Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2022

13-09-2021

Bending Fatigue Life Prediction Model of Carburized Gear Based on Microcosmic Fatigue Failure Mechanism

Authors: Hailong Deng, Yang Guo, Hang Liu, Qichen Liu, Yupeng Guo, Huan Yu

Published in: Journal of Materials Engineering and Performance | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Bending fatigue tests of carburized gear in high cycle fatigue life regime were performed under stress ratio of 0.04. All the crack sources of the broken teeth are originated from the stress concentration on the surface of teeth root. By considering the effects of surface residual stress, notch effect, stress gradient and crack size, the predicted initiation life model of carburized gear is established by dislocation energy method. Meanwhile, based on the Paris Equation, the crack length a corresponding to fracture toughness and real crack propagation path, the predicted growth life model of carburized gear can be established. Finally, based on the behaviors of crack initiation and propagation, the whole life prediction model of carburized gear can be constructed, and the prediction accuracy of the model is within three times of the test life, which can be used to predict the bending fatigue life of carburized gear.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Dengo, G. Meneghetti and M. Dabalà, Experimental Analysis of Bending Fatigue Strength of Plain and Notched Case-Hardened Gear Steels, Int. J. Fatigue, 2015, 80, p 145–161.CrossRef C. Dengo, G. Meneghetti and M. Dabalà, Experimental Analysis of Bending Fatigue Strength of Plain and Notched Case-Hardened Gear Steels, Int. J. Fatigue, 2015, 80, p 145–161.CrossRef
2.
go back to reference R. Thirumurugan and N. Gnanasekar, Influence of Finite Element Model, Load-Sharing and Load Distribution on Crack Propagation Path in Spur Gear Drive, Eng. Fail. Anal., 2020, 110, p 104383.CrossRef R. Thirumurugan and N. Gnanasekar, Influence of Finite Element Model, Load-Sharing and Load Distribution on Crack Propagation Path in Spur Gear Drive, Eng. Fail. Anal., 2020, 110, p 104383.CrossRef
3.
go back to reference J.L. Woods, S.R. Daniewicz and R. Nellums, Increasing the bending Fatigue Strength of Carburized Spur Gear Teeth by Presetting, Int. J. Fatigue, 1999, 21(6), p 549–556.CrossRef J.L. Woods, S.R. Daniewicz and R. Nellums, Increasing the bending Fatigue Strength of Carburized Spur Gear Teeth by Presetting, Int. J. Fatigue, 1999, 21(6), p 549–556.CrossRef
4.
go back to reference AGMA Standard 2003-A86, AGMA Standard for Rating the Pitting Resistance and Bending Strength of Spur and Helical Involute Gear Teeth, American Gear Manufacturers Association, USA, 1982. AGMA Standard 2003-A86, AGMA Standard for Rating the Pitting Resistance and Bending Strength of Spur and Helical Involute Gear Teeth, American Gear Manufacturers Association, USA, 1982.
5.
go back to reference B.A. Shaw, C. Aylott, P. O’Hara and K. Brimble, The role of residual stress on the fatigue strength of high performance gearing, Int. J. Fatigue, 2003, 25(9), p 1279.CrossRef B.A. Shaw, C. Aylott, P. O’Hara and K. Brimble, The role of residual stress on the fatigue strength of high performance gearing, Int. J. Fatigue, 2003, 25(9), p 1279.CrossRef
6.
go back to reference G. Albertini, G. Bruno, F. Fiori, E. Girardin, A. Giuliani and E. Quadrini, Neutron diffraction measurements for the determination of heat treatment effectiveness in generating compressive residual stress in an automotive crown gear, Phys. B, 2000, 276–278, p 925–926.CrossRef G. Albertini, G. Bruno, F. Fiori, E. Girardin, A. Giuliani and E. Quadrini, Neutron diffraction measurements for the determination of heat treatment effectiveness in generating compressive residual stress in an automotive crown gear, Phys. B, 2000, 276–278, p 925–926.CrossRef
7.
go back to reference S.G. Irizalp, N. Saklakoglu, F. Baris and S. Kayral, Effect of Shot Peening on Residual Stress Distribution and Microstructure Evolution of Artificially Defected 50CrV4 Steel, J. Mater. Eng. Perform., 2020, 29(11), p 7607–7616.CrossRef S.G. Irizalp, N. Saklakoglu, F. Baris and S. Kayral, Effect of Shot Peening on Residual Stress Distribution and Microstructure Evolution of Artificially Defected 50CrV4 Steel, J. Mater. Eng. Perform., 2020, 29(11), p 7607–7616.CrossRef
8.
go back to reference A. Fischer, B. Scholtes and T. Niendorf, On the Influence of Surface Hardening Treatments on Microstructure Evolution and Residual Stress in Microalloyed Medium Carbon Steel, J. Mater. Eng. Perform., 2020, 29(5), p 3040–3054.CrossRef A. Fischer, B. Scholtes and T. Niendorf, On the Influence of Surface Hardening Treatments on Microstructure Evolution and Residual Stress in Microalloyed Medium Carbon Steel, J. Mater. Eng. Perform., 2020, 29(5), p 3040–3054.CrossRef
9.
go back to reference B. Salehnasab and E. Poursaeidi, Mechanism and Modeling of Fatigue Crack Initiation and Propagation in the Directionally Solidified CM186 LC Blade of a Gas Turbine Engine, Eng. Fract. Mech., 2020, 225, p 106842.CrossRef B. Salehnasab and E. Poursaeidi, Mechanism and Modeling of Fatigue Crack Initiation and Propagation in the Directionally Solidified CM186 LC Blade of a Gas Turbine Engine, Eng. Fract. Mech., 2020, 225, p 106842.CrossRef
10.
go back to reference K. Vučković, I. Galić, Ž Božić and S. Glodež, Effect of Friction in a Single-Tooth Fatigue Test, Int. J. Fatigue, 2018, 114, p 148–158.CrossRef K. Vučković, I. Galić, Ž Božić and S. Glodež, Effect of Friction in a Single-Tooth Fatigue Test, Int. J. Fatigue, 2018, 114, p 148–158.CrossRef
11.
go back to reference X. Wang, Y.S. Yang, W.J. Wang and W.Q. Chi, Simulating Coupling Behavior of Spur Gear Meshing and Fatigue Crack Propagation in Tooth Root, Int. J. Fatigue, 2020, 134, p 148.CrossRef X. Wang, Y.S. Yang, W.J. Wang and W.Q. Chi, Simulating Coupling Behavior of Spur Gear Meshing and Fatigue Crack Propagation in Tooth Root, Int. J. Fatigue, 2020, 134, p 148.CrossRef
12.
go back to reference I. Čular, K. Vučković, D. Žeželj and S. Glodež, Analytical Approach for Low and High Cycle Bending Fatigue Life Prediction of Carburized Gear Steel Specimens, Eng. Fail. Anal., 2020, 108, p 104328.CrossRef I. Čular, K. Vučković, D. Žeželj and S. Glodež, Analytical Approach for Low and High Cycle Bending Fatigue Life Prediction of Carburized Gear Steel Specimens, Eng. Fail. Anal., 2020, 108, p 104328.CrossRef
13.
go back to reference S. Glodez, M. Sraml and J. Kramberger, A Computational Model for Determination of Service Life of Gears, Int. J. Fatigue, 2002, 24(10), p 1013–1020.CrossRef S. Glodez, M. Sraml and J. Kramberger, A Computational Model for Determination of Service Life of Gears, Int. J. Fatigue, 2002, 24(10), p 1013–1020.CrossRef
14.
go back to reference J. Kramberger, M. Šraml, S. Glodez, J. Flašker and I. Potrč, Computational Model for the Analysis of Bending Fatigue in Gears, Comput. Struct, 2004, 82(23), p 2261–2269.CrossRef J. Kramberger, M. Šraml, S. Glodez, J. Flašker and I. Potrč, Computational Model for the Analysis of Bending Fatigue in Gears, Comput. Struct, 2004, 82(23), p 2261–2269.CrossRef
15.
go back to reference G.J. Wang, M.H. Jiang, S.S. Zhu and A.T. Xu, Using Multiaxial Fatigue Method to Predict Gear Bending Fatigue Life, Key Eng. Mater., 2010, 419, p 201–204. G.J. Wang, M.H. Jiang, S.S. Zhu and A.T. Xu, Using Multiaxial Fatigue Method to Predict Gear Bending Fatigue Life, Key Eng. Mater., 2010, 419, p 201–204.
16.
go back to reference H. Guechichi and L. Castex, Fatigue Limits Prediction of Surface Treated Materials, J. Mater. Process. Technol., 2007, 172(3), p 381–387.CrossRef H. Guechichi and L. Castex, Fatigue Limits Prediction of Surface Treated Materials, J. Mater. Process. Technol., 2007, 172(3), p 381–387.CrossRef
17.
go back to reference C. Gu, Y.P. Bao, P. Gan, M. Wang and J.S. He, Effect of Main Inclusions on Crack Initiation in Bearing Steel in the Very High Cycle Fatigue Regime, Int. J. Miner Metall. Mater., 2018, 25(6), p 623–629.CrossRef C. Gu, Y.P. Bao, P. Gan, M. Wang and J.S. He, Effect of Main Inclusions on Crack Initiation in Bearing Steel in the Very High Cycle Fatigue Regime, Int. J. Miner Metall. Mater., 2018, 25(6), p 623–629.CrossRef
18.
go back to reference Y. Wang, S.Q. Zhang, X.J. Tian and H.M. Wang, High-Cycle Fatigue Crack Initiation and Propagation in Laser Melting Deposited TC18 Titanium Alloy, Int. J. Miner. Metall. Mater., 2013, 20(7), p 665–670.CrossRef Y. Wang, S.Q. Zhang, X.J. Tian and H.M. Wang, High-Cycle Fatigue Crack Initiation and Propagation in Laser Melting Deposited TC18 Titanium Alloy, Int. J. Miner. Metall. Mater., 2013, 20(7), p 665–670.CrossRef
19.
go back to reference H. Mughrabi, On the Life-Controlling Microstructural Fatigue Mechanisms in Ductile Metals and Alloys in the Gigacycle Regime, Fatigue Fract. Eng. Mater. Struct., 1999, 22(7), p 633–641.CrossRef H. Mughrabi, On the Life-Controlling Microstructural Fatigue Mechanisms in Ductile Metals and Alloys in the Gigacycle Regime, Fatigue Fract. Eng. Mater. Struct., 1999, 22(7), p 633–641.CrossRef
20.
go back to reference P. Lukáš and L. Kunz, Specific Features of High-Cycle and Ultra-High-Cycle Fatigue, Fatigue Fract. Eng. Mater. Struct., 2002, 25(8), p 747–753.CrossRef P. Lukáš and L. Kunz, Specific Features of High-Cycle and Ultra-High-Cycle Fatigue, Fatigue Fract. Eng. Mater. Struct., 2002, 25(8), p 747–753.CrossRef
21.
go back to reference C. Bathias, There is No Infinite Fatigue Life in Metallic Materials, Fatigue Fract. Eng. Mater. Struct., 1999, 22(7), p 559.CrossRef C. Bathias, There is No Infinite Fatigue Life in Metallic Materials, Fatigue Fract. Eng. Mater. Struct., 1999, 22(7), p 559.CrossRef
22.
go back to reference S. Nishijima and K. Kanazawa, Stepwise S-N Curve and Fish-Eye Failure in Gigacycle Fatigue, Fatigue Fract. Eng. Mater. Struct., 1999, 22(7), p 601–607.CrossRef S. Nishijima and K. Kanazawa, Stepwise S-N Curve and Fish-Eye Failure in Gigacycle Fatigue, Fatigue Fract. Eng. Mater. Struct., 1999, 22(7), p 601–607.CrossRef
23.
go back to reference Y. Kuroshima, Y. Saito and M. Shimizu, Relationship Between Fatigue Crack Propagation Originating at Inclusion and Fracture-Mode Transition of High-Strength Steel, Trans. JSME Part A, 1994, 60(580), p 2710. (in Japanese)CrossRef Y. Kuroshima, Y. Saito and M. Shimizu, Relationship Between Fatigue Crack Propagation Originating at Inclusion and Fracture-Mode Transition of High-Strength Steel, Trans. JSME Part A, 1994, 60(580), p 2710. (in Japanese)CrossRef
24.
go back to reference T. Nakamura, M. Kaneko and T. Tanabe, Cause of the Second Drop of the S-N Diagram of ADI After Levelling Off, Trans. JSME Part A, 1995, 61(582), p 441. (in Japanese)CrossRef T. Nakamura, M. Kaneko and T. Tanabe, Cause of the Second Drop of the S-N Diagram of ADI After Levelling Off, Trans. JSME Part A, 1995, 61(582), p 441. (in Japanese)CrossRef
25.
go back to reference Y. Murakami, T. Nomoto and T. Ueda, Factors Influencing the Mechanism of Superlong Fatigue Failure in Steels, Fatigue Fract. Eng. Mater. Struct., 1999, 22(7), p 581–590.CrossRef Y. Murakami, T. Nomoto and T. Ueda, Factors Influencing the Mechanism of Superlong Fatigue Failure in Steels, Fatigue Fract. Eng. Mater. Struct., 1999, 22(7), p 581–590.CrossRef
26.
go back to reference M. Kato, G. Deng, K. Inoue and N. Takatsu, Evaluation of the Strength of Carburized Spur Gear Teeth Based on Fracture Mechanics, JSME Int. J., 1993, 36(2), p 233–240. M. Kato, G. Deng, K. Inoue and N. Takatsu, Evaluation of the Strength of Carburized Spur Gear Teeth Based on Fracture Mechanics, JSME Int. J., 1993, 36(2), p 233–240.
27.
go back to reference D.G. Lewicki and R. Ballarini, Rim Thickness Effects on Gear Crack Propagation Life, Int. J. Fract., 1997, 87(1), p 59–86.CrossRef D.G. Lewicki and R. Ballarini, Rim Thickness Effects on Gear Crack Propagation Life, Int. J. Fract., 1997, 87(1), p 59–86.CrossRef
28.
go back to reference M. Guagliano and L. Vergani, Effect of Crack Closure on Gear Crack Propagation, Int. J. Fatigue, 2001, 23(1), p 65–73.CrossRef M. Guagliano and L. Vergani, Effect of Crack Closure on Gear Crack Propagation, Int. J. Fatigue, 2001, 23(1), p 65–73.CrossRef
29.
go back to reference S. Pehan, J. Kramberger, J. Flasker and B. Zafosnik, Investigation of Crack Propagation Scatter in a Gear Tooth’s Root, Eng. Fract. Mech., 2008, 75(5), p 1266–1283.CrossRef S. Pehan, J. Kramberger, J. Flasker and B. Zafosnik, Investigation of Crack Propagation Scatter in a Gear Tooth’s Root, Eng. Fract. Mech., 2008, 75(5), p 1266–1283.CrossRef
30.
go back to reference J.G. Verma, S. Kumar and P.K. Kankar, Crack Growth Modeling in Spur Gear Tooth and Its Effect on Mesh Stiffness Using Extended Finite Element Method, Eng. Fail. Anal., 2018, 94, p 109–120.CrossRef J.G. Verma, S. Kumar and P.K. Kankar, Crack Growth Modeling in Spur Gear Tooth and Its Effect on Mesh Stiffness Using Extended Finite Element Method, Eng. Fail. Anal., 2018, 94, p 109–120.CrossRef
31.
go back to reference X.Q. Zhang, J. Wang, W. Wei, X.T. Ji, B. Chen and G.W. Fang, Simulation of Fatigue Cracks Growth Processes of Two Parallel Cracks in Thin Plate Pulled by the Constant Amplitude Cyclic Loading, J. Braz. Soc. Mech. Sci., 2019, 41(9), p 374.CrossRef X.Q. Zhang, J. Wang, W. Wei, X.T. Ji, B. Chen and G.W. Fang, Simulation of Fatigue Cracks Growth Processes of Two Parallel Cracks in Thin Plate Pulled by the Constant Amplitude Cyclic Loading, J. Braz. Soc. Mech. Sci., 2019, 41(9), p 374.CrossRef
32.
go back to reference H.K. Kim and S.B. Lee, Influence of Indenter Geometry on Half-Plane with Edge Crack Subjected to Fretting Condition, Theor. Appl. Fract. Mech., 2001, 36(2), p 125–139.CrossRef H.K. Kim and S.B. Lee, Influence of Indenter Geometry on Half-Plane with Edge Crack Subjected to Fretting Condition, Theor. Appl. Fract. Mech., 2001, 36(2), p 125–139.CrossRef
33.
go back to reference Y. Sun, X. Li and T. Bell, Structural Characteristics of Low Temperature Plasma Carburised Austenitic Stainless Steel, Mater. Sci. Technol, 1999, 15(10), p 1171–1178.CrossRef Y. Sun, X. Li and T. Bell, Structural Characteristics of Low Temperature Plasma Carburised Austenitic Stainless Steel, Mater. Sci. Technol, 1999, 15(10), p 1171–1178.CrossRef
34.
go back to reference Y. Sun and L.Y. Chin, Residual Stress Evolution and Relaxation in Carbon S Phase Layers on AISI 316 Austenitic Stainless Steel, Surf. Eng., 2002, 18(6), p 443–446.CrossRef Y. Sun and L.Y. Chin, Residual Stress Evolution and Relaxation in Carbon S Phase Layers on AISI 316 Austenitic Stainless Steel, Surf. Eng., 2002, 18(6), p 443–446.CrossRef
35.
go back to reference Z.C. Li, A.M. Freborg, B.D. Hansen and T.S. Srivatsan, Modeling the Effect of Carburization and Quenching on the Development of Residual Stresses and Bending Fatigue Resistance of Steel Gears, J. Mater. Eng. Perform., 2013, 22(4), p 664–672.CrossRef Z.C. Li, A.M. Freborg, B.D. Hansen and T.S. Srivatsan, Modeling the Effect of Carburization and Quenching on the Development of Residual Stresses and Bending Fatigue Resistance of Steel Gears, J. Mater. Eng. Perform., 2013, 22(4), p 664–672.CrossRef
36.
go back to reference G.J. Yuan, R.Z. Wang, C.Y. Gong, X.C. Zhang and S.T. Tu, Investigations of Micro-notch Effect on Small Fatigue Crack Initiation Behaviour in Nickel-Based Alloy GH4169: Experiments and Simulations, Int. J. Fatigue, 2020, 136, p 105578.CrossRef G.J. Yuan, R.Z. Wang, C.Y. Gong, X.C. Zhang and S.T. Tu, Investigations of Micro-notch Effect on Small Fatigue Crack Initiation Behaviour in Nickel-Based Alloy GH4169: Experiments and Simulations, Int. J. Fatigue, 2020, 136, p 105578.CrossRef
37.
go back to reference K. Tanaka and T. Mura, A Theory of Fatigue Crack Initiation at Inclusions, Metall. Mater. Trans. A., 1982, 13(1), p 117–123.CrossRef K. Tanaka and T. Mura, A Theory of Fatigue Crack Initiation at Inclusions, Metall. Mater. Trans. A., 1982, 13(1), p 117–123.CrossRef
38.
go back to reference G. Venkataraman, Y.W. Chung and T. Mura, Application of Minimum Energy Formalism in a Multiple Slip Band Model for Fatigue—I. Calculation of Slip Band Spacing, Acta Metall. Mater., 1991, 39(11), p 2621–2629.CrossRef G. Venkataraman, Y.W. Chung and T. Mura, Application of Minimum Energy Formalism in a Multiple Slip Band Model for Fatigue—I. Calculation of Slip Band Spacing, Acta Metall. Mater., 1991, 39(11), p 2621–2629.CrossRef
39.
go back to reference K.S. Chan, A Microstructure-Based Fatigue-Crack-Initiation Model, Metall. Mater. Trans. A, 2003, 34(1), p 43–58.CrossRef K.S. Chan, A Microstructure-Based Fatigue-Crack-Initiation Model, Metall. Mater. Trans. A, 2003, 34(1), p 43–58.CrossRef
40.
go back to reference A.S. Cheng and C. Laird, A Quick and Simple Method for Orienting Cubic Single Crystals from Laue Back-Reflection Photographs, J. Appl. Crystallogr., 1982, 15(1), p 137.CrossRef A.S. Cheng and C. Laird, A Quick and Simple Method for Orienting Cubic Single Crystals from Laue Back-Reflection Photographs, J. Appl. Crystallogr., 1982, 15(1), p 137.CrossRef
41.
go back to reference Q.Y. Wang, C. Bathias, N. Kawagoishi and Q. Chen, Effect of Inclusion on Subsurface Crack Initiation and Gigacycle Fatigue Strength, Int. J. Fatigue, 2002, 24(12), p 1269–1274.CrossRef Q.Y. Wang, C. Bathias, N. Kawagoishi and Q. Chen, Effect of Inclusion on Subsurface Crack Initiation and Gigacycle Fatigue Strength, Int. J. Fatigue, 2002, 24(12), p 1269–1274.CrossRef
42.
go back to reference H. Neuber, Theory of Notch Stresses: Principle for Exact Stress Calculations, Books on Demand, USA, 1945. H. Neuber, Theory of Notch Stresses: Principle for Exact Stress Calculations, Books on Demand, USA, 1945.
43.
go back to reference Y. Wei and Y. Jiang, Fatigue Fracture Analysis of Gear Teeth Using XFEM, Trans. Nonferrous Met. Soc., 2019, 29(10), p 2099–2108.CrossRef Y. Wei and Y. Jiang, Fatigue Fracture Analysis of Gear Teeth Using XFEM, Trans. Nonferrous Met. Soc., 2019, 29(10), p 2099–2108.CrossRef
Metadata
Title
Bending Fatigue Life Prediction Model of Carburized Gear Based on Microcosmic Fatigue Failure Mechanism
Authors
Hailong Deng
Yang Guo
Hang Liu
Qichen Liu
Yupeng Guo
Huan Yu
Publication date
13-09-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06236-8

Other articles of this Issue 2/2022

Journal of Materials Engineering and Performance 2/2022 Go to the issue

Premium Partners