Skip to main content
Top
Published in: Fluid Dynamics 4/2020

01-07-2020

Experimental Study of Stable Circular Hydraulic Jumps

Authors: A. Asadi, S. M. Malek Jafarian, A. R. Teymourtash

Published in: Fluid Dynamics | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The geometry of a downstream obstacle is one of the major parameters affecting the stability range of circular hydraulic jumps and, yet, it has not been adequately addressed by researchers. The present study investigates the effects of the downstream obstacle geometry and the parameters like the flow rate, the jet diameter, and the downstream obstacle height on the stability range of circular hydraulic jumps. Its findings indicate that an increase in the fluid jet diameter leads to the narrowing of the stability range of circular jumps. In addition, an increase in the downstream obstacle height produces a reduction of the hydraulic jump radius and its stability range. The results also show that in the presence of a square downstream obstacle the stability range of circular jumps is less than that in the case of a triangular downstream obstacle and greater than in the case of a circular downstream obstacle.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
In classifying the types of flows basing on the Froude number, the critical flow is the flow with a Froude number equal to one. The Froude number (Fr = \({v}\)/c) is the fluid velocity \({v}\) divided by the wave velocity in shallow water c = \(\sqrt {gy} \). If the fluid velocity is higher than the wave velocity, the flow is supercritical and it will carry the wave. So, the wave cannot move upstream. In this case, any phenomenon that occurs in the stream affects only its downstream. On the other hand, if the fluid velocity is lower than the wave velocity, the flow is subcritical and the wave can move upstream. In this case, any phenomenon that occurs in the flow also affects its upstream.
 
Literature
1.
go back to reference C. Avedisian and Z. Zhao, “The circular hydraulic jump in low gravity,” Proc. Roy. Soc. London. Ser. A 456, 2127–2151 (2000).CrossRef C. Avedisian and Z. Zhao, “The circular hydraulic jump in low gravity,” Proc. Roy. Soc. London. Ser. A 456, 2127–2151 (2000).CrossRef
2.
go back to reference R. Kate, P. Das, and S. Chakraborty, “An investigation on non-circular hydraulic jumps formed due to obliquely impinging circular fluid jets,” Exp. Therm. Fluid Sci. 32, 1429–1439 (2008).CrossRef R. Kate, P. Das, and S. Chakraborty, “An investigation on non-circular hydraulic jumps formed due to obliquely impinging circular fluid jets,” Exp. Therm. Fluid Sci. 32, 1429–1439 (2008).CrossRef
3.
go back to reference Lord Rayleigh, “On the theory of long waves and bores,” Proc. Roy. Soc. London. Ser. A. 90(619), 324–328 (1914). Lord Rayleigh, “On the theory of long waves and bores,” Proc. Roy. Soc. London. Ser. A. 90(619), 324–328 (1914).
4.
go back to reference G. Birkhoff and E. Zarantonello, Jets, Wakes, and Cavities (Academic Press, New York, 1957).MATH G. Birkhoff and E. Zarantonello, Jets, Wakes, and Cavities (Academic Press, New York, 1957).MATH
6.
go back to reference A. Craik, R. Latham, M. Fawkes, and P. Gribbon, “The circular hydraulic jump,” J. Fluid Mech. 112, 347–362 (1981).ADSCrossRef A. Craik, R. Latham, M. Fawkes, and P. Gribbon, “The circular hydraulic jump,” J. Fluid Mech. 112, 347–362 (1981).ADSCrossRef
7.
go back to reference M. Errico, A study of the interaction of fluid jets with solid surfaces (University of California, San Diego, 1986). M. Errico, A study of the interaction of fluid jets with solid surfaces (University of California, San Diego, 1986).
8.
go back to reference X. Liu and J. H. Lienhard, “The hydraulic jump in circular jet impingement and in other thin fluid films,” Exp. Fluids. 15, 108–116 (1993).CrossRef X. Liu and J. H. Lienhard, “The hydraulic jump in circular jet impingement and in other thin fluid films,” Exp. Fluids. 15, 108–116 (1993).CrossRef
9.
go back to reference J. W. Bush and J. M. Aristoff, “The influence of surface tension on the circular hydraulic jump,” J. Fluid Mech. 489, 229–238 (2003).ADSMathSciNetCrossRef J. W. Bush and J. M. Aristoff, “The influence of surface tension on the circular hydraulic jump,” J. Fluid Mech. 489, 229–238 (2003).ADSMathSciNetCrossRef
10.
go back to reference C. Ellegaard, A. E. Hansen, A. Haaning, and T. Bohr, “Experimental results on flow separation and transitions in the circular hydraulic jump,” PhysicaScripta105 (1996). C. Ellegaard, A. E. Hansen, A. Haaning, and T. Bohr, “Experimental results on flow separation and transitions in the circular hydraulic jump,” PhysicaScripta105 (1996).
11.
go back to reference J. W. Bush, J. M. Aristoff, and A. Hosoi, “An experimental investigation of the stability of the circular hydraulic jump,” J. Fluid Mech. 558, 33–52 (2006).ADSCrossRef J. W. Bush, J. M. Aristoff, and A. Hosoi, “An experimental investigation of the stability of the circular hydraulic jump,” J. Fluid Mech. 558, 33–52 (2006).ADSCrossRef
12.
go back to reference T. Bohr, P. Dimon, and V. Putkaradze, “Shallow-water approach to the circular hydraulic jump,” J. Fluid Mech. 254, 635–648 (1993).ADSCrossRef T. Bohr, P. Dimon, and V. Putkaradze, “Shallow-water approach to the circular hydraulic jump,” J. Fluid Mech. 254, 635–648 (1993).ADSCrossRef
13.
go back to reference T. Bohr, V. Putkaradze, and S. Watanabe, “Averaging theory for the structure of hydraulic jumps and separation in laminar free-surface flows,” Phys. Rev. Lett. 79, 1038 (1997).ADSCrossRef T. Bohr, V. Putkaradze, and S. Watanabe, “Averaging theory for the structure of hydraulic jumps and separation in laminar free-surface flows,” Phys. Rev. Lett. 79, 1038 (1997).ADSCrossRef
15.
go back to reference K. Yokoi and F. Xiao, “A numerical study of the transition in the circular hydraulic jump,” Phys. Lett. A257, 153–157 (1999).ADSCrossRef K. Yokoi and F. Xiao, “A numerical study of the transition in the circular hydraulic jump,” Phys. Lett. A257, 153–157 (1999).ADSCrossRef
16.
go back to reference K. Yokoi and F. Xiao, “Mechanism of structure formation in circular hydraulic jumps: Numerical studies of strongly deformed free-surface shallow flows,” Phys. D: Nonlinear Phenomena161, 202–219 (2002).ADSMathSciNetCrossRef K. Yokoi and F. Xiao, “Mechanism of structure formation in circular hydraulic jumps: Numerical studies of strongly deformed free-surface shallow flows,” Phys. D: Nonlinear Phenomena161, 202–219 (2002).ADSMathSciNetCrossRef
17.
go back to reference V. Ferreira, M. Tome, N. Mangiavacchi, A. Castelo, J. Cuminato, A. Fortuna, and S. Mckee, “High-order upwinding and the hydraulic jump,” Int. J. Numer. Methods Fluids39, 549–583 (2002).ADSMathSciNetCrossRef V. Ferreira, M. Tome, N. Mangiavacchi, A. Castelo, J. Cuminato, A. Fortuna, and S. Mckee, “High-order upwinding and the hydraulic jump,” Int. J. Numer. Methods Fluids39, 549–583 (2002).ADSMathSciNetCrossRef
18.
go back to reference S. Watanabe, V. Putkaradze, and T. Bohr, “Integral methods for shallow free-surface flows with separation,” J. Fluid Mech. 480, 233–265 (2003).ADSMathSciNetCrossRef S. Watanabe, V. Putkaradze, and T. Bohr, “Integral methods for shallow free-surface flows with separation,” J. Fluid Mech. 480, 233–265 (2003).ADSMathSciNetCrossRef
19.
go back to reference A. K. Ray and J. K. Bhattacharjee, “Standing and travelling waves in the shallow-water circular hydraulic jump,” Phys. Lett. A 371, 241–248 (2007).ADSCrossRef A. K. Ray and J. K. Bhattacharjee, “Standing and travelling waves in the shallow-water circular hydraulic jump,” Phys. Lett. A 371, 241–248 (2007).ADSCrossRef
20.
go back to reference J. Mikielewicz and D. Mikielewicz, “A simple dissipation model of circular hydraulic jump,” Int. J. Heat Mass Transfer52, 17–21 (2009).CrossRef J. Mikielewicz and D. Mikielewicz, “A simple dissipation model of circular hydraulic jump,” Int. J. Heat Mass Transfer52, 17–21 (2009).CrossRef
21.
go back to reference M. Passandideh-Fard, A. R. Teymourtash, and M. Khavari, “Numerical study of circular hydraulic jump using volume-of-fluid method,” J. Fluids Eng. 133, 011401 (2011).CrossRef M. Passandideh-Fard, A. R. Teymourtash, and M. Khavari, “Numerical study of circular hydraulic jump using volume-of-fluid method,” J. Fluids Eng. 133, 011401 (2011).CrossRef
22.
go back to reference C. W. Hirt and B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries,” J. Comput. Phys. 39, 201–225 (1981).ADSCrossRef C. W. Hirt and B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries,” J. Comput. Phys. 39, 201–225 (1981).ADSCrossRef
23.
go back to reference C. Ellegaard, A. E. Hansen, A. Haaning, K. Hansen, A. Marcussen, T. Bohr, J. L. Hansen, and S. Watanabe, “Cover illustration: Polygonal hydraulic jumps,” Nonlinearity12, 1 (1999).ADSMathSciNetCrossRef C. Ellegaard, A. E. Hansen, A. Haaning, K. Hansen, A. Marcussen, T. Bohr, J. L. Hansen, and S. Watanabe, “Cover illustration: Polygonal hydraulic jumps,” Nonlinearity12, 1 (1999).ADSMathSciNetCrossRef
24.
go back to reference A. R. Teymourtash and M. Mokhlesi, “Experimental investigation of stationary and rotational structures in non-circular hydraulic jumps,” J. Fluid Mech.762, 344–360 (2015).ADSCrossRef A. R. Teymourtash and M. Mokhlesi, “Experimental investigation of stationary and rotational structures in non-circular hydraulic jumps,” J. Fluid Mech.762, 344–360 (2015).ADSCrossRef
25.
go back to reference A. R. Kasimov, “A stationary circular hydraulic jump, the limits of its existence and its gasdynamic analogue,” J. Fluid Mech. 601, 189–198 (2008).ADSMathSciNetCrossRef A. R. Kasimov, “A stationary circular hydraulic jump, the limits of its existence and its gasdynamic analogue,” J. Fluid Mech. 601, 189–198 (2008).ADSMathSciNetCrossRef
26.
go back to reference E. A. Martens, S. Watanabe, and T. Bohr, “Model for polygonal hydraulic jumps,” Phys. Rev. E 85, 036316 (2012).ADSCrossRef E. A. Martens, S. Watanabe, and T. Bohr, “Model for polygonal hydraulic jumps,” Phys. Rev. E 85, 036316 (2012).ADSCrossRef
Metadata
Title
Experimental Study of Stable Circular Hydraulic Jumps
Authors
A. Asadi
S. M. Malek Jafarian
A. R. Teymourtash
Publication date
01-07-2020
Publisher
Pleiades Publishing
Published in
Fluid Dynamics / Issue 4/2020
Print ISSN: 0015-4628
Electronic ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462820040035

Other articles of this Issue 4/2020

Fluid Dynamics 4/2020 Go to the issue

Premium Partners