Skip to main content
Top
Published in: Polymer Bulletin 7/2021

06-07-2020 | Original Paper

Modification of nanocellulose membrane by impregnation method with sulfosuccinic acid for direct methanol fuel cell applications

Authors: Arisara Sriruangrungkamol, Wunpen Chonkaew

Published in: Polymer Bulletin | Issue 7/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, we aimed to investigate the potential use of nanocellulose as a solid electrolyte membrane for the direct methanol fuel cell application. Nanocellulose membrane was fabricated using the vacuum filtration of cellulose nanofiber suspension extracted from Para rubber wood sawdust. The membrane was impregnated with sulfosuccinic acid (SSA) and then activated at 120 °C for 1 h in hot pressing machine. The SSA concentrations used were in a range of 0.1–10.0%w/v. Effects of sulfosuccinic acid on methanol permeability, ion exchange capacities (IEC), water uptake, oxidative and thermal stabilities, and mechanical properties were also investigated. It was found from an FTIR technique and confirmed by a solid-state 13C CP-MAS NMR result that esterification between –COOH groups of SSA and –OH groups of nanocellulose occurred, leading to crosslinking of nanocellulose as well as the increased hydrophilic ionic domains (free –COOH and –SO3H) in the membrane. IEC of the neat nanocellulose and the nanocellulose membranes modified with SSA ranged from 0.005 to 0.069 mmol/g. The water uptake ranged from 28 to 61%. The results showed that the amounts of SSA used in modification influenced the proton conduction and methanol transport properties of nanocellulose. Based on our research, the sulfonate-modified nanocelluloses prepared by simple pre-impregnation with SSA showed better methanol barrier property and proton conductivity than the neat nanocellulose. Our SSA-modified nanocellulose membranes are promising to be developed and utilized as ionic biodegradable membranes in DMFA applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhong S, Cui X, Cai H, Fu T, Zhao C, Na H (2007) Crosslinked sulfonated poly(ether ether ketone) proton exchange membranes for direct methanol fuel cell applications. J Power Sources 164(1):65–72 Zhong S, Cui X, Cai H, Fu T, Zhao C, Na H (2007) Crosslinked sulfonated poly(ether ether ketone) proton exchange membranes for direct methanol fuel cell applications. J Power Sources 164(1):65–72
2.
go back to reference Silva VS, Schirmer J, Reissner R, Ruffmann B, Silva H, Mendes A, Madeira LM, Nunes SP (2005) Proton electrolyte membrane properties and direct methanol fuel cell performance: II. Fuel cell performance and membrane properties effects. J Power Sources 140(1):41–49 Silva VS, Schirmer J, Reissner R, Ruffmann B, Silva H, Mendes A, Madeira LM, Nunes SP (2005) Proton electrolyte membrane properties and direct methanol fuel cell performance: II. Fuel cell performance and membrane properties effects. J Power Sources 140(1):41–49
3.
go back to reference Silva VS, Ruffmann B, Vetter S, Mendes A, Madeira LM, Nunes SP (2005) Characterization and application of composite membranes in DMFC. Catal Today 104(2):205–212 Silva VS, Ruffmann B, Vetter S, Mendes A, Madeira LM, Nunes SP (2005) Characterization and application of composite membranes in DMFC. Catal Today 104(2):205–212
4.
go back to reference Carrette L, Friedrich KA, Stimming U (2001) Fuel Cells – Fundamentals and Applications. Fuel Cells 1:5–39 Carrette L, Friedrich KA, Stimming U (2001) Fuel Cells – Fundamentals and Applications. Fuel Cells 1:5–39
5.
go back to reference Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35(17):9349–9384 Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35(17):9349–9384
6.
go back to reference Kraytsberg A, Ein-Eli Y (2014) Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28(12):7303–7330 Kraytsberg A, Ein-Eli Y (2014) Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28(12):7303–7330
7.
go back to reference Kim DS, Park HB, Rhim JW, Lee YM (2005) Proton conductivity and methanol transport behavior of cross-linked PVA/PAA/silica hybrid membranes. Solid State Ionics 176(1):117–126 Kim DS, Park HB, Rhim JW, Lee YM (2005) Proton conductivity and methanol transport behavior of cross-linked PVA/PAA/silica hybrid membranes. Solid State Ionics 176(1):117–126
8.
go back to reference Pivovar BS, Wang Y, Cussler EL (1999) Pervaporation membranes in direct methanol fuel cells. J Membr Sci 154(2):155–162 Pivovar BS, Wang Y, Cussler EL (1999) Pervaporation membranes in direct methanol fuel cells. J Membr Sci 154(2):155–162
9.
go back to reference Rhim J-W, Park HB, Lee C-S, Jun J-H, Kim DS, Lee YM (2004) Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes. J Membr Sci 238(1):143–151 Rhim J-W, Park HB, Lee C-S, Jun J-H, Kim DS, Lee YM (2004) Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes. J Membr Sci 238(1):143–151
10.
go back to reference Ma J, Sahai Y (2013) Chitosan biopolymer for fuel cell applications. Carbohydr Polym 92(2):955–975PubMed Ma J, Sahai Y (2013) Chitosan biopolymer for fuel cell applications. Carbohydr Polym 92(2):955–975PubMed
11.
go back to reference Shaari N, Kamarudin SK (2015) Chitosan and alginate types of bio-membrane in fuel cell application: an overview. J Power Sources 289:71–80 Shaari N, Kamarudin SK (2015) Chitosan and alginate types of bio-membrane in fuel cell application: an overview. J Power Sources 289:71–80
12.
go back to reference Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082PubMed Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082PubMed
13.
go back to reference Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59(1):101–106 Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59(1):101–106
14.
go back to reference Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43(5):1519–1542PubMed Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43(5):1519–1542PubMed
15.
go back to reference Liimatainen H, Visanko M, Sirviö J, Hormi O, Niinimäki JJC (2013) Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. Cellulose 20(2):741–749 Liimatainen H, Visanko M, Sirviö J, Hormi O, Niinimäki JJC (2013) Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. Cellulose 20(2):741–749
16.
go back to reference Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials (Basel, Switzerland) 6(5):1745–1766 Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials (Basel, Switzerland) 6(5):1745–1766
17.
go back to reference Seo JA, Kim JC, Koh JK, Ahn SH, Kim JHJI (2009) Preparation and characterization of crosslinked cellulose/sulfosuccinic acid membranes as proton conducting electrolytes. Ionics 15(5):555–560 Seo JA, Kim JC, Koh JK, Ahn SH, Kim JHJI (2009) Preparation and characterization of crosslinked cellulose/sulfosuccinic acid membranes as proton conducting electrolytes. Ionics 15(5):555–560
18.
go back to reference Pandey LK, Saxena C, Dubey V (2005) Studies on pervaporative characteristics of bacterial cellulose membrane. Sep Purif Technol 42(3):213–218 Pandey LK, Saxena C, Dubey V (2005) Studies on pervaporative characteristics of bacterial cellulose membrane. Sep Purif Technol 42(3):213–218
19.
go back to reference Bayer T, Cunning BV, Selyanchyn R, Nishihara M, Fujikawa S, Sasaki K, Lyth SM (2016) High Temperature proton conduction in nanocellulose membranes: paper fuel cells. Chem Mater 28(13):4805–4814 Bayer T, Cunning BV, Selyanchyn R, Nishihara M, Fujikawa S, Sasaki K, Lyth SM (2016) High Temperature proton conduction in nanocellulose membranes: paper fuel cells. Chem Mater 28(13):4805–4814
20.
go back to reference Sriruangrungkamol A, Wongyao N, Chonkaew W (2019) Preparation and characterization of SIPA-modified CNF membranes for fuel cell applications. In: Paper presented at the 7th international conference on bio - based polymers (ICBP 2019). Thailand Science Park Convention Center and Chaloem Rajakumari 60 Building (CHAMCHURI 10), Chulalongkorn University, pp 1–6 Sriruangrungkamol A, Wongyao N, Chonkaew W (2019) Preparation and characterization of SIPA-modified CNF membranes for fuel cell applications. In: Paper presented at the 7th international conference on bio - based polymers (ICBP 2019). Thailand Science Park Convention Center and Chaloem Rajakumari 60 Building (CHAMCHURI 10), Chulalongkorn University, pp 1–6
21.
go back to reference Ongthip L, Chonkaew W (2018) Nanofibrillar cellulose from para rubber wood sawdust as reinforcement in polylactic acid composites. Srinakharinwirot S J 34(1):264–275 Ongthip L, Chonkaew W (2018) Nanofibrillar cellulose from para rubber wood sawdust as reinforcement in polylactic acid composites. Srinakharinwirot S J 34(1):264–275
22.
go back to reference Moriana R, Vilaplana F, Ek M (2016) Cellulose nanocrystals from forest residues as reinforcing agents for composites: a study from macro- to nano-dimensions. Carbohydr Polym 139:139–149PubMed Moriana R, Vilaplana F, Ek M (2016) Cellulose nanocrystals from forest residues as reinforcing agents for composites: a study from macro- to nano-dimensions. Carbohydr Polym 139:139–149PubMed
23.
go back to reference Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromol 10(2):425–432 Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromol 10(2):425–432
24.
go back to reference Siqueira G, Abdillahi H, Bras J, Dufresne A (2010) High reinforcing capability cellulose nanocrystals extracted from syngonanthus nitens (Capim Dourado). Cellulose 17(2):289–298 Siqueira G, Abdillahi H, Bras J, Dufresne A (2010) High reinforcing capability cellulose nanocrystals extracted from syngonanthus nitens (Capim Dourado). Cellulose 17(2):289–298
25.
go back to reference Azizi Samir MA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6(2):612–626 Azizi Samir MA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6(2):612–626
26.
go back to reference Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6(2):1048–1054 Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6(2):1048–1054
27.
go back to reference Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32 Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32
28.
go back to reference Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29(10):786–794 Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29(10):786–794
29.
go back to reference Fattahi Meyabadi T, Dadashian F, Mir Mohamad Sadeghi G, Ebrahimi Zanjani Asl H (2014) Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technol 261:232–240 Fattahi Meyabadi T, Dadashian F, Mir Mohamad Sadeghi G, Ebrahimi Zanjani Asl H (2014) Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technol 261:232–240
30.
go back to reference Changkhamchom S, Sirivat A (2013) Polymer electrolyte membrane based on sulfonated poly(Ether Ketone Ether Sulfone) (S-PEKES) with low methanol permeability for direct methanol fuel cell application. Polym Plast Technol Eng 52(1):70–79 Changkhamchom S, Sirivat A (2013) Polymer electrolyte membrane based on sulfonated poly(Ether Ketone Ether Sulfone) (S-PEKES) with low methanol permeability for direct methanol fuel cell application. Polym Plast Technol Eng 52(1):70–79
31.
go back to reference Vetter S, Ruffmann B, Buder I, Nunes SP (2005) Proton conductive membranes of sulfonated poly(ether ketone ketone). J Membr Sci 260(1):181–186 Vetter S, Ruffmann B, Buder I, Nunes SP (2005) Proton conductive membranes of sulfonated poly(ether ketone ketone). J Membr Sci 260(1):181–186
32.
go back to reference Mukoma P, Jooste BR, Vosloo HCM (2004) A comparison of methanol permeability in Chitosan and Nafion 117 membranes at high to medium methanol concentrations. J Membr Sci 243(1):293–299 Mukoma P, Jooste BR, Vosloo HCM (2004) A comparison of methanol permeability in Chitosan and Nafion 117 membranes at high to medium methanol concentrations. J Membr Sci 243(1):293–299
33.
go back to reference Shang XY, Shu D, Wang SJ, Xiao M, Meng YZ (2007) Fluorene-containing sulfonated poly(arylene ether 1,3,4-oxadiazole) as proton-exchange membrane for PEM fuel cell application. J Membr Sci 291(1):140–147 Shang XY, Shu D, Wang SJ, Xiao M, Meng YZ (2007) Fluorene-containing sulfonated poly(arylene ether 1,3,4-oxadiazole) as proton-exchange membrane for PEM fuel cell application. J Membr Sci 291(1):140–147
34.
go back to reference Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33 Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33
35.
go back to reference Morán JI, Alvarez VA, Cyras VP, Vázquez AJC (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159 Morán JI, Alvarez VA, Cyras VP, Vázquez AJC (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159
36.
go back to reference Alamri H, Low IM (2012) Effect of water absorption on the mechanical properties of n-SiC filled recycled cellulose fibre reinforced epoxy eco-nanocomposites. Polym Testing 31(6):810–818 Alamri H, Low IM (2012) Effect of water absorption on the mechanical properties of n-SiC filled recycled cellulose fibre reinforced epoxy eco-nanocomposites. Polym Testing 31(6):810–818
37.
go back to reference Biswal DR, Singh RP (2004) Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr Polym 57(4):379–387 Biswal DR, Singh RP (2004) Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr Polym 57(4):379–387
38.
go back to reference Wongjaiyen T, Brostow W, Chonkaew W (2018) Tensile properties and wear resistance of epoxy nanocomposites reinforced with cellulose nanofibers. Polym Bull 75(5):2039–2051 Wongjaiyen T, Brostow W, Chonkaew W (2018) Tensile properties and wear resistance of epoxy nanocomposites reinforced with cellulose nanofibers. Polym Bull 75(5):2039–2051
39.
go back to reference Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibers and their characterization. Ind Crops Prod 23(1):1–8 Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibers and their characterization. Ind Crops Prod 23(1):1–8
40.
go back to reference Himmelsbach DS, Khalili S, Akin DE (2002) The use of FT-IR microspectroscopic mapping to study the effects of enzymatic retting of flax (Linum usitatissimum L.) stems. J Sci Food Agric 82(7):685–696 Himmelsbach DS, Khalili S, Akin DE (2002) The use of FT-IR microspectroscopic mapping to study the effects of enzymatic retting of flax (Linum usitatissimum L.) stems. J Sci Food Agric 82(7):685–696
41.
go back to reference Sun XF, Xu F, Sun RC, Fowler P, Baird MS (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr Res 340(1):97–106PubMed Sun XF, Xu F, Sun RC, Fowler P, Baird MS (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr Res 340(1):97–106PubMed
42.
go back to reference Ribeiro-Viana RM, Faria-Tischer PC, Tischer CA (2016) Preparation of succinylated cellulose membranes for functionalization purposes. Carbohydr Polym 148:21–28PubMed Ribeiro-Viana RM, Faria-Tischer PC, Tischer CA (2016) Preparation of succinylated cellulose membranes for functionalization purposes. Carbohydr Polym 148:21–28PubMed
43.
go back to reference Lowman DW (1998) Characterization of cellulose esters by solution-state and solid-state NMR spectroscopy. In: Cellulose derivatives, vol 688. In: ACS symposium series, vol 688. American Chemical Society, pp 131–162 Lowman DW (1998) Characterization of cellulose esters by solution-state and solid-state NMR spectroscopy. In: Cellulose derivatives, vol 688. In: ACS symposium series, vol 688. American Chemical Society, pp 131–162
44.
go back to reference Zhao G, Wang F, Lang X, He B, Li J, Li X (2017) Facile one-pot fabrication of cellulose nanocrystals and enzymatic synthesis of its esterified derivative in mixed ionic liquids. RSC Adv. 7(43):27017–27023 Zhao G, Wang F, Lang X, He B, Li J, Li X (2017) Facile one-pot fabrication of cellulose nanocrystals and enzymatic synthesis of its esterified derivative in mixed ionic liquids. RSC Adv. 7(43):27017–27023
45.
go back to reference Karim Z, Claudpierre S, Grahn M, Oksman K, Mathew AP (2016) Nanocellulose based functional membranes for water cleaning: Tailoring of mechanical properties, porosity and metal ion capture. J Membr Sci 514:418–428 Karim Z, Claudpierre S, Grahn M, Oksman K, Mathew AP (2016) Nanocellulose based functional membranes for water cleaning: Tailoring of mechanical properties, porosity and metal ion capture. J Membr Sci 514:418–428
46.
go back to reference Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromol 9(6):1579–1585 Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromol 9(6):1579–1585
47.
go back to reference Voisin H, Bergström L, Liu P, Mathew AP (2017) Nanocellulose-based materials for water purification. Nanomaterials (Basel, Switzerland) 7(3):57 Voisin H, Bergström L, Liu P, Mathew AP (2017) Nanocellulose-based materials for water purification. Nanomaterials (Basel, Switzerland) 7(3):57
48.
go back to reference Wu H, Cao Y, Shen X, Li Z, Xu T, Jiang Z (2014) Preparation and performance of different amino acids functionalized titania-embedded sulfonated poly (ether ether ketone) hybrid membranes for direct methanol fuel cells. J Membr Sci 463:134–144 Wu H, Cao Y, Shen X, Li Z, Xu T, Jiang Z (2014) Preparation and performance of different amino acids functionalized titania-embedded sulfonated poly (ether ether ketone) hybrid membranes for direct methanol fuel cells. J Membr Sci 463:134–144
49.
go back to reference Guccini V, Carlson A, Yu S, Lindbergh G, Lindström RW, Salazar-Alvarez G (2019) Highly proton conductive membranes based on carboxylated cellulose nanofibres and their performance in proton exchange membrane fuel cells. J Mater Chem A 7(43):25032–25039 Guccini V, Carlson A, Yu S, Lindbergh G, Lindström RW, Salazar-Alvarez G (2019) Highly proton conductive membranes based on carboxylated cellulose nanofibres and their performance in proton exchange membrane fuel cells. J Mater Chem A 7(43):25032–25039
50.
go back to reference Dashtimoghadam E, Hasani-Sadrabadi MM, Moaddel H (2010) Structural modification of chitosan biopolymer as a novel polyelectrolyte membrane for green power generation. Polym Adv Technol 21(10):726–734 Dashtimoghadam E, Hasani-Sadrabadi MM, Moaddel H (2010) Structural modification of chitosan biopolymer as a novel polyelectrolyte membrane for green power generation. Polym Adv Technol 21(10):726–734
51.
go back to reference Zawodzinski TA, Neeman M, Sillerud LO, Gottesfeld S (1991) Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes. J Phys Chem 95(15):6040–6044 Zawodzinski TA, Neeman M, Sillerud LO, Gottesfeld S (1991) Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes. J Phys Chem 95(15):6040–6044
52.
go back to reference Sadeghi RR, Cheng H-P (1999) The dynamics of proton transfer in a water chain. J Chem Phys 111(5):2086–2094 Sadeghi RR, Cheng H-P (1999) The dynamics of proton transfer in a water chain. J Chem Phys 111(5):2086–2094
53.
go back to reference Zhang H, Stanis R, Song Y, Hu W, Cornelius C, Shi Q, Liu B, Guiver M (2017) Fuel cell performance of pendent methylphenyl sulfonated poly(ether ether ketone ketone)s. J Power Sources 368:30–37 Zhang H, Stanis R, Song Y, Hu W, Cornelius C, Shi Q, Liu B, Guiver M (2017) Fuel cell performance of pendent methylphenyl sulfonated poly(ether ether ketone ketone)s. J Power Sources 368:30–37
54.
go back to reference Kim J, Jang J-S, Peck D-H, Lee B, Yoon S-H, Jung D-H (2016) Methanol-tolerant platinum-palladium catalyst supported on nitrogen-doped carbon nanofiber for high concentration direct methanol fuel cells. Nanomaterials (Basel) 6(8):148 Kim J, Jang J-S, Peck D-H, Lee B, Yoon S-H, Jung D-H (2016) Methanol-tolerant platinum-palladium catalyst supported on nitrogen-doped carbon nanofiber for high concentration direct methanol fuel cells. Nanomaterials (Basel) 6(8):148
55.
go back to reference Mohy Eldin M, Elmageed M, Omer A, Tamer T, Youssef ME, Ghonim R (2016) Development of novel phosphorylated cellulose acetate polyelectrolyte membranes for direct methanol fuel cell application. Int J Electrochem Sci 11(2016):3467–3491 Mohy Eldin M, Elmageed M, Omer A, Tamer T, Youssef ME, Ghonim R (2016) Development of novel phosphorylated cellulose acetate polyelectrolyte membranes for direct methanol fuel cell application. Int J Electrochem Sci 11(2016):3467–3491
56.
go back to reference Mohy Eldin M, Elmageed M, Omer A, Tamer T, Youssef ME, Ghonim R (2016) Novel proton exchange membranes based on sulfonated cellulose acetate for fuel cell applications: preparation and characterization. Int J Electrochem Sci 11(2016):10150–10171 Mohy Eldin M, Elmageed M, Omer A, Tamer T, Youssef ME, Ghonim R (2016) Novel proton exchange membranes based on sulfonated cellulose acetate for fuel cell applications: preparation and characterization. Int J Electrochem Sci 11(2016):10150–10171
57.
go back to reference Mohy Eldin M, Elmageed M, Omer A, Tamer T, Youssef ME, Ghonim R (2017) Novel aminated cellulose acetate membranes for direct methanol fuel cells (DMFCs). Int J Electrochem Sci 12(2017):4301–4318 Mohy Eldin M, Elmageed M, Omer A, Tamer T, Youssef ME, Ghonim R (2017) Novel aminated cellulose acetate membranes for direct methanol fuel cells (DMFCs). Int J Electrochem Sci 12(2017):4301–4318
58.
go back to reference Changkhamchom S, Sirivat A (2014) High proton conductivity ZSM-5/sulfonated poly(ether ketone ether sulfone) (S-PEKES) composite proton exchange membrane for using in direct methanol fuel cell. Solid State Ionics 263:161–166 Changkhamchom S, Sirivat A (2014) High proton conductivity ZSM-5/sulfonated poly(ether ketone ether sulfone) (S-PEKES) composite proton exchange membrane for using in direct methanol fuel cell. Solid State Ionics 263:161–166
59.
go back to reference Tutgun MS, Sinirlioglu D, Celik SU, Bozkurt A (2015) Investigation of nanocomposite membranes based on crosslinked poly(vinyl alcohol)–sulfosuccinic acid ester and hexagonal boron nitride. J Polym Res 22(4):47 Tutgun MS, Sinirlioglu D, Celik SU, Bozkurt A (2015) Investigation of nanocomposite membranes based on crosslinked poly(vinyl alcohol)–sulfosuccinic acid ester and hexagonal boron nitride. J Polym Res 22(4):47
60.
go back to reference Kim DS, Park HB, Rhim JW, Moo Lee Y (2004) Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. J Membr Sci 240(1):37–48 Kim DS, Park HB, Rhim JW, Moo Lee Y (2004) Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. J Membr Sci 240(1):37–48
61.
go back to reference Chen P, Chen X, An Z (2012) Covalently and ionically crosslinked sulfonated poly(arylene ether ketone)s as proton exchange membranes. Polym Bull 68(5):1369–1386 Chen P, Chen X, An Z (2012) Covalently and ionically crosslinked sulfonated poly(arylene ether ketone)s as proton exchange membranes. Polym Bull 68(5):1369–1386
62.
go back to reference Liao H, Zhang K, Tong G, Xiao G, Yan D (2014) Sulfonated poly(arylene ether phosphine oxide)s with various distributions and contents of pendant sulfonic acid groups synthesized by direct polycondensation. Polym Chem 5(2):412–422 Liao H, Zhang K, Tong G, Xiao G, Yan D (2014) Sulfonated poly(arylene ether phosphine oxide)s with various distributions and contents of pendant sulfonic acid groups synthesized by direct polycondensation. Polym Chem 5(2):412–422
Metadata
Title
Modification of nanocellulose membrane by impregnation method with sulfosuccinic acid for direct methanol fuel cell applications
Authors
Arisara Sriruangrungkamol
Wunpen Chonkaew
Publication date
06-07-2020
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 7/2021
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-020-03289-y

Other articles of this Issue 7/2021

Polymer Bulletin 7/2021 Go to the issue

Premium Partners