Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2022

08-09-2021

Micro/Nanoscale Surface Modification of Ti6Al4V Alloy for Implant Applications

Authors: Selim Demirci, Tuncay Dikici, Arif Nihat Güllüoğlu

Published in: Journal of Materials Engineering and Performance | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, micro- and nanosurface structures were fabricated by sandblasting (S), acid-etching (E), anodic oxidation (A), sandblasting/acid-etching (SE), sandblasting/anodization (SA) and sandblasting/acid-etching/anodization (SEA) processes on Ti6Al4V alloy in order to investigate apatite formation ability. The phase, morphology, topography, roughness and wettability properties of surfaces were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), surface profilometer and contact angle techniques. In vitro tests were performed in simulated body fluid (SBF) for 21 days. The results showed that the surface topography, roughness and wettability changed the Ca and P ion ratio. The SEA sample had high surface topography and the lowest contact angle value. The value of Ca/P ratio was 1.81 for SEA sample. The SEA sample showed the highest Ca/P ratio value which was close to theoretical value. Ca and P ion ratio value because of bioactive phases on the surfaces, high surface roughness and lower contact angle values as compared to other samples. The proposed methodology improves the apatite formation ability of Ti6Al4V alloys. Sandblasted/acid-etched/anodized surfaces can be an alternative to conventional sandblasted/acid-etched implant surfaces.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Niinomi, Mechanical Properties of Biomedical Titanium Alloys, Mater. Sci. Eng. A, 1998, 243(1), p 231–236.CrossRef M. Niinomi, Mechanical Properties of Biomedical Titanium Alloys, Mater. Sci. Eng. A, 1998, 243(1), p 231–236.CrossRef
2.
go back to reference L.-C. Zhang, L.-Y. Chen and L. Wang, Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests, Adv. Eng. Mater., 2020, 22(5), p 1901258.CrossRef L.-C. Zhang, L.-Y. Chen and L. Wang, Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests, Adv. Eng. Mater., 2020, 22(5), p 1901258.CrossRef
3.
go back to reference K. Lee, Y.-H. Jeong, W.A. Brantley and H.-C. Choe, Surface Characteristics of Hydroxyapatite Films Deposited on Anodized Titanium by an Electrochemical Method, Thin Solid Films, 2013, 546, p 185–188.CrossRef K. Lee, Y.-H. Jeong, W.A. Brantley and H.-C. Choe, Surface Characteristics of Hydroxyapatite Films Deposited on Anodized Titanium by an Electrochemical Method, Thin Solid Films, 2013, 546, p 185–188.CrossRef
4.
go back to reference H.-C. Hsu, S.-C. Wu, S.-K. Hsu, Y.-H. Liao and W.-F. Ho, Bioactivity of Hybrid Micro/Nano-Textured Ti-5Si Surface by Acid Etching and Heat Treatment, Mater. Des., 2016, 104, p 205–210.CrossRef H.-C. Hsu, S.-C. Wu, S.-K. Hsu, Y.-H. Liao and W.-F. Ho, Bioactivity of Hybrid Micro/Nano-Textured Ti-5Si Surface by Acid Etching and Heat Treatment, Mater. Des., 2016, 104, p 205–210.CrossRef
5.
go back to reference G.A. Crawford, N. Chawla, K. Das, S. Bose and A. Bandyopadhyay, Microstructure and Deformation Behavior of Biocompatible TiO2 Nanotubes on Titanium Substrate, Acta Biomater., 2007, 3(3), p 359–367.CrossRef G.A. Crawford, N. Chawla, K. Das, S. Bose and A. Bandyopadhyay, Microstructure and Deformation Behavior of Biocompatible TiO2 Nanotubes on Titanium Substrate, Acta Biomater., 2007, 3(3), p 359–367.CrossRef
6.
go back to reference L. Damiati, M.G. Eales, A.H. Nobbs, B. Su, P.M. Tsimbouri, M. Salmeron-Sanchez and M.J. Dalby, Impact of Surface Topography and Coating on Osteogenesis and Bacterial Attachment on Titanium Implants, J. Tissue Eng., 2018, 9, p 2041731418790694–2041731418790694.CrossRef L. Damiati, M.G. Eales, A.H. Nobbs, B. Su, P.M. Tsimbouri, M. Salmeron-Sanchez and M.J. Dalby, Impact of Surface Topography and Coating on Osteogenesis and Bacterial Attachment on Titanium Implants, J. Tissue Eng., 2018, 9, p 2041731418790694–2041731418790694.CrossRef
7.
go back to reference N.-B. Li, S.-J. Sun, H.-Y. Bai, W.-H. Xu, G.-Y. Xiao, X. Chen, J.-H. Zhao, Y.-L. Zhang and Y.-P. Lu, Micro/Nanoscale Multistructures of Oxide Layers on Ti6Al4V Achieved by Acid Etching and Induction Heating for High Osteogenic Activity in vitro, Surf. Coat. Technol., 2020, 393, p 125816.CrossRef N.-B. Li, S.-J. Sun, H.-Y. Bai, W.-H. Xu, G.-Y. Xiao, X. Chen, J.-H. Zhao, Y.-L. Zhang and Y.-P. Lu, Micro/Nanoscale Multistructures of Oxide Layers on Ti6Al4V Achieved by Acid Etching and Induction Heating for High Osteogenic Activity in vitro, Surf. Coat. Technol., 2020, 393, p 125816.CrossRef
8.
go back to reference S. Ferraris, A. Bobbio, M. Miola and S. Spriano, Micro- and Nano-textured, Hydrophilic and Bioactive Titanium Dental Implants, Surf. Coat. Technol., 2015, 276, p 374–383.CrossRef S. Ferraris, A. Bobbio, M. Miola and S. Spriano, Micro- and Nano-textured, Hydrophilic and Bioactive Titanium Dental Implants, Surf. Coat. Technol., 2015, 276, p 374–383.CrossRef
9.
go back to reference S. Ferraris, S. Spriano, G. Pan, A. Venturello, C.L. Bianchi, R. Chiesa, M.G. Faga, G. Maina and E. Vernè, Surface Modification of Ti–6Al–4V alloy for Biomineralization and Specific Biological Response: Part I, Inorganic Modification, J. Mater. Sci. - Mater. Med., 2011, 22(3), p 533–545.CrossRef S. Ferraris, S. Spriano, G. Pan, A. Venturello, C.L. Bianchi, R. Chiesa, M.G. Faga, G. Maina and E. Vernè, Surface Modification of Ti–6Al–4V alloy for Biomineralization and Specific Biological Response: Part I, Inorganic Modification, J. Mater. Sci. - Mater. Med., 2011, 22(3), p 533–545.CrossRef
10.
go back to reference Y. Wang, W. Zhao, Y. Wu, G. Liu and X. Wu, Micro/Nano-structures Transition and Electrochemical Response of Ti-6Al-4V Alloy in Simulated Seawater, Surf. Topogr. Metrol. Prop., 2018, 6(3), p 034009.CrossRef Y. Wang, W. Zhao, Y. Wu, G. Liu and X. Wu, Micro/Nano-structures Transition and Electrochemical Response of Ti-6Al-4V Alloy in Simulated Seawater, Surf. Topogr. Metrol. Prop., 2018, 6(3), p 034009.CrossRef
11.
go back to reference X. Liu, P.K. Chu and C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng. R. Rep., 2004, 47(3), p 49–121.CrossRef X. Liu, P.K. Chu and C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng. R. Rep., 2004, 47(3), p 49–121.CrossRef
12.
go back to reference H. Cimenoglu, M. Gunyuz, G.T. Kose, M. Baydogan, F. Uğurlu and C. Sener, Micro-arc Oxidation of Ti6Al4V and Ti6Al7Nb Alloys for Biomedical Applications, Mater. Charact., 2011, 62(3), p 304–311.CrossRef H. Cimenoglu, M. Gunyuz, G.T. Kose, M. Baydogan, F. Uğurlu and C. Sener, Micro-arc Oxidation of Ti6Al4V and Ti6Al7Nb Alloys for Biomedical Applications, Mater. Charact., 2011, 62(3), p 304–311.CrossRef
13.
go back to reference P. Li, J. Qian, W. Zhang, C. Schille, E. Schweizer, A. Heiss, U.E. Klotz, L. Scheideler, G. Wan and J. Geis-Gerstorfer, Improved Biodegradability of Zinc and Its Alloys by Sandblasting Treatment, Surf. Coat. Technol., 2021, 405, p 126678.CrossRef P. Li, J. Qian, W. Zhang, C. Schille, E. Schweizer, A. Heiss, U.E. Klotz, L. Scheideler, G. Wan and J. Geis-Gerstorfer, Improved Biodegradability of Zinc and Its Alloys by Sandblasting Treatment, Surf. Coat. Technol., 2021, 405, p 126678.CrossRef
14.
go back to reference Y. Doe, H. Ida, M. Seiryu, T. Deguchi, N. Takeshita, S. Sasaki, S. Sasaki, D. Irie, K. Tsuru, K. Ishikawa and T. Takano-Yamamoto, Titanium Surface Treatment by Calcium Modification with Acid-Etching Promotes Osteogenic Activity and Stability of Dental Implants, Materialia, 2020, 12, p 100801.CrossRef Y. Doe, H. Ida, M. Seiryu, T. Deguchi, N. Takeshita, S. Sasaki, S. Sasaki, D. Irie, K. Tsuru, K. Ishikawa and T. Takano-Yamamoto, Titanium Surface Treatment by Calcium Modification with Acid-Etching Promotes Osteogenic Activity and Stability of Dental Implants, Materialia, 2020, 12, p 100801.CrossRef
15.
go back to reference S. Rastegari and E. Salahinejad, Surface Modification of Ti-6Al-4V Alloy for Osseointegration by Alkaline Treatment and Chitosan-Matrix Glass-Reinforced Nanocomposite Coating, Carbohyd. Polym., 2019, 205, p 302–311.CrossRef S. Rastegari and E. Salahinejad, Surface Modification of Ti-6Al-4V Alloy for Osseointegration by Alkaline Treatment and Chitosan-Matrix Glass-Reinforced Nanocomposite Coating, Carbohyd. Polym., 2019, 205, p 302–311.CrossRef
16.
go back to reference T. Li, L. Li, J. Qi and F. Chen, Corrosion Protection of Ti6Al4V by a Composite Coating with a Plasma Electrolytic Oxidation Layer and Sol-Gel Layer Filled with Graphene Oxide, Prog. Org. Coat., 2020, 144, p 105632.CrossRef T. Li, L. Li, J. Qi and F. Chen, Corrosion Protection of Ti6Al4V by a Composite Coating with a Plasma Electrolytic Oxidation Layer and Sol-Gel Layer Filled with Graphene Oxide, Prog. Org. Coat., 2020, 144, p 105632.CrossRef
17.
go back to reference S.-Y. Park and H.-C. Choe, Functional Element Coatings on Ti-Alloys for Biomaterials by Plasma Electrolytic Oxidation, Thin Solid Films, 2020, 699, p 137896.CrossRef S.-Y. Park and H.-C. Choe, Functional Element Coatings on Ti-Alloys for Biomaterials by Plasma Electrolytic Oxidation, Thin Solid Films, 2020, 699, p 137896.CrossRef
18.
go back to reference J.P.A. Carobolante, K.B. da Silva, J.A.M. Chaves, M.F. Dias Netipanyj, K.C. Popat and A.P.R. AlvesClaro, Nanoporous Layer Formation on the Ti10Mo8Nb Alloy Surface Using Anodic Oxidation, Surface Coat. Technol., 2020, 386, p 125467.CrossRef J.P.A. Carobolante, K.B. da Silva, J.A.M. Chaves, M.F. Dias Netipanyj, K.C. Popat and A.P.R. AlvesClaro, Nanoporous Layer Formation on the Ti10Mo8Nb Alloy Surface Using Anodic Oxidation, Surface Coat. Technol., 2020, 386, p 125467.CrossRef
19.
go back to reference J. Hu, H. Li, X. Wang, L. Yang, M. Chen, R. Wang, G. Qin, D.-F. Chen and E. Zhang, Effect of Ultrasonic Micro-arc Oxidation on the Antibacterial Properties and Cell Biocompatibility of Ti–Cu Alloy for Biomedical Application, Mater. Sci. Eng. C, 2020, 115, p 110921.CrossRef J. Hu, H. Li, X. Wang, L. Yang, M. Chen, R. Wang, G. Qin, D.-F. Chen and E. Zhang, Effect of Ultrasonic Micro-arc Oxidation on the Antibacterial Properties and Cell Biocompatibility of Ti–Cu Alloy for Biomedical Application, Mater. Sci. Eng. C, 2020, 115, p 110921.CrossRef
20.
go back to reference D.-P. Zhao, J.-C. Tang, H.-M. Nie, Y. Zhang, Y.-K. Chen, X. Zhang, H.-X. Li and M. Yan, Macro-micron-nano-featured Surface Topography of Ti-6Al-4V Alloy for Biomedical Applications, Rare Met., 2018, 37(12), p 1055–1063.CrossRef D.-P. Zhao, J.-C. Tang, H.-M. Nie, Y. Zhang, Y.-K. Chen, X. Zhang, H.-X. Li and M. Yan, Macro-micron-nano-featured Surface Topography of Ti-6Al-4V Alloy for Biomedical Applications, Rare Met., 2018, 37(12), p 1055–1063.CrossRef
21.
go back to reference B. Ren, Y. Wan, C. Liu, H. Wang, M. Yu, X. Zhang and Y. Huang, Improved Osseointegration of 3D Printed Ti-6Al-4V Implant with a Hierarchical Micro/Nano Surface Topography: An in vitro and in vivo Study, Mater. Sci. Eng. C, 2021, 118, p 111505.CrossRef B. Ren, Y. Wan, C. Liu, H. Wang, M. Yu, X. Zhang and Y. Huang, Improved Osseointegration of 3D Printed Ti-6Al-4V Implant with a Hierarchical Micro/Nano Surface Topography: An in vitro and in vivo Study, Mater. Sci. Eng. C, 2021, 118, p 111505.CrossRef
22.
go back to reference T. Dikici, S. Demirci and M. Erol, Enhanced Photocatalytic Activity of Micro/Nano Textured TiO2 Surfaces Prepared by Sandblasting/Acid-Etching/Anodizing Process, J. Alloys Compd., 2017, 694, p 246–252.CrossRef T. Dikici, S. Demirci and M. Erol, Enhanced Photocatalytic Activity of Micro/Nano Textured TiO2 Surfaces Prepared by Sandblasting/Acid-Etching/Anodizing Process, J. Alloys Compd., 2017, 694, p 246–252.CrossRef
23.
go back to reference I.P. Torres-Avila, I.I. Padilla-Martínez, N. Pérez-Hernández, A.E. Bañuelos-Hernández, J.C. Velázquez, J.L. Castrejón-Flores and E. Hernández-Sánchez, Surface Modification of the Ti-6Al-4V Alloy by Anodic Oxidation and Its Effect on Osteoarticular Cell Proliferation, Coatings, 2020, 10(5), p 491.CrossRef I.P. Torres-Avila, I.I. Padilla-Martínez, N. Pérez-Hernández, A.E. Bañuelos-Hernández, J.C. Velázquez, J.L. Castrejón-Flores and E. Hernández-Sánchez, Surface Modification of the Ti-6Al-4V Alloy by Anodic Oxidation and Its Effect on Osteoarticular Cell Proliferation, Coatings, 2020, 10(5), p 491.CrossRef
24.
go back to reference J. Zhang, J. Liu, C. Wang, F. Chen, X. Wang and K. Lin, A Comparative Study of the Osteogenic Performance Between the Hierarchical Micro/Submicro-Textured 3D-Printed Ti6Al4V Surface and the SLA Surface, Bioact. Mater., 2020, 5(1), p 9–16.CrossRef J. Zhang, J. Liu, C. Wang, F. Chen, X. Wang and K. Lin, A Comparative Study of the Osteogenic Performance Between the Hierarchical Micro/Submicro-Textured 3D-Printed Ti6Al4V Surface and the SLA Surface, Bioact. Mater., 2020, 5(1), p 9–16.CrossRef
25.
go back to reference F. Reshadi, S. Khorasani and G. Faraji, Surface Characterization of Nanostructured Commercially Pure Titanium Modified by Sandblasting and Acid-Etching for Implant Applications, Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol., 2020, 234(3), p 414–423.CrossRef F. Reshadi, S. Khorasani and G. Faraji, Surface Characterization of Nanostructured Commercially Pure Titanium Modified by Sandblasting and Acid-Etching for Implant Applications, Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol., 2020, 234(3), p 414–423.CrossRef
26.
go back to reference D.P. Oliveira, A. Palmieri, F. Carinci and C. Bolfarini, Gene Expression of Human Osteoblasts Cells on Chemically Treated Surfaces of Ti–6Al–4V–ELI, Mater. Sci. Eng. C, 2015, 51, p 248–255.CrossRef D.P. Oliveira, A. Palmieri, F. Carinci and C. Bolfarini, Gene Expression of Human Osteoblasts Cells on Chemically Treated Surfaces of Ti–6Al–4V–ELI, Mater. Sci. Eng. C, 2015, 51, p 248–255.CrossRef
27.
go back to reference B. Ren, Y. Wan, G. Wang, Z. Liu, Y. Huang and H. Wang, Morphologically Modified Surface with Hierarchical Micro-/Nano-Structures for Enhanced Bioactivity of Titanium Implants, J. Mater. Sci., 2018, 53(18), p 12679–12691.CrossRef B. Ren, Y. Wan, G. Wang, Z. Liu, Y. Huang and H. Wang, Morphologically Modified Surface with Hierarchical Micro-/Nano-Structures for Enhanced Bioactivity of Titanium Implants, J. Mater. Sci., 2018, 53(18), p 12679–12691.CrossRef
28.
go back to reference M.-H. Kim, K. Park, K.-H. Choi, S.-H. Kim, S.E. Kim, C.-M. Jeong and J.-B. Huh, Cell Adhesion and in Vivo Osseointegration of Sandblasted/Acid Etched/Anodized Dental Implants, Int J Mol Sci, 2015, 16(5), p 10324–10336.CrossRef M.-H. Kim, K. Park, K.-H. Choi, S.-H. Kim, S.E. Kim, C.-M. Jeong and J.-B. Huh, Cell Adhesion and in Vivo Osseointegration of Sandblasted/Acid Etched/Anodized Dental Implants, Int J Mol Sci, 2015, 16(5), p 10324–10336.CrossRef
29.
go back to reference T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity?, Biomaterials, 2006, 27(15), p 2907–2915.CrossRef T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity?, Biomaterials, 2006, 27(15), p 2907–2915.CrossRef
30.
go back to reference N. Singh, R. Ummethala, P.S. Karamched, R. Sokkalingam, V. Gopal, G. Manivasagam and K.G. Prashanth, Spark Plasma Sintering of Ti6Al4V Metal Matrix Composites: Microstructure, Mechanical and Corrosion Properties, J. Alloys Compd., 2021, 865, p 158875.CrossRef N. Singh, R. Ummethala, P.S. Karamched, R. Sokkalingam, V. Gopal, G. Manivasagam and K.G. Prashanth, Spark Plasma Sintering of Ti6Al4V Metal Matrix Composites: Microstructure, Mechanical and Corrosion Properties, J. Alloys Compd., 2021, 865, p 158875.CrossRef
31.
go back to reference M. Hasegawa, J. Saruta, M. Hirota, T. Taniyama, Y. Sugita, K. Kubo, M. Ishijima, T. Ikeda, H. Maeda and T. Ogawa, A Newly Created Meso-, Micro-, and Nano-Scale Rough Titanium Surface Promotes Bone-Implant Integration, Int J Mol Sci, 2020, 21(3), p 783.CrossRef M. Hasegawa, J. Saruta, M. Hirota, T. Taniyama, Y. Sugita, K. Kubo, M. Ishijima, T. Ikeda, H. Maeda and T. Ogawa, A Newly Created Meso-, Micro-, and Nano-Scale Rough Titanium Surface Promotes Bone-Implant Integration, Int J Mol Sci, 2020, 21(3), p 783.CrossRef
32.
go back to reference R.A. Gittens, T. McLachlan, R. Olivares-Navarrete, Y. Cai, S. Berner, R. Tannenbaum, Z. Schwartz, K.H. Sandhage and B.D. Boyan, The Effects of Combined Micron-/Submicron-Scale Surface Roughness and Nanoscale Features on Cell Proliferation and Differentiation, Biomaterials, 2011, 32(13), p 3395–3403.CrossRef R.A. Gittens, T. McLachlan, R. Olivares-Navarrete, Y. Cai, S. Berner, R. Tannenbaum, Z. Schwartz, K.H. Sandhage and B.D. Boyan, The Effects of Combined Micron-/Submicron-Scale Surface Roughness and Nanoscale Features on Cell Proliferation and Differentiation, Biomaterials, 2011, 32(13), p 3395–3403.CrossRef
33.
go back to reference X. Chen, R.-F. Zhu, H. Gao, W.-L. Xu, G.-Y. Xiao, C.-Z. Chen and Y.-P. Lu, A High Bioactive Alkali-Treated Titanium Surface Induced by Induction Heat Treatment, Surf. Coat. Technol., 2020, 385, p 125362.CrossRef X. Chen, R.-F. Zhu, H. Gao, W.-L. Xu, G.-Y. Xiao, C.-Z. Chen and Y.-P. Lu, A High Bioactive Alkali-Treated Titanium Surface Induced by Induction Heat Treatment, Surf. Coat. Technol., 2020, 385, p 125362.CrossRef
34.
go back to reference C. Finger, M. Stiesch, M. Eisenburger, B. Breidenstein, S. Busemann and A. Greuling, Effect of Sandblasting on the Surface Roughness and Residual Stress of 3Y-TZP (zirconia), SN Appl. Sci., 2020, 2(10), p 1700.CrossRef C. Finger, M. Stiesch, M. Eisenburger, B. Breidenstein, S. Busemann and A. Greuling, Effect of Sandblasting on the Surface Roughness and Residual Stress of 3Y-TZP (zirconia), SN Appl. Sci., 2020, 2(10), p 1700.CrossRef
35.
go back to reference S.-G. Lim and H.-C. Choe, Bioactive Apatite Formation on PEO-Treated Ti-6Al-4V Alloy After 3rd Anodic Titanium Oxidation, Appl. Surf. Sci., 2019, 484, p 365–373.CrossRef S.-G. Lim and H.-C. Choe, Bioactive Apatite Formation on PEO-Treated Ti-6Al-4V Alloy After 3rd Anodic Titanium Oxidation, Appl. Surf. Sci., 2019, 484, p 365–373.CrossRef
36.
go back to reference J.I. Rosales-Leal, M.A. Rodríguez-Valverde, G. Mazzaglia, P.J. Ramón-Torregrosa, L. Díaz-Rodríguez, O. García-Martínez, M. Vallecillo-Capilla, C. Ruiz and M.A. Cabrerizo-Vílchez, Effect of Roughness, Wettability and Morphology of Engineered Titanium Surfaces on Osteoblast-Like Cell Adhesion, Colloids Surf., A, 2010, 365(1), p 222–229.CrossRef J.I. Rosales-Leal, M.A. Rodríguez-Valverde, G. Mazzaglia, P.J. Ramón-Torregrosa, L. Díaz-Rodríguez, O. García-Martínez, M. Vallecillo-Capilla, C. Ruiz and M.A. Cabrerizo-Vílchez, Effect of Roughness, Wettability and Morphology of Engineered Titanium Surfaces on Osteoblast-Like Cell Adhesion, Colloids Surf., A, 2010, 365(1), p 222–229.CrossRef
37.
go back to reference C.M. Cotrut, I.C. Ionescu, E. Ungureanu, A. Berbecaru, R.I. Zamfir, A. Vladescu and D.M. Vranceanu, Evaluation of Surface Modification Techniques on the Ability of Apatite Formation and Corrosion Behavior in Synthetic Body Fluid: An in vitro Study, Surf. Interfaces, 2021, 22, p 100866.CrossRef C.M. Cotrut, I.C. Ionescu, E. Ungureanu, A. Berbecaru, R.I. Zamfir, A. Vladescu and D.M. Vranceanu, Evaluation of Surface Modification Techniques on the Ability of Apatite Formation and Corrosion Behavior in Synthetic Body Fluid: An in vitro Study, Surf. Interfaces, 2021, 22, p 100866.CrossRef
38.
go back to reference M.K. Arumugam, M.A. Hussein, A. Yusuf Adesina and N. Al-Aqeeli, In Vitro Corrosion and Bioactivity Performance of Surface-Treated Ti–20Nb–13Zr Alloys for Orthopedic Applications, Coatings, 2019, 9(5), p 344.CrossRef M.K. Arumugam, M.A. Hussein, A. Yusuf Adesina and N. Al-Aqeeli, In Vitro Corrosion and Bioactivity Performance of Surface-Treated Ti–20Nb–13Zr Alloys for Orthopedic Applications, Coatings, 2019, 9(5), p 344.CrossRef
39.
go back to reference H. Wang, J. Liu, C. Wang, S.G. Shen, X. Wang and K. Lin, The Synergistic Effect of 3D-Printed Microscale Roughness Surface and Nanoscale Feature on Enhancing Osteogenic Differentiation and Rapid Osseointegration, J. Mater. Sci. Technol., 2021, 63, p 18–26.CrossRef H. Wang, J. Liu, C. Wang, S.G. Shen, X. Wang and K. Lin, The Synergistic Effect of 3D-Printed Microscale Roughness Surface and Nanoscale Feature on Enhancing Osteogenic Differentiation and Rapid Osseointegration, J. Mater. Sci. Technol., 2021, 63, p 18–26.CrossRef
40.
go back to reference A. Kar, K.S. Raja and M. Misra, Electrodeposition of Hydroxyapatite onto Nanotubular TiO2 for Implant Applications, Surf. Coat. Technol., 2006, 201(6), p 3723–3731.CrossRef A. Kar, K.S. Raja and M. Misra, Electrodeposition of Hydroxyapatite onto Nanotubular TiO2 for Implant Applications, Surf. Coat. Technol., 2006, 201(6), p 3723–3731.CrossRef
41.
go back to reference C.N. Elias, Y. Oshida, J.H.C. Lima and C.A. Muller, Relationship Between Surface Properties (Roughness, Wettability and Morphology) of Titanium and Dental Implant Removal Torque, J. Mech. Behav. Biomed. Mater., 2008, 1(3), p 234–242.CrossRef C.N. Elias, Y. Oshida, J.H.C. Lima and C.A. Muller, Relationship Between Surface Properties (Roughness, Wettability and Morphology) of Titanium and Dental Implant Removal Torque, J. Mech. Behav. Biomed. Mater., 2008, 1(3), p 234–242.CrossRef
42.
go back to reference F. Rupp, L. Scheideler, D. Rehbein, D. Axmann and J. Geis-Gerstorfer, Roughness Induced Dynamic Changes of Wettability of Acid Etched Titanium Implant Modifications, Biomaterials, 2004, 25(7), p 1429–1438.CrossRef F. Rupp, L. Scheideler, D. Rehbein, D. Axmann and J. Geis-Gerstorfer, Roughness Induced Dynamic Changes of Wettability of Acid Etched Titanium Implant Modifications, Biomaterials, 2004, 25(7), p 1429–1438.CrossRef
43.
go back to reference J.C.M. Souza, M.B. Sordi, M. Kanazawa, S. Ravindran, B. Henriques, F.S. Silva, C. Aparicio and L.F. Cooper, Nano-scale Modification of Titanium Implant Surfaces to Enhance Osseointegration, Acta Biomater., 2019, 94, p 112–131.CrossRef J.C.M. Souza, M.B. Sordi, M. Kanazawa, S. Ravindran, B. Henriques, F.S. Silva, C. Aparicio and L.F. Cooper, Nano-scale Modification of Titanium Implant Surfaces to Enhance Osseointegration, Acta Biomater., 2019, 94, p 112–131.CrossRef
44.
go back to reference J. Alipal, N.A.S. Mohd Pu’ad, N.H.M. Nayan, N. Sahari, H.Z. Abdullah, M.I. Idris and T.C. Lee, An Updated Review on Surface Functionalisation of Titanium and Its Alloys for Implants Applications, Mater. Today Proc., 2021, 42, p 270–282.CrossRef J. Alipal, N.A.S. Mohd Pu’ad, N.H.M. Nayan, N. Sahari, H.Z. Abdullah, M.I. Idris and T.C. Lee, An Updated Review on Surface Functionalisation of Titanium and Its Alloys for Implants Applications, Mater. Today Proc., 2021, 42, p 270–282.CrossRef
45.
go back to reference X.F. Xiao, R.F. Liu and Y.Z. Zheng, Characterization of Hydroxyapatite/Titania Composite Coatings Codeposited by a Hydrothermal–Electrochemical Method on Titanium, Surf. Coat. Technol., 2006, 200(14), p 4406–4413.CrossRef X.F. Xiao, R.F. Liu and Y.Z. Zheng, Characterization of Hydroxyapatite/Titania Composite Coatings Codeposited by a Hydrothermal–Electrochemical Method on Titanium, Surf. Coat. Technol., 2006, 200(14), p 4406–4413.CrossRef
46.
go back to reference X. Zheng, M. Huang and C. Ding, Bond Strength of Plasma-Sprayed Hydroxyapatite/Ti Composite Coatings, Biomaterials, 2000, 21(8), p 841–849.CrossRef X. Zheng, M. Huang and C. Ding, Bond Strength of Plasma-Sprayed Hydroxyapatite/Ti Composite Coatings, Biomaterials, 2000, 21(8), p 841–849.CrossRef
47.
go back to reference E.B. Ansar, K. Ravikumar, S. Suresh Babu, F.B. Fernandez, M. Komath, B. Basu and P.R. Harikrishna Varma, Inducing Apatite Pre-layer on Titanium Surface Through Hydrothermal Processing for Osseointegration, Mater. Sci. Eng. C, 2019, 105, p 110019.CrossRef E.B. Ansar, K. Ravikumar, S. Suresh Babu, F.B. Fernandez, M. Komath, B. Basu and P.R. Harikrishna Varma, Inducing Apatite Pre-layer on Titanium Surface Through Hydrothermal Processing for Osseointegration, Mater. Sci. Eng. C, 2019, 105, p 110019.CrossRef
48.
go back to reference R. Kumari and J.D. Majumdar, Studies on Corrosion Resistance and Bio-activity of Plasma Spray Deposited Hydroxylapatite (HA) Based TiO2 and ZrO2 Dispersed Composite Coatings on Titanium Alloy (Ti-6Al-4V) and the Same after Post Spray Heat Treatment, Appl. Surf. Sci., 2017, 420, p 935–943.CrossRef R. Kumari and J.D. Majumdar, Studies on Corrosion Resistance and Bio-activity of Plasma Spray Deposited Hydroxylapatite (HA) Based TiO2 and ZrO2 Dispersed Composite Coatings on Titanium Alloy (Ti-6Al-4V) and the Same after Post Spray Heat Treatment, Appl. Surf. Sci., 2017, 420, p 935–943.CrossRef
49.
go back to reference F. Haftlang, A. Zarei-Hanzaki and H.R. Abedi, The Effect of Nano-size Second Precipitates on the Structure, Apatite-Inducing Ability and in-vitro Biocompatibility of Ti-29Nb-14Ta-4.5Zr alloy, Mater. Sci. Eng. C, 2020, 109, p 110561.CrossRef F. Haftlang, A. Zarei-Hanzaki and H.R. Abedi, The Effect of Nano-size Second Precipitates on the Structure, Apatite-Inducing Ability and in-vitro Biocompatibility of Ti-29Nb-14Ta-4.5Zr alloy, Mater. Sci. Eng. C, 2020, 109, p 110561.CrossRef
50.
go back to reference H.M. Han, G.J. Phillips, S.V. Mikhalovsky, S. FitzGerald and A.W. Lloyd, Sonoelectrochemical Deposition of Calcium Phosphates on Carbon Materials: Effect of Current Density, J. Mater. Sci. - Mater. Med., 2008, 19(4), p 1787–1791.CrossRef H.M. Han, G.J. Phillips, S.V. Mikhalovsky, S. FitzGerald and A.W. Lloyd, Sonoelectrochemical Deposition of Calcium Phosphates on Carbon Materials: Effect of Current Density, J. Mater. Sci. - Mater. Med., 2008, 19(4), p 1787–1791.CrossRef
51.
go back to reference I.-J. Hwang, H.-C. Choe and W.A. Brantley, Electrochemical Characteristics of Ti-6Al-4V after Plasma Electrolytic Oxidation in Solutions Containing Ca, P, and Zn ions, Surf. Coat. Technol., 2017, 320, p 458–466.CrossRef I.-J. Hwang, H.-C. Choe and W.A. Brantley, Electrochemical Characteristics of Ti-6Al-4V after Plasma Electrolytic Oxidation in Solutions Containing Ca, P, and Zn ions, Surf. Coat. Technol., 2017, 320, p 458–466.CrossRef
Metadata
Title
Micro/Nanoscale Surface Modification of Ti6Al4V Alloy for Implant Applications
Authors
Selim Demirci
Tuncay Dikici
Arif Nihat Güllüoğlu
Publication date
08-09-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06232-y

Other articles of this Issue 2/2022

Journal of Materials Engineering and Performance 2/2022 Go to the issue

Premium Partners