Skip to main content
Top
Published in: Polymer Bulletin 7/2021

16-07-2020 | Original Paper

Fabrication and evaluation of structural, thermal, mechanical and optical behavior of epoxy–TEOS/MWCNTs composites for solar cell covering

Authors: Alaa M. Abd-Elnaiem, Seenaa I. Hussein, Hasan S. Assaedi, A. M. Mebed

Published in: Polymer Bulletin | Issue 7/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present study, hybrid organic–inorganic composites were fabricated from epoxy–TEOS (tetraethyl orthosilicate, Si(OC2H5)4) with various ratios (0–10 wt%) of multiwall carbon nanotubes (MWCNTs) as reinforcing nanofillers by the sol–gel method. The effect of the MWCNTs ratios on the structural, optical and mechanical characteristics and the thermal conductivity of the epoxy–TEOS/MWCNTs composites is investigated. The X-ray diffraction (XRD) analysis reveals that the pure epoxy-TEOS is amorphous, while epoxy–TEOS/MWCNTs composites are crystalline with an orthorhombic crystal structure that has an average crystallite size of 3.9 ± 0.15 nm. In addition, thermal stability and thermal conductivity were improved by adding TEOS and MWCNTs, whereas the exothermic peak temperature decreases compared with pure epoxy-TEOS. Similarly, the hardness Shore-D and tensile strength reach the optimum value at 4 wt% MWCNTs content. The significant improvement in the mechanical and thermal properties of the prepared composites could be attributed to the synergistic effect of MWCNTs and epoxy–TEOS which was emphasized by Fourier transform infrared (FTIR) spectroscopy. Moreover, epoxy-TEOS sample has high optical transmittance (T) within the visible region, but the composites samples are transparent at λ < 800 nm and have a lower value of T. The indirect optical band gap decreases from 3.59 to 2.91 eV with an increase in MWCNTs fractions from 0 to 10 wt%, respectively. However, the glass transition reflects the onset of decomposition temperatures was also considerably increased. The acquired outcomes such as a large increase in thermal conductivity and tensile stress coupled with reduced T make the composites readily applicable for a  variety of applications.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yemam D, Kim B-J, Moon J-Y, Yi C (2017) Mechanical properties of epoxy resin mortar with sand washing waste as filler. Materials 10(3):246PubMedCentral Yemam D, Kim B-J, Moon J-Y, Yi C (2017) Mechanical properties of epoxy resin mortar with sand washing waste as filler. Materials 10(3):246PubMedCentral
2.
go back to reference Hussein SI, Abd Elnaiem AM, Asafa TB, Jaafar HI (2018) Effect of incorporation of conductive fillers on mechanical properties and thermal conductivity of epoxy resin composite. Appl Phys A 124(7):475 Hussein SI, Abd Elnaiem AM, Asafa TB, Jaafar HI (2018) Effect of incorporation of conductive fillers on mechanical properties and thermal conductivity of epoxy resin composite. Appl Phys A 124(7):475
3.
go back to reference Zeng S, Shen M, Yang L, Xue YC, Lu F, Chen S (2018) Self-assembled montmorillonite–carbon nanotube for epoxy composites with superior mechanical and thermal properties. Compos Sci Technol 162(7):131–139 Zeng S, Shen M, Yang L, Xue YC, Lu F, Chen S (2018) Self-assembled montmorillonite–carbon nanotube for epoxy composites with superior mechanical and thermal properties. Compos Sci Technol 162(7):131–139
4.
go back to reference Burger N, Laachachia A, Ferriolb M, Lutzc M, Toniazzoa V, Ruch D (2016) Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog Polym Sci 61:1–28 Burger N, Laachachia A, Ferriolb M, Lutzc M, Toniazzoa V, Ruch D (2016) Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog Polym Sci 61:1–28
5.
go back to reference Shen D, Zhan Z, Liu Z, Cao Y, Zhou L, Liu Y, Dai W (2017) Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires. Sci Rep 7(1):2606PubMedPubMedCentral Shen D, Zhan Z, Liu Z, Cao Y, Zhou L, Liu Y, Dai W (2017) Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires. Sci Rep 7(1):2606PubMedPubMedCentral
6.
go back to reference Fei-Peng D, Tang H, Huang D-Y (2013) Thermal conductivity of epoxy resin reinforced with magnesium oxide coated multiwalled carbon nanotubes. Int J Polym Sci 2013:Article ID 541823 Fei-Peng D, Tang H, Huang D-Y (2013) Thermal conductivity of epoxy resin reinforced with magnesium oxide coated multiwalled carbon nanotubes. Int J Polym Sci 2013:Article ID 541823
7.
go back to reference Congliang H, Zhen W, Huang Z, Luo D (2018) Thermal and electrical conductivities of epoxy resin-based composites incorporated with carbon nanotubes and TiO2 for a thermoelectric application. Appl Phys A 24(1):38 Congliang H, Zhen W, Huang Z, Luo D (2018) Thermal and electrical conductivities of epoxy resin-based composites incorporated with carbon nanotubes and TiO2 for a thermoelectric application. Appl Phys A 24(1):38
8.
go back to reference Backesa EH, Senea TS, Passadorb FR, Pessan LA (2018) Electrical, thermal and mechanical properties of epoxy/CNT/calcium carbonate nanocomposites. Mater Res 21(1):e20170801 Backesa EH, Senea TS, Passadorb FR, Pessan LA (2018) Electrical, thermal and mechanical properties of epoxy/CNT/calcium carbonate nanocomposites. Mater Res 21(1):e20170801
9.
go back to reference Dresselhaus MS, Dresselhaus G, Eklund PC, Rao AM (2000) Carbon nanotubes. In: Andreoni W (ed) The physics of fullerene-based and fullerene-related materials. Springer, Netherlands, pp 331–379 Dresselhaus MS, Dresselhaus G, Eklund PC, Rao AM (2000) Carbon nanotubes. In: Andreoni W (ed) The physics of fullerene-based and fullerene-related materials. Springer, Netherlands, pp 331–379
10.
go back to reference Campbell FC (2010) Structural composite materials. ASM international, Cleveland Campbell FC (2010) Structural composite materials. ASM international, Cleveland
11.
go back to reference Ahmadi Z (2019) Epoxy in nanotechnology: a short review. Prog Org Coat 132:445–448 Ahmadi Z (2019) Epoxy in nanotechnology: a short review. Prog Org Coat 132:445–448
12.
go back to reference Lee JH, Rhee KY, Park SJ (2011) Effect of silane modification and temperature on tensile and fractural behaviours of carbon nanotube/epoxy nanocomposites. J Nanosci Nanotechnol 11:275–80PubMed Lee JH, Rhee KY, Park SJ (2011) Effect of silane modification and temperature on tensile and fractural behaviours of carbon nanotube/epoxy nanocomposites. J Nanosci Nanotechnol 11:275–80PubMed
13.
go back to reference Avilés F, Cauich-Rodríguez JV, Rodríguez-González JA, May-Pat A (2011) Oxidation and silanization of MWCNTs for MWCNT/vinyl ester composites. Express Polym Lett 9:766–776 Avilés F, Cauich-Rodríguez JV, Rodríguez-González JA, May-Pat A (2011) Oxidation and silanization of MWCNTs for MWCNT/vinyl ester composites. Express Polym Lett 9:766–776
14.
go back to reference Wang S, Liang Z, Liu T, Wang B, Zhang C (2006) Effective aminofunctionalization of carbon nanotubes for reinforcing epoxy polymer composites. Nanotechnology 17(6):1551–1557PubMed Wang S, Liang Z, Liu T, Wang B, Zhang C (2006) Effective aminofunctionalization of carbon nanotubes for reinforcing epoxy polymer composites. Nanotechnology 17(6):1551–1557PubMed
15.
go back to reference Shen JF, Huang W, Wu L, Hu Y, Ye M (2007) The reinforcement role of different amino-functionalized multi-walled carbon nanotubes in epoxy nanocomposites. Compos Sci Technol 67(15–16):3041–3150 Shen JF, Huang W, Wu L, Hu Y, Ye M (2007) The reinforcement role of different amino-functionalized multi-walled carbon nanotubes in epoxy nanocomposites. Compos Sci Technol 67(15–16):3041–3150
16.
go back to reference Chen W, Auad ML, Williams RJ, Nutt SR (2006) Improving the dispersion and flexural strength of multiwalled carbon nanotubes–stiff epoxy composites through β-hydroxyester surface functionalization coupled with the anionic homopolymerization of the epoxy matrix. Eur Polym J 42:2765–72 Chen W, Auad ML, Williams RJ, Nutt SR (2006) Improving the dispersion and flexural strength of multiwalled carbon nanotubes–stiff epoxy composites through β-hydroxyester surface functionalization coupled with the anionic homopolymerization of the epoxy matrix. Eur Polym J 42:2765–72
17.
go back to reference Meng H, Sui G, Fang P, Yang R (2008) Effects of acid-and diamine-modified MWNTs on the mechanical properties and crystallization behavior of polyamide 6. Polymer 49(2):610–620 Meng H, Sui G, Fang P, Yang R (2008) Effects of acid-and diamine-modified MWNTs on the mechanical properties and crystallization behavior of polyamide 6. Polymer 49(2):610–620
18.
go back to reference Wang X, Zhao Y, Jin J, Song M (2017) A comparative study on the effect of carbon fillers on electrical and thermal conductivity of a cyanate ester resin. Polym Test 60:293–298 Wang X, Zhao Y, Jin J, Song M (2017) A comparative study on the effect of carbon fillers on electrical and thermal conductivity of a cyanate ester resin. Polym Test 60:293–298
19.
go back to reference Pumera M, Merkoçi A, Alegret S (2006) Carbon nanotube-epoxy composites for electrochemical sensing. Sens Actuators B Chem 113:617–622 Pumera M, Merkoçi A, Alegret S (2006) Carbon nanotube-epoxy composites for electrochemical sensing. Sens Actuators B Chem 113:617–622
20.
go back to reference Yun Y-H, Shanov V, Schulz MJ, Narasimhadevara S, Subramaniam S, Hurd D, Boerio FJ (2005) Development of novel single-wall carbon nanotube–epoxy composite ply actuators. SMART Mater Struct 14:1526–1532 Yun Y-H, Shanov V, Schulz MJ, Narasimhadevara S, Subramaniam S, Hurd D, Boerio FJ (2005) Development of novel single-wall carbon nanotube–epoxy composite ply actuators. SMART Mater Struct 14:1526–1532
21.
go back to reference Sumio I (1991) Helical microtubules of graphitic carbon. Nature 354:56–58 Sumio I (1991) Helical microtubules of graphitic carbon. Nature 354:56–58
22.
go back to reference Arash B, Wang Q, Varadan VK (2014) Mechanical properties of carbon nanotube/polymer composites. Sci Rep (Nature Publisher Group) 4:6479 Arash B, Wang Q, Varadan VK (2014) Mechanical properties of carbon nanotube/polymer composites. Sci Rep (Nature Publisher Group) 4:6479
23.
go back to reference Hadavand BS, Javid KM, Gharagozlou M (2013) Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite. Mater Des 50:62–67 Hadavand BS, Javid KM, Gharagozlou M (2013) Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite. Mater Des 50:62–67
24.
go back to reference Sapiai N, Jumahat A, Mahmud J (2018) Mechanical properties of functionalised CNT filled kenaf reinforced epoxy composites. Mater Res Express 5(4):045034 Sapiai N, Jumahat A, Mahmud J (2018) Mechanical properties of functionalised CNT filled kenaf reinforced epoxy composites. Mater Res Express 5(4):045034
25.
go back to reference Jinho H, Jeongwoo L, Chang H, Sang S (2010) Improvement of thermal conductivity of poly (dimethyl siloxane) using silica-coated multi-walled carbon nanotube. J Therm Anal Calorim 101(1):297–302 Jinho H, Jeongwoo L, Chang H, Sang S (2010) Improvement of thermal conductivity of poly (dimethyl siloxane) using silica-coated multi-walled carbon nanotube. J Therm Anal Calorim 101(1):297–302
26.
go back to reference Jiaxi G, Saha P, Liang J, Saha M, Grady BP (2013) Multi-walled carbon nanotubes coated by multi-layer silica for improving thermal conductivity of polymer composites. J Therm Anal Calorim 113(2):467–474 Jiaxi G, Saha P, Liang J, Saha M, Grady BP (2013) Multi-walled carbon nanotubes coated by multi-layer silica for improving thermal conductivity of polymer composites. J Therm Anal Calorim 113(2):467–474
27.
go back to reference Z. Jinchao, F. Du, W. Cu, P. Zhu, X. Zhou and X. Xie., Effect of silica coating thickness on the thermal conductivity of polyurethane/SiO2 coated multiwalled carbon nanotube composites, Composites Part A: Applied Science and Manufing, vol. 58, pp. 1–6, 2014. Z. Jinchao, F. Du, W. Cu, P. Zhu, X. Zhou and X. Xie., Effect of silica coating thickness on the thermal conductivity of polyurethane/SiO2 coated multiwalled carbon nanotube composites, Composites Part A: Applied Science and Manufing, vol. 58, pp. 1–6, 2014.
28.
go back to reference An L, Zhang C, Zhang Y-F (2017) Thermal conductivity of graphene-polymer composites: Mechanisms, properties, and applications. Polymers 9(9):437 An L, Zhang C, Zhang Y-F (2017) Thermal conductivity of graphene-polymer composites: Mechanisms, properties, and applications. Polymers 9(9):437
29.
go back to reference Kim P, Shi L, Majumdar A, McEuen P (2001) Thermal transport measurements of individual multi-walled nanotubes. Phys Rev Lett 87:215502PubMed Kim P, Shi L, Majumdar A, McEuen P (2001) Thermal transport measurements of individual multi-walled nanotubes. Phys Rev Lett 87:215502PubMed
30.
go back to reference Gonnet P, Liang Z, Choi E, Kadambala R, Zhang C, Brooks J et al (2006) Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites. Curr Appl Phys 6:119–122 Gonnet P, Liang Z, Choi E, Kadambala R, Zhang C, Brooks J et al (2006) Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites. Curr Appl Phys 6:119–122
31.
go back to reference Hone J, Llaguno M, Nemes N, Johnson A, Fischer J, Walters D et al (2000) Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl Phys Lett 77:666–668 Hone J, Llaguno M, Nemes N, Johnson A, Fischer J, Walters D et al (2000) Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl Phys Lett 77:666–668
32.
go back to reference Itkis M, Borondics F, Yu A, Haddon R (2007) Thermal conductivity measurements of semitransparent single-walled carbon nanotube films by a bolometric technique. Nano Lett 7:900–904PubMed Itkis M, Borondics F, Yu A, Haddon R (2007) Thermal conductivity measurements of semitransparent single-walled carbon nanotube films by a bolometric technique. Nano Lett 7:900–904PubMed
33.
go back to reference Ya-nan M, Liang G, Gu A, Zhao F, Yuan L (2013) Thermally conductive aluminum nitride–multiwalled carbon nanotube/cyanate ester composites with high flame retardancy and low dielectric loss. Ind Eng Chem Res 52(9):3342–3353 Ya-nan M, Liang G, Gu A, Zhao F, Yuan L (2013) Thermally conductive aluminum nitride–multiwalled carbon nanotube/cyanate ester composites with high flame retardancy and low dielectric loss. Ind Eng Chem Res 52(9):3342–3353
34.
go back to reference Ali SS, Al-Muaikel NS (2010) Thermal properties of epoxy (DGEBA)/phenolic resin (NOVOLAC) blends. Arab J Sci Eng 35(1B):7–14 Ali SS, Al-Muaikel NS (2010) Thermal properties of epoxy (DGEBA)/phenolic resin (NOVOLAC) blends. Arab J Sci Eng 35(1B):7–14
35.
go back to reference Ao L, Li W, Ling Y, Gan W, Brady MA, Wang C (2016) Effects of silica-coated carbon nanotubes on the curing behavior and properties of epoxy composites. RSC Adv 6(28):23318–23326 Ao L, Li W, Ling Y, Gan W, Brady MA, Wang C (2016) Effects of silica-coated carbon nanotubes on the curing behavior and properties of epoxy composites. RSC Adv 6(28):23318–23326
36.
go back to reference Jiang C, Zhang J, Lin S, Ju S, Jiang D (2015) Effects of free organic groups in carbon nanotubes on glass transition temperature of epoxy matrix composites. Compos Sci Technol 118:269–275 Jiang C, Zhang J, Lin S, Ju S, Jiang D (2015) Effects of free organic groups in carbon nanotubes on glass transition temperature of epoxy matrix composites. Compos Sci Technol 118:269–275
37.
go back to reference Gulotty R, Castellino M, Jagdale P, Tagliaferro A, Balandin AA (2013) Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube–polymer nanocomposites. ACS Nano 7(6):5114–5121PubMed Gulotty R, Castellino M, Jagdale P, Tagliaferro A, Balandin AA (2013) Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube–polymer nanocomposites. ACS Nano 7(6):5114–5121PubMed
38.
go back to reference Kareem AA (2018) Thermal and electrical properties of polyimide/PANI nanofiber composites prepared via in situ polymerization. Mater Sci Poland 36(2):283–287 Kareem AA (2018) Thermal and electrical properties of polyimide/PANI nanofiber composites prepared via in situ polymerization. Mater Sci Poland 36(2):283–287
39.
go back to reference Gojny FH, Wichmann MH, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K (2006) Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47:2036–2045 Gojny FH, Wichmann MH, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K (2006) Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47:2036–2045
40.
go back to reference Kargar F, Barani Z, Lewis JS, Debnath B, Salgado R, Aytan E, Lake R, Balandin AA (2018) Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers. ACS Appl Mater Interfaces 10(43):37555–37565PubMed Kargar F, Barani Z, Lewis JS, Debnath B, Salgado R, Aytan E, Lake R, Balandin AA (2018) Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers. ACS Appl Mater Interfaces 10(43):37555–37565PubMed
41.
go back to reference Ibrahim SS, Ayesh AS (2015) Electrical and optical properties of functionalized multiwalled carbon nanotubes/poly (3-octylthiophene)/polystyrene composites. J Thermoplast Compos Mater 28(2):225–240 Ibrahim SS, Ayesh AS (2015) Electrical and optical properties of functionalized multiwalled carbon nanotubes/poly (3-octylthiophene)/polystyrene composites. J Thermoplast Compos Mater 28(2):225–240
42.
go back to reference Che BD, Nguyen BQ, Nguyen L-TT, Nguyen HT, Nguyen VQ, Le TV, Nguyen NH (2015) The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites. Chem Cent J 9:10PubMedPubMedCentral Che BD, Nguyen BQ, Nguyen L-TT, Nguyen HT, Nguyen VQ, Le TV, Nguyen NH (2015) The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites. Chem Cent J 9:10PubMedPubMedCentral
43.
go back to reference Elimat ZM, Zihlif AM, Ragosta G (2010) Optical characterization of poly (ethylene oxide)/alumina composites. Physica B Condens Matter 405:3756–3760 Elimat ZM, Zihlif AM, Ragosta G (2010) Optical characterization of poly (ethylene oxide)/alumina composites. Physica B Condens Matter 405:3756–3760
44.
go back to reference Abu El-Fadl A, Soltan AS, Aashour AS, Nashaat AM (2018) Optical investigation of thermally evaporated Cu5GexTe95−x thin films. Mater Res Innov 22(2):69–78 Abu El-Fadl A, Soltan AS, Aashour AS, Nashaat AM (2018) Optical investigation of thermally evaporated Cu5GexTe95x thin films. Mater Res Innov 22(2):69–78
45.
go back to reference Devangamath SS, Lobo B (2020) Optical parameters of epoxy-CoSO4.7H2O polymer hybrid material. Mater Res Innov 24:152–160 Devangamath SS, Lobo B (2020) Optical parameters of epoxy-CoSO4.7H2O polymer hybrid material. Mater Res Innov 24:152–160
46.
go back to reference Al-Mudhaffer MF, Nattiq MA, Jaber MA (2012) Linear optical properties and energy loss function of Novolac: epoxy blend film. Arch Appl Sci Res 4(4):1731–7140 Al-Mudhaffer MF, Nattiq MA, Jaber MA (2012) Linear optical properties and energy loss function of Novolac: epoxy blend film. Arch Appl Sci Res 4(4):1731–7140
47.
go back to reference El-Rahman MA, Yassien KM, Yassene AA (2019) Effect of gamma irradiation on the optical properties of epoxy resin thin films. Optik 183:962–970 El-Rahman MA, Yassien KM, Yassene AA (2019) Effect of gamma irradiation on the optical properties of epoxy resin thin films. Optik 183:962–970
48.
go back to reference Xie A, Zhang K, Sun M, Xia Y, Fan Wu (2018) Facile growth of coaxial Ag@polypyrrole nanowires for highly tunable electromagnetic waves absorption. Mater Des 154:192–202 Xie A, Zhang K, Sun M, Xia Y, Fan Wu (2018) Facile growth of coaxial Ag@polypyrrole nanowires for highly tunable electromagnetic waves absorption. Mater Des 154:192–202
49.
go back to reference Ebrahimi I, Gashti MP (2016) Chemically reduced versus photo-reduced clay–Ag–polypyrrole ternary nanocomposites: comparing thermal, optical, electrical and electromagnetic shielding properties. Mater Res Bull 83:96–107 Ebrahimi I, Gashti MP (2016) Chemically reduced versus photo-reduced clay–Ag–polypyrrole ternary nanocomposites: comparing thermal, optical, electrical and electromagnetic shielding properties. Mater Res Bull 83:96–107
50.
go back to reference Ebrahimi I, Gashti MP (2018) Polypyrrole–MWCNT–Ag composites for electromagnetic shielding: comparison between chemical deposition and UV-reduction approaches. J Phys Chem Solids 118:80–87 Ebrahimi I, Gashti MP (2018) Polypyrrole–MWCNT–Ag composites for electromagnetic shielding: comparison between chemical deposition and UV-reduction approaches. J Phys Chem Solids 118:80–87
51.
go back to reference Kim K-S, Kim I-J, Park S-J (2010) Influence of Ag doped graphene on electrochemical behaviors and specific capacitance of polypyrrole-based nanocomposites. Synth Met 160(21–22):2355–2360 Kim K-S, Kim I-J, Park S-J (2010) Influence of Ag doped graphene on electrochemical behaviors and specific capacitance of polypyrrole-based nanocomposites. Synth Met 160(21–22):2355–2360
52.
go back to reference Aradhanaa R, Mohanty S, Nayak SK (2018) High performance epoxy nanocomposite adhesive: effect of nanofillers on adhesive strength, curing and degradation kinetics. Int J Adhes Adhes 84:238–249 Aradhanaa R, Mohanty S, Nayak SK (2018) High performance epoxy nanocomposite adhesive: effect of nanofillers on adhesive strength, curing and degradation kinetics. Int J Adhes Adhes 84:238–249
53.
go back to reference Li Y, Kessler MR (2013) Liquid crystalline epoxy resin based on biphenyl mesogen: effect of magnetic field orientation during cure. Polymer 54:5741–5746 Li Y, Kessler MR (2013) Liquid crystalline epoxy resin based on biphenyl mesogen: effect of magnetic field orientation during cure. Polymer 54:5741–5746
54.
go back to reference Lavorgna M, Romeo V, Martone A, Zarrelli M, Giordano M, Buonocore GG, Qu MZ, Fei GX, Xia HS (2013) Silanization and silica enrichment of multiwalled carbon nanotubes: synergistic effects on the thermal-mechanical properties of epoxy nanocomposites. Eur Polym J 49(2):428–438 Lavorgna M, Romeo V, Martone A, Zarrelli M, Giordano M, Buonocore GG, Qu MZ, Fei GX, Xia HS (2013) Silanization and silica enrichment of multiwalled carbon nanotubes: synergistic effects on the thermal-mechanical properties of epoxy nanocomposites. Eur Polym J 49(2):428–438
55.
go back to reference AL-Hassani E (2010) Effect of UV radiation on dielectric constant and thermal conductivity in epoxy phenol blends. Eng Tech J 28:1982–1989 AL-Hassani E (2010) Effect of UV radiation on dielectric constant and thermal conductivity in epoxy phenol blends. Eng Tech J 28:1982–1989
57.
go back to reference Timoshenko S, Goodier JN (1970) Theory of elasticity. McGraw-Hill, New York Timoshenko S, Goodier JN (1970) Theory of elasticity. McGraw-Hill, New York
58.
go back to reference Łączka M, Cholewa-Kowalska K, Kulgawczyk K, Klisch M, Mozgawa W (1999) Structural examinations of gel-derived materials of the CaO–P2O5–SiO2 system. J Mol Struct 511:223–231 Łączka M, Cholewa-Kowalska K, Kulgawczyk K, Klisch M, Mozgawa W (1999) Structural examinations of gel-derived materials of the CaO–P2O5–SiO2 system. J Mol Struct 511:223–231
59.
go back to reference Czarnobaj K (2008) Preparation and characterization of silica xerogels as carriers for drugs. Drug Deliv 15(8):485–492PubMed Czarnobaj K (2008) Preparation and characterization of silica xerogels as carriers for drugs. Drug Deliv 15(8):485–492PubMed
60.
go back to reference Sahmetlioglu ER, Mart H, Yuruk H, Surme Y (2006) Synthesis and characterization of oligosalicylaldehyde-based epoxy resins. Chem Pap 60(1):65–68 Sahmetlioglu ER, Mart H, Yuruk H, Surme Y (2006) Synthesis and characterization of oligosalicylaldehyde-based epoxy resins. Chem Pap 60(1):65–68
61.
go back to reference Du X, Yu ZZ, Dasari A, Ma J, Mo M, Meng Y, Mai YW (2008) New method to prepare graphite nano-composites. Chem Mater 20:2066–2068 Du X, Yu ZZ, Dasari A, Ma J, Mo M, Meng Y, Mai YW (2008) New method to prepare graphite nano-composites. Chem Mater 20:2066–2068
62.
go back to reference Khare KS, Khabaz F, Khare R (2014) Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy–carbon nanotube nanocomposites: role of strengthening the interfacial interactions. ACS Appl Mater Interfaces 6:6098–6110PubMed Khare KS, Khabaz F, Khare R (2014) Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy–carbon nanotube nanocomposites: role of strengthening the interfacial interactions. ACS Appl Mater Interfaces 6:6098–6110PubMed
63.
go back to reference Gojny FH, Nastalczyk J, Roslaniec Z, Schulte K (2003) Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem Phys Lett 370(5–6):820–824 Gojny FH, Nastalczyk J, Roslaniec Z, Schulte K (2003) Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem Phys Lett 370(5–6):820–824
64.
go back to reference Ma P-C, Mo S-Y, Tang B-Z, Kim J-K (2010) Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon 48(6):1824–1834 Ma P-C, Mo S-Y, Tang B-Z, Kim J-K (2010) Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon 48(6):1824–1834
65.
go back to reference Zeng S, Shen M, Duan P, Xue Y, Wang Z (2018) Effect of silane hydrolysis on the interfacial adhesion of carbon nanotubes/glass fiber fabric-reinforced multiscale composites. Text Res J 88:379–391 Zeng S, Shen M, Duan P, Xue Y, Wang Z (2018) Effect of silane hydrolysis on the interfacial adhesion of carbon nanotubes/glass fiber fabric-reinforced multiscale composites. Text Res J 88:379–391
66.
go back to reference Ketan SK, Rajesh K (2013) Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy–carbon nanotube nanocomposites: role of interfacial interactions. J Phys Chem 117(24):7444–7454 Ketan SK, Rajesh K (2013) Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy–carbon nanotube nanocomposites: role of interfacial interactions. J Phys Chem 117(24):7444–7454
67.
go back to reference Peterson RE, Anderson AC (1973) The kapitza thermal boundary resistance. J Low Temp Phys 11:639–665 Peterson RE, Anderson AC (1973) The kapitza thermal boundary resistance. J Low Temp Phys 11:639–665
68.
go back to reference Liu H, Dong M, Huang W, Gao J, Dai K, Guo J, Zheng G, Liu C, Shena C, Guo Z (2017) Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J Mater Chem C 5:73–83 Liu H, Dong M, Huang W, Gao J, Dai K, Guo J, Zheng G, Liu C, Shena C, Guo Z (2017) Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J Mater Chem C 5:73–83
69.
go back to reference Labunov VA, Basaev AS, Shulitski BG, Shaman YP, Komissarov I, Prudnikava AL, Tay BK, Shakerzadeh M (2012) Growth of few-wall carbon nanotubes with narrow diameter distribution over Fe–Mo–MgO catalyst by methane/acetylene catalytic decomposition. Nanoscale Res Lett 7:102PubMedPubMedCentral Labunov VA, Basaev AS, Shulitski BG, Shaman YP, Komissarov I, Prudnikava AL, Tay BK, Shakerzadeh M (2012) Growth of few-wall carbon nanotubes with narrow diameter distribution over Fe–Mo–MgO catalyst by methane/acetylene catalytic decomposition. Nanoscale Res Lett 7:102PubMedPubMedCentral
70.
go back to reference Peng-Cheng M, Shan-Yin M, Ben-Zhong T, Jang-Kyo K (2010) Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon 48:1824–1834 Peng-Cheng M, Shan-Yin M, Ben-Zhong T, Jang-Kyo K (2010) Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon 48:1824–1834
71.
go back to reference Ramirez S, Chan K, Hernandez R, Recinos E, Hernandez E, Salgado R, Khitun A, Garay J, Balandin A (2017) Thermal and magnetic properties of nanostructured densified ferrimagnetic composites with graphene-graphite fillers. Mater Des 118:75–80 Ramirez S, Chan K, Hernandez R, Recinos E, Hernandez E, Salgado R, Khitun A, Garay J, Balandin A (2017) Thermal and magnetic properties of nanostructured densified ferrimagnetic composites with graphene-graphite fillers. Mater Des 118:75–80
72.
go back to reference Saadah M, Hernandez E, Balandin AA (2017) Thermal management of concentrated multi-junction solar cells with graphene-enhanced thermal interface materials. Appl Sci 7:589 Saadah M, Hernandez E, Balandin AA (2017) Thermal management of concentrated multi-junction solar cells with graphene-enhanced thermal interface materials. Appl Sci 7:589
73.
go back to reference Ci L, Bai J (2006) The reinforcement role of carbon nanotubes in epoxy composites with different matrix stiffness. Compos Sci Technol 66:599–603 Ci L, Bai J (2006) The reinforcement role of carbon nanotubes in epoxy composites with different matrix stiffness. Compos Sci Technol 66:599–603
74.
go back to reference Fox M (2001) Optical properties of solids. Oxford University, New York Fox M (2001) Optical properties of solids. Oxford University, New York
75.
go back to reference Hongbing Z, Chan Z, Wenzhe C, Minquan W (2005) Characterization and nonlinear optical property of a multi-walled carbon nanotube/silica xerogel composite. Chem Phys Lett 411:373–377 Hongbing Z, Chan Z, Wenzhe C, Minquan W (2005) Characterization and nonlinear optical property of a multi-walled carbon nanotube/silica xerogel composite. Chem Phys Lett 411:373–377
76.
go back to reference García V, Guerrero L, Nair MTS, Nair PK (1999) Effect of thermal processing on optical and electrical properties of copper selenide thin films. Superficies y Vacío 9:213–218 García V, Guerrero L, Nair MTS, Nair PK (1999) Effect of thermal processing on optical and electrical properties of copper selenide thin films. Superficies y Vacío 9:213–218
77.
go back to reference Yakuphanoglu F, Cukurovali A, Yilmaz I (2004) Single oscillator model and determination of optical constants of some optical thin film materials. Phys B Condens Matter 353:210–216 Yakuphanoglu F, Cukurovali A, Yilmaz I (2004) Single oscillator model and determination of optical constants of some optical thin film materials. Phys B Condens Matter 353:210–216
80.
go back to reference Koizhaiganova R, Kim H, Vasudevan T, Lee M (2009) Double-walled carbon nanotube (DWCNT)–poly (3-octylthiophene)(P3OT) composites: electrical, optical and structural, investigations. Synth Met 159:2437–2442 Koizhaiganova R, Kim H, Vasudevan T, Lee M (2009) Double-walled carbon nanotube (DWCNT)–poly (3-octylthiophene)(P3OT) composites: electrical, optical and structural, investigations. Synth Met 159:2437–2442
81.
go back to reference Tauc J (1974) Optical properties of amorphous semiconductors. Amorphous and liquid semiconductors. Springer, Boston, pp 159–220 Tauc J (1974) Optical properties of amorphous semiconductors. Amorphous and liquid semiconductors. Springer, Boston, pp 159–220
82.
go back to reference Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials. Oxford University Press, New York Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials. Oxford University Press, New York
83.
go back to reference Bishop SG, TL Reinecke, U Strom, PC Taylor and CC Klick (1977) International conference on amorphous and liquid semiconductors (7th) at Edinburgh. No. ONRL-C-13-77. Office of naval research London (England) Bishop SG, TL Reinecke, U Strom, PC Taylor and CC Klick (1977) International conference on amorphous and liquid semiconductors (7th) at Edinburgh. No. ONRL-C-13-77. Office of naval research London (England)
84.
go back to reference Venkatachalam S, Mangalaraj D, Narayandass SK, Kim K, Yi J (2005) Structure, optical and electrical properties of ZnSe thin films. Phys B Condens Matter 358(1–4):27–35 Venkatachalam S, Mangalaraj D, Narayandass SK, Kim K, Yi J (2005) Structure, optical and electrical properties of ZnSe thin films. Phys B Condens Matter 358(1–4):27–35
85.
go back to reference Kale RB, Lokhande CD (2005) Influence of air annealing on the structural, morphological, optical and electrical properties of chemically deposited ZnSe thin films. Appl Surf Sci 252(4):929–938 Kale RB, Lokhande CD (2005) Influence of air annealing on the structural, morphological, optical and electrical properties of chemically deposited ZnSe thin films. Appl Surf Sci 252(4):929–938
86.
go back to reference Venkatachalam S, Mangalaraj D, Narayandass SK (2007) Characterization of vacuum-evaporated ZnSe thin films. Phys B Condens Matter 393(1–2):47–55 Venkatachalam S, Mangalaraj D, Narayandass SK (2007) Characterization of vacuum-evaporated ZnSe thin films. Phys B Condens Matter 393(1–2):47–55
Metadata
Title
Fabrication and evaluation of structural, thermal, mechanical and optical behavior of epoxy–TEOS/MWCNTs composites for solar cell covering
Authors
Alaa M. Abd-Elnaiem
Seenaa I. Hussein
Hasan S. Assaedi
A. M. Mebed
Publication date
16-07-2020
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 7/2021
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-020-03301-5

Other articles of this Issue 7/2021

Polymer Bulletin 7/2021 Go to the issue

Premium Partners