Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 3/2014

01-03-2014

Fabrication of Entangled Tough Titanium Wires Materials and Influence on Three-Dimensional Structure and Properties

Authors: Ping Liu, Qinghua Zhao, Guo He, Yongmin Qiao, Hui Li, Junjun Zheng, Jipeng Li, Yongxing Zhang

Published in: Journal of Materials Engineering and Performance | Issue 3/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Pure titanium (Ti) TA1 fibers/wires with 0.08 and 0.15 mm diameters were processed by a novel method that combined press forming, vacuum sintering (≥10−2 Pa), and heat treatment to fabricate entangled Ti wire materials (ETWMs). The ETWMs exhibited a total porosity ranging from 44.2 ± 0.1 to 81.2 ± 0.1% and an open porosity ranging from 43.5 ± 0.1 to 80.9 ± 0.1%. The processing parameters of fiber diameter, formation pressure, sintering temperature, and sintering time were applied to examine porous ETWM morphology, porosity, pore size, and mechanical properties. The importance of primary factors controlling porous structure and porosity in ETWMs were found to be fiber/wire diameter > formation pressure > sintering temperature > sintering time. Furthermore, Ti fiber diameter was shown to directly impact pore size. High formation pressure resulted in a fine, uniform porous structure with low porosity. Sintering at high temperature for long-time periods promoted sintering point formation, resulting in neck coarsening. This effect contributed to the characteristic mechanical properties observed in these ETWMs. If the sintering effect is considered in isolation, ETWMs fabricated with 0.08 mm diameter Ti fibers/wires and sintered at 1300 °C for 90 min achieved smaller, more uniform porous structures that further exhibited improved connections among fibers/wires and excellent mechanical properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y.B. Li, Biomedical Materials, Chemical Industry Press, Beijing, 2003, p 1–200 Y.B. Li, Biomedical Materials, Chemical Industry Press, Beijing, 2003, p 1–200
2.
go back to reference C.Y. Zhao, X.D. Zhu, T. Yuan, H.S. Fan, and X.D. Zhang, Fabrication of Biomimetic Apatite Coating on Porous Titanium and Their Osteointegration in Femurs of Dogs, Mater. Sci. Eng. C, 2010, 30, p 98–104CrossRef C.Y. Zhao, X.D. Zhu, T. Yuan, H.S. Fan, and X.D. Zhang, Fabrication of Biomimetic Apatite Coating on Porous Titanium and Their Osteointegration in Femurs of Dogs, Mater. Sci. Eng. C, 2010, 30, p 98–104CrossRef
3.
go back to reference D.K. Pattanayak, A. Fukuda, T. Matsushita, M. Takemoto, S. Fujibayashi, K. Sasaki, N. Nishida, T. Nakamura, and T. Kokubo, Bioactive Ti Metal Analogous to Human Cancellous Bone: Fabrication by Selective Laser Melting and Chemical Treatments, Acta Biomater., 2011, 7, p 1398–1406CrossRef D.K. Pattanayak, A. Fukuda, T. Matsushita, M. Takemoto, S. Fujibayashi, K. Sasaki, N. Nishida, T. Nakamura, and T. Kokubo, Bioactive Ti Metal Analogous to Human Cancellous Bone: Fabrication by Selective Laser Melting and Chemical Treatments, Acta Biomater., 2011, 7, p 1398–1406CrossRef
4.
go back to reference B. Ye and D.C. Dunand, Titanium Foams Produced by Solid-State Replication of NaCl Powders, Mater. Sci. Eng. A, 2010, 528, p 691–697CrossRef B. Ye and D.C. Dunand, Titanium Foams Produced by Solid-State Replication of NaCl Powders, Mater. Sci. Eng. A, 2010, 528, p 691–697CrossRef
5.
go back to reference J.C. Li and D.C. Dunand, Mechanical Properties of Directionally Freeze-Cast Titanium Foams, Acta Mater., 2011, 59, p 146–158CrossRef J.C. Li and D.C. Dunand, Mechanical Properties of Directionally Freeze-Cast Titanium Foams, Acta Mater., 2011, 59, p 146–158CrossRef
6.
go back to reference W.C. Xue, B.V. Krishna, A. Bandyopadhyay, and S. Bose, Processing and Biocompatibility Evaluation of Laser Processed Porous Titanium, Acta Mater., 2007, 3, p 1007–1018 W.C. Xue, B.V. Krishna, A. Bandyopadhyay, and S. Bose, Processing and Biocompatibility Evaluation of Laser Processed Porous Titanium, Acta Mater., 2007, 3, p 1007–1018
7.
go back to reference K. Manukyana, N. Amirkhanyan, S. Aydinyan, V. Danghyan, R. Grigoryan, N. Sarkisyan, G. Gasparyan, R. Aroutiounian, and S. Kharatyan, Novel NiZr-Based Porous Biomaterials: Synthesis and In Vitro Testing, Chem. Eng. J., 2010, 162, p 406–414CrossRef K. Manukyana, N. Amirkhanyan, S. Aydinyan, V. Danghyan, R. Grigoryan, N. Sarkisyan, G. Gasparyan, R. Aroutiounian, and S. Kharatyan, Novel NiZr-Based Porous Biomaterials: Synthesis and In Vitro Testing, Chem. Eng. J., 2010, 162, p 406–414CrossRef
8.
go back to reference T. Albrektsson and C. Johansson, Osteoinduction, Osteoconduction and Osseointegration, Eur. Spine J., 2001, 10, p S96–S101CrossRef T. Albrektsson and C. Johansson, Osteoinduction, Osteoconduction and Osseointegration, Eur. Spine J., 2001, 10, p S96–S101CrossRef
9.
go back to reference M.M. Stevens, Biomaterials for Bone Tissue Engineering, Mater. Today, 2008, 11, p 18–25CrossRef M.M. Stevens, Biomaterials for Bone Tissue Engineering, Mater. Today, 2008, 11, p 18–25CrossRef
10.
go back to reference B. Neirinck, T. Mattheys, A. Braem, J. Fransaer, O.V.D. Biest, and J. Vleugels, Preparation of Titanium Foams by Slip Casting of Particle Stabilized Emulsions, Adv. Eng. Mater., 2009, 11, p 633–636CrossRef B. Neirinck, T. Mattheys, A. Braem, J. Fransaer, O.V.D. Biest, and J. Vleugels, Preparation of Titanium Foams by Slip Casting of Particle Stabilized Emulsions, Adv. Eng. Mater., 2009, 11, p 633–636CrossRef
11.
go back to reference Y. Chino and D.C. Dunand, Directionally Freeze-Cast Titanium Foam with Aligned, Elongated Pores, Acta Mater., 2008, 56, p 105–113CrossRef Y. Chino and D.C. Dunand, Directionally Freeze-Cast Titanium Foam with Aligned, Elongated Pores, Acta Mater., 2008, 56, p 105–113CrossRef
12.
go back to reference S.W. Yook, H.E. Kim, and Y.H. Koh, Fabrication of Porous Titanium Scaffolds with High Compressive Strength Using Camphene-Based Freeze Casting, Mater. Lett., 2009, 63, p 1502–1504CrossRef S.W. Yook, H.E. Kim, and Y.H. Koh, Fabrication of Porous Titanium Scaffolds with High Compressive Strength Using Camphene-Based Freeze Casting, Mater. Lett., 2009, 63, p 1502–1504CrossRef
13.
go back to reference M. Bram, A. Laptev, H.P. Buchkremer, and D. Stöver, Application of Powder Metallurgy for the Production of Highly Porous Functional Parts with Open Porosity, Mater. Forum, 2005, 29, p 119–122 M. Bram, A. Laptev, H.P. Buchkremer, and D. Stöver, Application of Powder Metallurgy for the Production of Highly Porous Functional Parts with Open Porosity, Mater. Forum, 2005, 29, p 119–122
14.
go back to reference I.H. Oh, N. Nomura, N. Masahashi, and S. Hanada, Mechanical Properties of Porous Titanium Compacts Prepared by Powder Sintering, Scripta Mater., 2003, 49, p 1197–1202CrossRef I.H. Oh, N. Nomura, N. Masahashi, and S. Hanada, Mechanical Properties of Porous Titanium Compacts Prepared by Powder Sintering, Scripta Mater., 2003, 49, p 1197–1202CrossRef
15.
go back to reference S.C. Cachinho and R.N. Correia, Titanium Scaffolds for Osteointegration: Mechanical, In Vitro and Corrosion Behavior, J. Mater. Sci. Mater. Electron., 2008, 19, p 451–457CrossRef S.C. Cachinho and R.N. Correia, Titanium Scaffolds for Osteointegration: Mechanical, In Vitro and Corrosion Behavior, J. Mater. Sci. Mater. Electron., 2008, 19, p 451–457CrossRef
16.
go back to reference J.H. Lee, H.E. Kim, and Y.H. Koh, Highly Porous Titanium (Ti) Scaffolds with Bioactive Microporous Hydroxyapatite/TiO2 Hybrid Coating Layer, Mater. Lett., 2009, 63, p 1995–1998CrossRef J.H. Lee, H.E. Kim, and Y.H. Koh, Highly Porous Titanium (Ti) Scaffolds with Bioactive Microporous Hydroxyapatite/TiO2 Hybrid Coating Layer, Mater. Lett., 2009, 63, p 1995–1998CrossRef
17.
go back to reference J. Zhao, X. Lu, and J. Weng, Macroporous Ti-Based Composite Scaffold Prepared by Polymer Impregnating Method with Calcium Phosphate Coatings, Mater. Lett., 2008, 62, p 2921–2924CrossRef J. Zhao, X. Lu, and J. Weng, Macroporous Ti-Based Composite Scaffold Prepared by Polymer Impregnating Method with Calcium Phosphate Coatings, Mater. Lett., 2008, 62, p 2921–2924CrossRef
18.
go back to reference J.P. Li, H. Pamela, D. Mirella, E.W. Clayton, R.W. Joost, A.B. Clemens, and G. Klaas, Bone Ingrowth in Porous Titanium Implants Produced by 3D fiber Deposition, Biomaterials, 2007, 28, p 2810–2820CrossRef J.P. Li, H. Pamela, D. Mirella, E.W. Clayton, R.W. Joost, A.B. Clemens, and G. Klaas, Bone Ingrowth in Porous Titanium Implants Produced by 3D fiber Deposition, Biomaterials, 2007, 28, p 2810–2820CrossRef
19.
go back to reference P. Liu, Q.B. Tan, L.H. Wu, and G. He, Compressive and Pseudo-elastic Hysteresis Behavior of Entangled Titanium Wire Materials, Mater. Sci. Eng. A, 2010, 527, p 3301–3309CrossRef P. Liu, Q.B. Tan, L.H. Wu, and G. He, Compressive and Pseudo-elastic Hysteresis Behavior of Entangled Titanium Wire Materials, Mater. Sci. Eng. A, 2010, 527, p 3301–3309CrossRef
20.
go back to reference G. He, P. Liu, and Q.B. Tan, Porous Titanium Materials with Entangled Wire Structure for Load-Bearing Biomedical Applications, J. Mech. Behav. Biomed., 2012, 5, p 16–31CrossRef G. He, P. Liu, and Q.B. Tan, Porous Titanium Materials with Entangled Wire Structure for Load-Bearing Biomedical Applications, J. Mech. Behav. Biomed., 2012, 5, p 16–31CrossRef
21.
go back to reference I.V. Shishkovsky, M.V. Kuznetsov, and Y.G. MorozovInt, Porous Titanium and Nitinol Implants Synthesized by SHS/SLS: Microstructural and Histomorphological Analyses of Tissue Reactions, J. Self Propag. High Temp Synth., 2010, 19(2), p 157–167CrossRef I.V. Shishkovsky, M.V. Kuznetsov, and Y.G. MorozovInt, Porous Titanium and Nitinol Implants Synthesized by SHS/SLS: Microstructural and Histomorphological Analyses of Tissue Reactions, J. Self Propag. High Temp Synth., 2010, 19(2), p 157–167CrossRef
22.
go back to reference S.W. Jiang and M. Qi, Development of Porous Metals Used as Biomaterials, J. Mater. Sci. Eng., 2002, 20(4), p 597–600 S.W. Jiang and M. Qi, Development of Porous Metals Used as Biomaterials, J. Mater. Sci. Eng., 2002, 20(4), p 597–600
23.
go back to reference J. Banhart and D. Weaire, On the Road Again-Metal Foams Find Favor, Phys. Today, 2000, 55, p 37–42CrossRef J. Banhart and D. Weaire, On the Road Again-Metal Foams Find Favor, Phys. Today, 2000, 55, p 37–42CrossRef
24.
go back to reference P. Liu, G. He, and L.H. Wu, Fabrication of Sintered Steel Wire Mesh and Its Compressive Properties, Mater. Sci. Eng. A, 2008, 489, p 21–28CrossRef P. Liu, G. He, and L.H. Wu, Fabrication of Sintered Steel Wire Mesh and Its Compressive Properties, Mater. Sci. Eng. A, 2008, 489, p 21–28CrossRef
25.
go back to reference Q. Tan, P. Liu, C.L. Du, L.H. Wu, and G. He, Mechanical Behaviors of Quasi-Ordered Entangled Aluminum Alloy Wire Material, Mater. Sci. Eng. A, 2009, 527, p 38–44CrossRef Q. Tan, P. Liu, C.L. Du, L.H. Wu, and G. He, Mechanical Behaviors of Quasi-Ordered Entangled Aluminum Alloy Wire Material, Mater. Sci. Eng. A, 2009, 527, p 38–44CrossRef
26.
go back to reference P. Liu, G. He, and L.H. Wu, Uniaxial Tensile Stress-Strain Behavior of Entangled Steel Wire Material, Mater. Sci. Eng. A, 2009, 509, p 69–75CrossRef P. Liu, G. He, and L.H. Wu, Uniaxial Tensile Stress-Strain Behavior of Entangled Steel Wire Material, Mater. Sci. Eng. A, 2009, 509, p 69–75CrossRef
27.
go back to reference P. Liu, G. He, and L.H. Wu, Structure Deformation and Failure of Sintered Steel Wire Mesh Under Torsion Loading, Mater. Des., 2009, 30, p 2264–2268CrossRef P. Liu, G. He, and L.H. Wu, Structure Deformation and Failure of Sintered Steel Wire Mesh Under Torsion Loading, Mater. Des., 2009, 30, p 2264–2268CrossRef
28.
go back to reference P. Liu, G. He, and L.H. Wu, Impact Behavior of Entangled Steel Wire Material, Mater. Charact., 2009, 60, p 900–906CrossRef P. Liu, G. He, and L.H. Wu, Impact Behavior of Entangled Steel Wire Material, Mater. Charact., 2009, 60, p 900–906CrossRef
29.
go back to reference R.P. Taylor, S.T. McClain, and J.T. Berry, Uncertainty Analysis of Metal-Casting Porosity Measurements Using Archimedes’ Principle, Int. J. Cast. Metal. Res., 1999, 11(4), p 247–257 R.P. Taylor, S.T. McClain, and J.T. Berry, Uncertainty Analysis of Metal-Casting Porosity Measurements Using Archimedes’ Principle, Int. J. Cast. Metal. Res., 1999, 11(4), p 247–257
30.
go back to reference P. Liu, Q.H. Zhao, G. He, Y.M. Qiao, H. Li, J.J. Zheng, J.P. Li, and Y.X. Zhang, Compressive and Tensile Behavior of a High-Toughness Entangled Titanium Wire Materials (ETWMs), J. Mater. Eng. Perform., under review P. Liu, Q.H. Zhao, G. He, Y.M. Qiao, H. Li, J.J. Zheng, J.P. Li, and Y.X. Zhang, Compressive and Tensile Behavior of a High-Toughness Entangled Titanium Wire Materials (ETWMs), J. Mater. Eng. Perform., under review
31.
go back to reference D.L. Su, Mechanical Properties of Engineering Materials, China Machine Press, Beijing, 2003, p 49–50 D.L. Su, Mechanical Properties of Engineering Materials, China Machine Press, Beijing, 2003, p 49–50
32.
go back to reference Y. Kuboki, H. Takita, D. Kobayashi, E. Tsuruga, M. Inoue, M. Murata et al., BMP-Induced Osteogenesis on the Surface of Hydroxyapatite with Geometrically Feasible and Nonfeasible Structures: Topology of Osteogenesis, J. Biomed. Mater. Res., 1998, 39(2), p 190–199CrossRef Y. Kuboki, H. Takita, D. Kobayashi, E. Tsuruga, M. Inoue, M. Murata et al., BMP-Induced Osteogenesis on the Surface of Hydroxyapatite with Geometrically Feasible and Nonfeasible Structures: Topology of Osteogenesis, J. Biomed. Mater. Res., 1998, 39(2), p 190–199CrossRef
33.
go back to reference D.W. Hutmacher, Scaffolds in Tissue Engineering Bone and Cartilage, Biomaterials, 2000, 21, p 2529–2543CrossRef D.W. Hutmacher, Scaffolds in Tissue Engineering Bone and Cartilage, Biomaterials, 2000, 21, p 2529–2543CrossRef
34.
go back to reference C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, and T. Asahina, Processing of Biocompatible Porous Ti and Mg, Scripta Mater., 2001, 45, p 1147–1153CrossRef C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, and T. Asahina, Processing of Biocompatible Porous Ti and Mg, Scripta Mater., 2001, 45, p 1147–1153CrossRef
35.
go back to reference C.E. Wen, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina, and M. Mabuchi, Processing and Mechanical Properties of Autogenous Titanium Implant Materials, J. Mater. Sci. Mater. Med., 2002, 13(4), p 397–401CrossRef C.E. Wen, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina, and M. Mabuchi, Processing and Mechanical Properties of Autogenous Titanium Implant Materials, J. Mater. Sci. Mater. Med., 2002, 13(4), p 397–401CrossRef
36.
go back to reference M. Svehla, P. Morberg, B. Zicat, W. Bruce, D. Sonnabend, and W.R. Walsh, Morphometric and Mechanical Evaluation of Titanium Implant Integration: Comparison of Five Surface Structures, J. Biomed. Mater. Res. A, 2000, 51(1), p 15–22CrossRef M. Svehla, P. Morberg, B. Zicat, W. Bruce, D. Sonnabend, and W.R. Walsh, Morphometric and Mechanical Evaluation of Titanium Implant Integration: Comparison of Five Surface Structures, J. Biomed. Mater. Res. A, 2000, 51(1), p 15–22CrossRef
37.
go back to reference P.Y. Huang, Principle of Powder Metallurgy, Metallurgical Industry Press, Beijing, 1982, p 166–338 P.Y. Huang, Principle of Powder Metallurgy, Metallurgical Industry Press, Beijing, 1982, p 166–338
38.
go back to reference P.X. Wang, Powder Metallurgy, Metallurgical Industry Press, Beijing, 1997, p 181–268 P.X. Wang, Powder Metallurgy, Metallurgical Industry Press, Beijing, 1997, p 181–268
39.
go back to reference M. Zhao, Y.K. Guo, Z.M. Yu, and Z.L. Ning, Influence of Sintering Temperature on Densification and Flexural Strength of Stainless Steel (316L), J. Harbin Univ. Sci. Technol., 2000, 5(3), p 105–107 M. Zhao, Y.K. Guo, Z.M. Yu, and Z.L. Ning, Influence of Sintering Temperature on Densification and Flexural Strength of Stainless Steel (316L), J. Harbin Univ. Sci. Technol., 2000, 5(3), p 105–107
Metadata
Title
Fabrication of Entangled Tough Titanium Wires Materials and Influence on Three-Dimensional Structure and Properties
Authors
Ping Liu
Qinghua Zhao
Guo He
Yongmin Qiao
Hui Li
Junjun Zheng
Jipeng Li
Yongxing Zhang
Publication date
01-03-2014
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 3/2014
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-013-0799-1

Other articles of this Issue 3/2014

Journal of Materials Engineering and Performance 3/2014 Go to the issue

Premium Partners