W. Ma, F.H. Shen, Y.K. Sun and Y. Zang, A Theoretical Prediction Framework for the Construction of a Fracture Forming Limit Curve Accounting For Fracture Pattern Transition, Int. J. Plast., 2020, 129, p 102706.CrossRef
26.
go back to reference Q. Hu, X.F. Li, X.H. Han and J. Chen, A New Shear and Tension Based Ductile Fracture Criterion: Modeling and Validation, Eur. J. Mech. A-Solids, 2017, 66, p 370–386.CrossRef Q. Hu, X.F. Li, X.H. Han and J. Chen, A New Shear and Tension Based Ductile Fracture Criterion: Modeling and Validation, Eur. J. Mech. A-Solids, 2017, 66, p 370–386.CrossRef
27.
go back to reference A.S. Argon, J. Im and R. Safoglu, Cavity Formation From Inclusions in Ductile Fracture, Metall. Trans. A, 1975, 6(4), p 825–837.CrossRef A.S. Argon, J. Im and R. Safoglu, Cavity Formation From Inclusions in Ductile Fracture, Metall. Trans. A, 1975, 6(4), p 825–837.CrossRef
28.
go back to reference F.M. Beremin, Cavity Formation From Inclusions in Ductile Fracture of A508 Steel, Metall. Trans. A, 1981, 12, p 723–731.CrossRef F.M. Beremin, Cavity Formation From Inclusions in Ductile Fracture of A508 Steel, Metall. Trans. A, 1981, 12, p 723–731.CrossRef
29.
go back to reference B.J. Lee and M.E. Mear, Stress Concentration Induced by an Elastic Spheroidal Particle in a Plastically Deforming Solid, J. Mech. Phys. Solids, 1999, 47, p 1301–1336.CrossRef B.J. Lee and M.E. Mear, Stress Concentration Induced by an Elastic Spheroidal Particle in a Plastically Deforming Solid, J. Mech. Phys. Solids, 1999, 47, p 1301–1336.CrossRef
30.
go back to reference S.H. Goods and L.M. Brown, Overview No. 1: The Nucleation of Cavities by Plastic Deformation, Acta Metall., 1979, 27(1), p 1–15.CrossRef S.H. Goods and L.M. Brown, Overview No. 1: The Nucleation of Cavities by Plastic Deformation, Acta Metall., 1979, 27(1), p 1–15.CrossRef
31.
go back to reference A. Needleman and J.R. Rice, Limits to ductility set by plastic flow localization, Mechanics of Sheet Metal Forming: Material Behavior And Deformation Analysis. D.P. Koistinen, N.M. Wang Ed., Springer, Boston, 1978, p 237–267CrossRef A. Needleman and J.R. Rice, Limits to ductility set by plastic flow localization, Mechanics of Sheet Metal Forming: Material Behavior And Deformation Analysis. D.P. Koistinen, N.M. Wang Ed., Springer, Boston, 1978, p 237–267CrossRef
32.
go back to reference G. Le Roy, J.D. Embury, G. Edwards and M.F. Ashby, A Model of Ductile Fracture Based on the Nucleation and Growth of Voids, Acta Metall., 1981, 29, p 1509–1522.CrossRef G. Le Roy, J.D. Embury, G. Edwards and M.F. Ashby, A Model of Ductile Fracture Based on the Nucleation and Growth of Voids, Acta Metall., 1981, 29, p 1509–1522.CrossRef
33.
go back to reference C. Landron, O. Bouaziz, E. Maire and J. Adrien, Characterization and Modeling of Void Nucleation by Interface Decohesion in Dual Phase Steels, Scr. Mater., 2010, 63(10), p 973–976.CrossRef C. Landron, O. Bouaziz, E. Maire and J. Adrien, Characterization and Modeling of Void Nucleation by Interface Decohesion in Dual Phase Steels, Scr. Mater., 2010, 63(10), p 973–976.CrossRef
34.
go back to reference E. Maire, O. Bouaziz, M. Di Michiel and C. Verdu, Initiation and Growth of Damage in a Dual-Phase Steel Observed by X-ray Microtomography, Acta Mater., 2008, 56(18), p 4954–4964.CrossRef E. Maire, O. Bouaziz, M. Di Michiel and C. Verdu, Initiation and Growth of Damage in a Dual-Phase Steel Observed by X-ray Microtomography, Acta Mater., 2008, 56(18), p 4954–4964.CrossRef
35.
go back to reference F.A. McClintock, A Criterion for Ductile Fracture by the Growth of Holes, J. Appl. Mech., 1968, 35(2), p 363–371.CrossRef F.A. McClintock, A Criterion for Ductile Fracture by the Growth of Holes, J. Appl. Mech., 1968, 35(2), p 363–371.CrossRef
36.
go back to reference B. Marino, F. Mudry and A. Pineau, Experimental Study of Cavity Growth in Ductile Rupture, Eng. Fract. Mech., 1985, 22(6), p 989–996.CrossRef B. Marino, F. Mudry and A. Pineau, Experimental Study of Cavity Growth in Ductile Rupture, Eng. Fract. Mech., 1985, 22(6), p 989–996.CrossRef
37.
go back to reference R.B. Sills and B.L. Boyce, Void Growth by Dislocation Adsorption, Mater. Res. Lett., 2020, 8(3), p 103–109.CrossRef R.B. Sills and B.L. Boyce, Void Growth by Dislocation Adsorption, Mater. Res. Lett., 2020, 8(3), p 103–109.CrossRef
38.
go back to reference M. Achouri, G. Germain, P. Dal Santo and D. Saidane, Experimental Characterization and Numerical Modeling of Micromechanical Damage Under Different Stress States, Mater. Des., 2013, 50, p 207–222.CrossRef M. Achouri, G. Germain, P. Dal Santo and D. Saidane, Experimental Characterization and Numerical Modeling of Micromechanical Damage Under Different Stress States, Mater. Des., 2013, 50, p 207–222.CrossRef
39.
go back to reference R. Kiran and K. Khandelwal, A Coupled Microvoid Elongation and Dilation Based Ductile Fracture Model for Structural Steels, Eng. Fract. Mech., 2015, 145, p 15–42.CrossRef R. Kiran and K. Khandelwal, A Coupled Microvoid Elongation and Dilation Based Ductile Fracture Model for Structural Steels, Eng. Fract. Mech., 2015, 145, p 15–42.CrossRef
40.
go back to reference A. Weck and D.S. Wilkinson, Experimental Investigation of Void Coalescence in Metallic Sheets Containing Laser Drilled Holes, Acta Mater., 2008, 56(8), p 1774–1784.CrossRef A. Weck and D.S. Wilkinson, Experimental Investigation of Void Coalescence in Metallic Sheets Containing Laser Drilled Holes, Acta Mater., 2008, 56(8), p 1774–1784.CrossRef
41.
go back to reference P.F. Thomason, A Three-Dimensional Model for Ductile Fracture by the Growth and Coalescence of Microvoids, Acta Metall., 1985, 33(6), p 1087–1095.CrossRef P.F. Thomason, A Three-Dimensional Model for Ductile Fracture by the Growth and Coalescence of Microvoids, Acta Metall., 1985, 33(6), p 1087–1095.CrossRef
42.
go back to reference C. Tekoglu, Void Coalescence in Ductile Solids Containing Two Populations of Voids, Eng. Fract. Mech., 2015, 147, p 418–430.CrossRef C. Tekoglu, Void Coalescence in Ductile Solids Containing Two Populations of Voids, Eng. Fract. Mech., 2015, 147, p 418–430.CrossRef
43.
go back to reference L. Brown, J. Embury, Initiation and Growth Of Voids At Second-Phase Particles, Proceedings of the Conference on Microstructure and Design of Alloys, Institute of Metals and Iron and Steel Insitute, London, 1973, pp. 164-169 L. Brown, J. Embury, Initiation and Growth Of Voids At Second-Phase Particles, Proceedings of the Conference on Microstructure and Design of Alloys, Institute of Metals and Iron and Steel Insitute, London, 1973, pp. 164-169
44.
go back to reference I. Barsoum and J. Faleskog, Micromechanical Analysis on the Influence of the Lode Parameter on Void Growth and Coalescence, Int. J. Solids Struct., 2011, 48(6), p 925–938.CrossRef I. Barsoum and J. Faleskog, Micromechanical Analysis on the Influence of the Lode Parameter on Void Growth and Coalescence, Int. J. Solids Struct., 2011, 48(6), p 925–938.CrossRef
45.
go back to reference Y.S. Lou, J.W. Yoon, H. Huh, Q. Chao and J.H. Song, Correlation of the Maximum Shear Stress with Micro-Mechanisms of Ductile Fracture for Metals with High Strength-To-Weight Ratio, Int. J. Mech. Sci., 2018, 146–147, p 583–601.CrossRef Y.S. Lou, J.W. Yoon, H. Huh, Q. Chao and J.H. Song, Correlation of the Maximum Shear Stress with Micro-Mechanisms of Ductile Fracture for Metals with High Strength-To-Weight Ratio, Int. J. Mech. Sci., 2018, 146–147, p 583–601.CrossRef
46.
go back to reference Z. Jia, B. Guan, Y. Zang, Y. Wang and L. Mu, Modified Johnson-Cook Model of Aluminum Alloy 6016–T6 Sheets at Low Dynamic Strain Rates, Mater. Sci. Eng. A, 2021, 820, p 141565.CrossRef Z. Jia, B. Guan, Y. Zang, Y. Wang and L. Mu, Modified Johnson-Cook Model of Aluminum Alloy 6016–T6 Sheets at Low Dynamic Strain Rates, Mater. Sci. Eng. A, 2021, 820, p 141565.CrossRef
47.
go back to reference L.Y. Qian, G. Fang, P. Zeng and Q. Wang, Experimental and Numerical Investigations into the Ductile Fracture During the Forming of Flat-Rolled 5083-O Aluminum Alloy Sheet, J. Mater. Process. Technol., 2015, 220, p 264–275.CrossRef L.Y. Qian, G. Fang, P. Zeng and Q. Wang, Experimental and Numerical Investigations into the Ductile Fracture During the Forming of Flat-Rolled 5083-O Aluminum Alloy Sheet, J. Mater. Process. Technol., 2015, 220, p 264–275.CrossRef
48.
go back to reference T. Wierzbicki, Y. Bao, Y. Lee and Y. Bai, Calibration and Evaluation of Seven Fracture Models, Int. J. Mech. Sci., 2005, 47(4–5), p 719–743.CrossRef T. Wierzbicki, Y. Bao, Y. Lee and Y. Bai, Calibration and Evaluation of Seven Fracture Models, Int. J. Mech. Sci., 2005, 47(4–5), p 719–743.CrossRef
49.
go back to reference Y.S. Lou, L. Chen, T. Clausmeyer, A.E. Tekkaya and J.W. Yoon, Modeling of Ductile Fracture From Shear to Balanced Biaxial Tension for Sheet Metals, Int. J. Solids Struct., 2017, 112, p 169–184.CrossRef Y.S. Lou, L. Chen, T. Clausmeyer, A.E. Tekkaya and J.W. Yoon, Modeling of Ductile Fracture From Shear to Balanced Biaxial Tension for Sheet Metals, Int. J. Solids Struct., 2017, 112, p 169–184.CrossRef
50.
go back to reference K. Bandyopadhyay, S.K. Panda, P. Saha and G. Padmanabham, Limiting Drawing Ratio and Deep Drawing Behavior of Dual Phase Steel Tailor Welded Blanks: FE Simulation and Experimental Validation, J. Mater. Process. Technol., 2015, 217, p 48–64.CrossRef K. Bandyopadhyay, S.K. Panda, P. Saha and G. Padmanabham, Limiting Drawing Ratio and Deep Drawing Behavior of Dual Phase Steel Tailor Welded Blanks: FE Simulation and Experimental Validation, J. Mater. Process. Technol., 2015, 217, p 48–64.CrossRef
51.
go back to reference G.S. Cai, J.L. Yang, Y.F. Yuan, X.Y. Yang, L.H. Lang and S. Alexandrov, Mechanics Analysis of Aluminum Alloy Cylindrical Cup During Warm Sheet Hydromechanical Deep Drawing, Int. J. Mech. Sci., 2020, 174, p 105556.CrossRef G.S. Cai, J.L. Yang, Y.F. Yuan, X.Y. Yang, L.H. Lang and S. Alexandrov, Mechanics Analysis of Aluminum Alloy Cylindrical Cup During Warm Sheet Hydromechanical Deep Drawing, Int. J. Mech. Sci., 2020, 174, p 105556.CrossRef
Metadata
Title
Experimental and Numerical Study on Ductile Fracture Prediction of Aluminum Alloy 6016-T6 Sheets Using a Phenomenological Model
Authors
Zhe Jia
Lei Mu
Ben Guan
Ling-Yun Qian
Yong Zang
Publication date
21-09-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06248-4

Other articles of this Issue 2/2022

Journal of Materials Engineering and Performance 2/2022 Go to the issue

Premium Partners