Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2022

14-09-2021

Preparation of Antibacterial and Strengthened High-Density Polyethylene Composites via Compounding with Silver Ion Glass Microbead-Loaded Basalt Fiber

Authors: Wei Liu, Xian Wu, Jun Liang, Peng Ding, Yunwei Lv, Chun Zhang

Published in: Journal of Materials Engineering and Performance | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nowadays, HDPE water pipe has been used in massive quantities, which brings many conveniences to human beings but also raises problem of susceptible to bacterial contamination. Thus, we described a simple and feasible way to design cost-efficient and antibacterial HDPE pipes with excellent mechanical properties. A basalt fiber (BF) and silver ion glass microbead (AgGB) were coupled by 3-aminopropyl triethoxysilane to form a compound antibacterial agent. Then, the obtained AgGB@BF was melt-mixed with HDPE to produce antibacterial composite. By means of BF surface modification, the AgGB dispersivity in HDPE matrix was obviously improved. The adding of AgGB@BF would simultaneously increase the thermal decomposition temperature and crystallinity of HDPE composites. And, the crystallinity of HDPE could reach the maximum value of 66.3% under a high-pressure condition. The mechanical strength of resultant HDPE composite increased from 17 to 25 MPa. Meanwhile, a long-term and excellent antibacterial property of the HDPE composite was obtained against Escherichia coli. The proposed antibacterial materials can provide a way for designing and preparing eco-friendly and high-performance HDPE pipe products.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Nguyen, C. Mwsieneza, K. Mohamed, P. Cousin, M. Robert and B. Benmokrane, Long-Term Testing Methods for HDPE Pipe—Advantages and Disadvantages: A Review, Eng. Fract. Mech., 2021, 246, p 107629–107644. CrossRef K. Nguyen, C. Mwsieneza, K. Mohamed, P. Cousin, M. Robert and B. Benmokrane, Long-Term Testing Methods for HDPE Pipe—Advantages and Disadvantages: A Review, Eng. Fract. Mech., 2021, 246, p 107629–107644. CrossRef
2.
go back to reference N. Li, X. Li, Z. Shi, X. Fan and Z. Zhou, Bacterial Communities, Potential Pathogens and Antibiotic Resistance Genes of Silver–Loaded Stainless Steel Pipe Wall Biofilm in Domestic Hot Water System, J. Water Process Eng., 2021, 40, p 101935–101946. CrossRef N. Li, X. Li, Z. Shi, X. Fan and Z. Zhou, Bacterial Communities, Potential Pathogens and Antibiotic Resistance Genes of Silver–Loaded Stainless Steel Pipe Wall Biofilm in Domestic Hot Water System, J. Water Process Eng., 2021, 40, p 101935–101946. CrossRef
3.
go back to reference X. Wang, X. Hao, D. Chang, C. Zhu, L. Chen, A. Dong and G. Gao, Novel Hydrophilic N-Halamine Polymer with Enhanced Antibacterial Activity Synthesized by Inverse Emulsion Polymerization, J. Appl. Polym. Sci., 2019, 136, p 47419–47429. CrossRef X. Wang, X. Hao, D. Chang, C. Zhu, L. Chen, A. Dong and G. Gao, Novel Hydrophilic N-Halamine Polymer with Enhanced Antibacterial Activity Synthesized by Inverse Emulsion Polymerization, J. Appl. Polym. Sci., 2019, 136, p 47419–47429. CrossRef
4.
go back to reference C. Ergene and E. Palermo, Cationic Poly(benzyl ether)s as Self-Immolative Antimicrobial Polymers, Biomacromol, 2017, 18, p 3400–3409. CrossRef C. Ergene and E. Palermo, Cationic Poly(benzyl ether)s as Self-Immolative Antimicrobial Polymers, Biomacromol, 2017, 18, p 3400–3409. CrossRef
5.
go back to reference J. Lin, X. Chen, C. Chen, J. Hu, C. Zhou, P. Zhang and Z. Guo, Durably Antibacterial and Bacterially Antiadhesive Cotton Fabrics Coated by Cationic Fluorinated Polymers, ACS Appl. Mater. Interfaces., 2018, 10, p 6124–6136. CrossRef J. Lin, X. Chen, C. Chen, J. Hu, C. Zhou, P. Zhang and Z. Guo, Durably Antibacterial and Bacterially Antiadhesive Cotton Fabrics Coated by Cationic Fluorinated Polymers, ACS Appl. Mater. Interfaces., 2018, 10, p 6124–6136. CrossRef
6.
go back to reference A. Terada, K. Okuyama, M. Nishikawa et al., The Effect of Surface Charge Property on Escherichia coli initial Adhesion and Subsequent Biofilm Formation, Biotechnol. Bioeng., 2012, 109, p 1745–1754. CrossRef A. Terada, K. Okuyama, M. Nishikawa et al., The Effect of Surface Charge Property on Escherichia coli initial Adhesion and Subsequent Biofilm Formation, Biotechnol. Bioeng., 2012, 109, p 1745–1754. CrossRef
7.
go back to reference J. Song, H. Kim, Y. Jang and J. Jang, Enhanced Antibacterial Activity of Silver/Polyrhodanine-Composite-Decorated Silica Nanoparticles, ACS Appl. Mater. Interfaces, 2013, 5, p 11563–11568. CrossRef J. Song, H. Kim, Y. Jang and J. Jang, Enhanced Antibacterial Activity of Silver/Polyrhodanine-Composite-Decorated Silica Nanoparticles, ACS Appl. Mater. Interfaces, 2013, 5, p 11563–11568. CrossRef
8.
go back to reference N. Cioffi, L. Torsi, N. Ditaranto, G. Tantillo, L. Ghibelli and L. Sabbatini, Copper Nanoparticle/Polymer Composites with Antifungal and Bacteriostatic Properties, Chem. Mater., 2005, 17, p 5255–5262. CrossRef N. Cioffi, L. Torsi, N. Ditaranto, G. Tantillo, L. Ghibelli and L. Sabbatini, Copper Nanoparticle/Polymer Composites with Antifungal and Bacteriostatic Properties, Chem. Mater., 2005, 17, p 5255–5262. CrossRef
9.
go back to reference Y. Xia, X. Jiang, J. Zhang, M. Lin, X. Tang, J. Zhang and H. Liu, Synthesis and Characterization of Antimicrobial Nanosilver/Diatomite Nanocomposites and Its Water Treatment Application, Appl. Surf. Sci., 2017, 396, p 1760–1764. CrossRef Y. Xia, X. Jiang, J. Zhang, M. Lin, X. Tang, J. Zhang and H. Liu, Synthesis and Characterization of Antimicrobial Nanosilver/Diatomite Nanocomposites and Its Water Treatment Application, Appl. Surf. Sci., 2017, 396, p 1760–1764. CrossRef
10.
go back to reference P. Biswas and R. Bandyopadhyaya, Water Disinfection Using Silver Nanoparticle Impregnated Activated Carbon: Escherichia coli Cell-Killing in Batch and Continuous Packed Column Operation Over a Long Duration, Water Res., 2016, 100, p 105–115. CrossRef P. Biswas and R. Bandyopadhyaya, Water Disinfection Using Silver Nanoparticle Impregnated Activated Carbon: Escherichia coli Cell-Killing in Batch and Continuous Packed Column Operation Over a Long Duration, Water Res., 2016, 100, p 105–115. CrossRef
11.
go back to reference D.V. Quang, P.B. Sarawade, S.J. Jeon, S.H. Kim, J. Kim, Y.G. Chai and H.T. Kim, Effective Water Disinfection Using Silver Nanoparticle Containing Silica Beads, Appl. Surf. Sci., 2013, 266, p 280–287. CrossRef D.V. Quang, P.B. Sarawade, S.J. Jeon, S.H. Kim, J. Kim, Y.G. Chai and H.T. Kim, Effective Water Disinfection Using Silver Nanoparticle Containing Silica Beads, Appl. Surf. Sci., 2013, 266, p 280–287. CrossRef
12.
go back to reference G. Neser, Polymer Based Composites in Marine Use: History and Future Trends, Procedia Eng., 2017, 194, p 19–24. CrossRef G. Neser, Polymer Based Composites in Marine Use: History and Future Trends, Procedia Eng., 2017, 194, p 19–24. CrossRef
13.
go back to reference E. Monaldo, F. Nerilli and G. Vairo, Basalt-Based Fiber-Reinforced Materials and Structural Applications in Civil Engineering, Compos. Struct., 2019, 15, p 246–263. CrossRef E. Monaldo, F. Nerilli and G. Vairo, Basalt-Based Fiber-Reinforced Materials and Structural Applications in Civil Engineering, Compos. Struct., 2019, 15, p 246–263. CrossRef
14.
go back to reference V. Dhand, G. Mittal, K. Rhee, S. Park and D. Hui, A Short Review on Basalt Fiber Reinforced Polymer Composites, Compos. B Eng., 2015, 73, p 166–180. CrossRef V. Dhand, G. Mittal, K. Rhee, S. Park and D. Hui, A Short Review on Basalt Fiber Reinforced Polymer Composites, Compos. B Eng., 2015, 73, p 166–180. CrossRef
15.
go back to reference Z. Wei, Y. Hui and F. Liu, Molecular Interactions Between DOPA and Surfaces with Different Functional Groups: A Chemical Force Microscopy Study, RSC Adv., 2017, 7, p 32518–32527. CrossRef Z. Wei, Y. Hui and F. Liu, Molecular Interactions Between DOPA and Surfaces with Different Functional Groups: A Chemical Force Microscopy Study, RSC Adv., 2017, 7, p 32518–32527. CrossRef
16.
go back to reference Y. Chen, Y. Qi, Z. Tai, X. Yan and Q. Xue, Preparation, Mechanical Properties and Biocompatibility of Graphene Oxide/Ultrahigh Molecular Weight Polyethylene Composites, Eur. Polymer J., 2012, 48, p 1026–1033. CrossRef Y. Chen, Y. Qi, Z. Tai, X. Yan and Q. Xue, Preparation, Mechanical Properties and Biocompatibility of Graphene Oxide/Ultrahigh Molecular Weight Polyethylene Composites, Eur. Polymer J., 2012, 48, p 1026–1033. CrossRef
17.
go back to reference A.H. Fawcett, T. McNally, G.M. McNally, F. Andrews and J. Clarke, Blends of Bitumen with Polyethylenes, Polymer, 1999, 40, p 6337–6349. CrossRef A.H. Fawcett, T. McNally, G.M. McNally, F. Andrews and J. Clarke, Blends of Bitumen with Polyethylenes, Polymer, 1999, 40, p 6337–6349. CrossRef
18.
go back to reference W. Zhou, F. Sun, K. Pan, G. Tian, B. Jiang, Z. Ren, C. Tian and H. Fu, Well-Ordered Large-Pore Mesoporous Anatase TiO2 with Remarkably High Thermal Stability and Improved Crystallinity: Preparation, Characterization, and Photocatalytic Performance, Adv. Func. Mater., 2011, 21, p 1922–1930. CrossRef W. Zhou, F. Sun, K. Pan, G. Tian, B. Jiang, Z. Ren, C. Tian and H. Fu, Well-Ordered Large-Pore Mesoporous Anatase TiO2 with Remarkably High Thermal Stability and Improved Crystallinity: Preparation, Characterization, and Photocatalytic Performance, Adv. Func. Mater., 2011, 21, p 1922–1930. CrossRef
19.
go back to reference H. Wang, L. Li, Y. Chen, M. Li and J. Yu, Efficient Thermal Transport Highway Construction Within Epoxy Matrix via Hybrid Carbon Fibers and Alumina Particles, ACS Omega, 2020, 5, p 1170–1177. CrossRef H. Wang, L. Li, Y. Chen, M. Li and J. Yu, Efficient Thermal Transport Highway Construction Within Epoxy Matrix via Hybrid Carbon Fibers and Alumina Particles, ACS Omega, 2020, 5, p 1170–1177. CrossRef
20.
go back to reference Y. Li, D. Yin and W. Liu, Fabrication of Biodegradable Poly (lactic acid)/Carbon Nanotube Nanocomposite Foams: Significant Improvement on Rheological Property and Foamability, Int. J. Biol. Macromol., 2020, 163, p 1175–1186. CrossRef Y. Li, D. Yin and W. Liu, Fabrication of Biodegradable Poly (lactic acid)/Carbon Nanotube Nanocomposite Foams: Significant Improvement on Rheological Property and Foamability, Int. J. Biol. Macromol., 2020, 163, p 1175–1186. CrossRef
21.
go back to reference Y. Yang, X. Li, Q. Zhang, C. Xia, C. Chen, X. Chen and P. Yu, Foaming of Poly(lactic acid) with Supercritical CO2: The Combined Effect of Crystallinity and crystalline morphology on cellular structure, J. Supercrit. Fluids, 2019, 145, p 122–132. CrossRef Y. Yang, X. Li, Q. Zhang, C. Xia, C. Chen, X. Chen and P. Yu, Foaming of Poly(lactic acid) with Supercritical CO2: The Combined Effect of Crystallinity and crystalline morphology on cellular structure, J. Supercrit. Fluids, 2019, 145, p 122–132. CrossRef
22.
go back to reference S.Y. Fu, B. Lauke, E. Mäder, C.Y. Yue and X. Hu, Tensile Properties of Short Glass Fiber and Short Carbon Fiber Reinforced Polypropylene Composites, Compos. A, 2000, 31, p 1117–1125. CrossRef S.Y. Fu, B. Lauke, E. Mäder, C.Y. Yue and X. Hu, Tensile Properties of Short Glass Fiber and Short Carbon Fiber Reinforced Polypropylene Composites, Compos. A, 2000, 31, p 1117–1125. CrossRef
23.
go back to reference S. Molnár, S. Rosenberger, J. Gulyás and B. Pukánszky, Structure and Impact Resistance of Short Carbon Fiber Reinforced Polyamide 6 Composites, J. Macromol. Sci. Part B Phys., 1999, 38, p 721–735. CrossRef S. Molnár, S. Rosenberger, J. Gulyás and B. Pukánszky, Structure and Impact Resistance of Short Carbon Fiber Reinforced Polyamide 6 Composites, J. Macromol. Sci. Part B Phys., 1999, 38, p 721–735. CrossRef
24.
go back to reference N.G. Karsli and A. Aytac, Effects of Maleated Polypropylene on the Morphology, Thermal and Mechanical Properties of Short Carbon Fiber Reinforced Polypropylene Composites, Mater. Des., 2011, 32, p 4069–4073. CrossRef N.G. Karsli and A. Aytac, Effects of Maleated Polypropylene on the Morphology, Thermal and Mechanical Properties of Short Carbon Fiber Reinforced Polypropylene Composites, Mater. Des., 2011, 32, p 4069–4073. CrossRef
25.
go back to reference F.A. Shishevan, H. Akbulut and M.A. Mohtadi, Low Velocity Impact Behavior of Basalt Fiber-Reinforced Polymer Composites, J. Mater. Eng. Perform., 2017, 26, p 2890–2900. CrossRef F.A. Shishevan, H. Akbulut and M.A. Mohtadi, Low Velocity Impact Behavior of Basalt Fiber-Reinforced Polymer Composites, J. Mater. Eng. Perform., 2017, 26, p 2890–2900. CrossRef
26.
go back to reference N.G. Karsli and A. Aytac, Tensile and Thermomechanical Properties of Short Carbon Fiber Reinforced Polyamide 6 Composites, Compos. B, 2013, 51, p 270–275. CrossRef N.G. Karsli and A. Aytac, Tensile and Thermomechanical Properties of Short Carbon Fiber Reinforced Polyamide 6 Composites, Compos. B, 2013, 51, p 270–275. CrossRef
27.
go back to reference L. Szabó, R. Milotskyi, T. Fujie, T. Tsukegi, N. Wada, K. Ninomiya and K. Takahashi, Short Carbon Fiber Reinforced Polymers: Utilizing Lignin to Engineer Potentially Sustainable Resource-Based Biocomposites, Front. Chem., 2019, 7, p 757–761. CrossRef L. Szabó, R. Milotskyi, T. Fujie, T. Tsukegi, N. Wada, K. Ninomiya and K. Takahashi, Short Carbon Fiber Reinforced Polymers: Utilizing Lignin to Engineer Potentially Sustainable Resource-Based Biocomposites, Front. Chem., 2019, 7, p 757–761. CrossRef
28.
go back to reference X. Zhang, X. Zhou, H. Ni, X. Rong, Q. Zhang and X. Xiao, Surface Modification of Basalt Fiber with Organic/Inorganic Composites For Biofilm Carrier Used in Wastewater Treatment, ACS Sustain. Chem. Eng., 2018, 6, p 2596–2602. CrossRef X. Zhang, X. Zhou, H. Ni, X. Rong, Q. Zhang and X. Xiao, Surface Modification of Basalt Fiber with Organic/Inorganic Composites For Biofilm Carrier Used in Wastewater Treatment, ACS Sustain. Chem. Eng., 2018, 6, p 2596–2602. CrossRef
Metadata
Title
Preparation of Antibacterial and Strengthened High-Density Polyethylene Composites via Compounding with Silver Ion Glass Microbead-Loaded Basalt Fiber
Authors
Wei Liu
Xian Wu
Jun Liang
Peng Ding
Yunwei Lv
Chun Zhang
Publication date
14-09-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06222-0

Other articles of this Issue 2/2022

Journal of Materials Engineering and Performance 2/2022 Go to the issue

Premium Partners