Skip to main content
Top
Published in: Cellulose 4/2016

17-05-2016 | Original Paper

Fabrication of microfibrillated cellulose gel from waste pulp sludge via mild maceration combined with mechanical shearing

Authors: Nusheng Chen, J. Y. Zhu, Zhaohui Tong

Published in: Cellulose | Issue 4/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article describes a facile route, which combines mild maceration of waste pulp sludge and a mechanical shearing process, to prepare microfibrillated cellulose (MFC) with a high storage modulus. In the maceration, the mixture of glacial acetic acid and hydrogen peroxide was used to extract cellulose from never-dried waste pulp sludge. Then, two different mechanical processes including disc refining (DR) and ultrasonication plus homogenization (UH) were applied to the cellulose after maceration and resulted in MFC with a highly tangled fibril network. All of the resultant cellulosic suspensions (2 % w/w) exhibited a gel-like and shear-thinning behavior with storage moduli (G′) ranging from 200 to 4000 Pa. Among them, the 30-min DR-treated MFC gels had the maximum G′, which was much higher than for previously reported MFC gels at the same concentration. Additionally, after mechanical processing, specific surface areas and water retention values of MFC were accordingly increased with the enhancement of shear force, while the storage moduli (G′) were not consistently increased. Finally, a strong MFC gel was successfully prepared from never-dried waste pulp sludge via a one-step disc refining process and using cost-effective chemicals. The obtained hydrogels will have potential as low-density reinforcing fillers or as a template for further surface modification.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRef Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRef
go back to reference Chamberlain CJ (1905) Methods in plant histology. University of Chicago Press, Chincago Chamberlain CJ (1905) Methods in plant histology. University of Chicago Press, Chincago
go back to reference Chen L, Wang Q, Hirth K, Baez C, Agarwal UP, Zhu J (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762CrossRef Chen L, Wang Q, Hirth K, Baez C, Agarwal UP, Zhu J (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762CrossRef
go back to reference Czaja WK, Young DJ, Kawecki M, Brown RM (2006) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12CrossRef Czaja WK, Young DJ, Kawecki M, Brown RM (2006) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12CrossRef
go back to reference Franklin G (1945) Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 155:51CrossRef Franklin G (1945) Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 155:51CrossRef
go back to reference Henriksson M, Henriksson G, Berglund L, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441CrossRef Henriksson M, Henriksson G, Berglund L, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441CrossRef
go back to reference Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585CrossRef Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585CrossRef
go back to reference Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. Paper presented at the J Appl Polym Sci: Appl Polym Symp, US Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. Paper presented at the J Appl Polym Sci: Appl Polym Symp, US
go back to reference Hu C, Zhao Y, Li K, Zhu J, Gleisner R (2015) Optimizing cellulose fibrillation for the production of cellulose nanofibrils by a disk grinder. Holzforschung 69:993–1000 Hu C, Zhao Y, Li K, Zhu J, Gleisner R (2015) Optimizing cellulose fibrillation for the production of cellulose nanofibrils by a disk grinder. Holzforschung 69:993–1000
go back to reference Huntley CJ, Crews KD, Abdalla MA, Russell AE, Curry ML (2015) Influence of strong acid hydrolysis processing on the thermal stability and crystallinity of cellulose isolated from wheat straw. Int J Chem Eng. doi:10.1155/2015/658163 Huntley CJ, Crews KD, Abdalla MA, Russell AE, Curry ML (2015) Influence of strong acid hydrolysis processing on the thermal stability and crystallinity of cellulose isolated from wheat straw. Int J Chem Eng. doi:10.​1155/​2015/​658163
go back to reference Iwamoto S, Nakagaito A, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89:461–466CrossRef Iwamoto S, Nakagaito A, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89:461–466CrossRef
go back to reference Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764CrossRef Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764CrossRef
go back to reference Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425CrossRef Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425CrossRef
go back to reference Li J et al (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90:1609–1613CrossRef Li J et al (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90:1609–1613CrossRef
go back to reference Liimatainen H, Visanko M, Sirvio JA, Hormi OEO, Niinimaki J (2012) Enhancement of the nanofibrillation of wood cellulose through sequential periodate–chlorite oxidation. Biomacromolecules 13:1592–1597CrossRef Liimatainen H, Visanko M, Sirvio JA, Hormi OEO, Niinimaki J (2012) Enhancement of the nanofibrillation of wood cellulose through sequential periodate–chlorite oxidation. Biomacromolecules 13:1592–1597CrossRef
go back to reference Liu AD, Walther A, Ikkala O, Belova L, Berglund LA (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12:633–641CrossRef Liu AD, Walther A, Ikkala O, Belova L, Berglund LA (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12:633–641CrossRef
go back to reference Medeiros ES et al (2008) Electrospun nanofibers of poly (vinyl alcohol) reinforced with cellulose nanofibrils. J Biobased Mater Bio 2:231–242CrossRef Medeiros ES et al (2008) Electrospun nanofibers of poly (vinyl alcohol) reinforced with cellulose nanofibrils. J Biobased Mater Bio 2:231–242CrossRef
go back to reference Meier H (1962) Chemical and morphological aspects of the fine structure of wood. Pure Appl Chem 5:37–52CrossRef Meier H (1962) Chemical and morphological aspects of the fine structure of wood. Pure Appl Chem 5:37–52CrossRef
go back to reference Nada A-A, Ibrahem A, Fahmy Y, Abo-Yousef H (1999) Peroxyacetic acid pulping of bagasse and characterization of the lignin and pulp. J Sci Ind Res India 58:620–628 Nada A-A, Ibrahem A, Fahmy Y, Abo-Yousef H (1999) Peroxyacetic acid pulping of bagasse and characterization of the lignin and pulp. J Sci Ind Res India 58:620–628
go back to reference Nair SS, Zhu J, Deng Y, Ragauskas AJ (2014) Hydrogels prepared from cross-linked nanofibrillated cellulose. ACS Sustain Chem Eng 2:772–780CrossRef Nair SS, Zhu J, Deng Y, Ragauskas AJ (2014) Hydrogels prepared from cross-linked nanofibrillated cellulose. ACS Sustain Chem Eng 2:772–780CrossRef
go back to reference Ono H, Shimaya Y, Sato K, Hongo T (2004) 1H spin-spin relaxation time of water and rheological properties of cellulose nanofiber dispersion, transparent cellulose hydrogel (TCG). Polym J 36:684–694CrossRef Ono H, Shimaya Y, Sato K, Hongo T (2004) 1H spin-spin relaxation time of water and rheological properties of cellulose nanofiber dispersion, transparent cellulose hydrogel (TCG). Polym J 36:684–694CrossRef
go back to reference Osullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207CrossRef Osullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207CrossRef
go back to reference Paakko M et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef Paakko M et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef
go back to reference Paakko M et al (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499CrossRef Paakko M et al (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499CrossRef
go back to reference Pan M, Zhou X, Chen M (2013) Cellulose nanowhiskers isolation and properties from acid hydrolysis combined with high pressure homogenization. BioResources 8:933–943CrossRef Pan M, Zhou X, Chen M (2013) Cellulose nanowhiskers isolation and properties from acid hydrolysis combined with high pressure homogenization. BioResources 8:933–943CrossRef
go back to reference Picout DR, Ross-Murphy SB (2003) Rheology of biopolymer solutions and gels. Sci World J 3:105–121CrossRef Picout DR, Ross-Murphy SB (2003) Rheology of biopolymer solutions and gels. Sci World J 3:105–121CrossRef
go back to reference Rudraraju VS, Wyandt CM (2005) Rheological characterization of Microcrystalline Cellulose/Sodiumcarboxymethyl cellulose hydrogels using a controlled stress rheometer: part I. Int J Pharm 292:53–61CrossRef Rudraraju VS, Wyandt CM (2005) Rheological characterization of Microcrystalline Cellulose/Sodiumcarboxymethyl cellulose hydrogels using a controlled stress rheometer: part I. Int J Pharm 292:53–61CrossRef
go back to reference Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989CrossRef Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989CrossRef
go back to reference Sehaqui H, Salajkova M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6:1824–1832CrossRef Sehaqui H, Salajkova M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6:1824–1832CrossRef
go back to reference Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
go back to reference Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. NREL/TP-510-42618), National Renewable Energy Laboratory, Golden, CO Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. NREL/TP-510-42618), National Renewable Energy Laboratory, Golden, CO
go back to reference Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848CrossRef Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848CrossRef
go back to reference Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48:11211–11219CrossRef Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48:11211–11219CrossRef
go back to reference Suslick KS (1990) Sonochemistry. Science 247:1439–1445 Suslick KS (1990) Sonochemistry. Science 247:1439–1445
go back to reference Tatsumi D, Ishioka S, Matsumoto T (2002) Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspensions. J Soc Rheol Jpn 30:27–32CrossRef Tatsumi D, Ishioka S, Matsumoto T (2002) Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspensions. J Soc Rheol Jpn 30:27–32CrossRef
go back to reference Tenijenhuis K, Mijs WJ (1998) Chemical and physical networks formation and control of properties, vol 1. Wiley, Chichester Tenijenhuis K, Mijs WJ (1998) Chemical and physical networks formation and control of properties, vol 1. Wiley, Chichester
go back to reference Wang Q, Zhu J, Gleisner R, Kuster T, Baxa U, McNeil S (2012a) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19:1631–1643CrossRef Wang Q, Zhu J, Gleisner R, Kuster T, Baxa U, McNeil S (2012a) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19:1631–1643CrossRef
go back to reference Wang Q, Zhu J, Reiner R, Verrill S, Baxa U, McNeil S (2012b) Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19:2033–2047CrossRef Wang Q, Zhu J, Reiner R, Verrill S, Baxa U, McNeil S (2012b) Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19:2033–2047CrossRef
go back to reference Wang W, Mozuch MD, Sabo RC, Kersten P, Zhu J, Jin Y (2015a) Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization. Cellulose 22:351–361CrossRef Wang W, Mozuch MD, Sabo RC, Kersten P, Zhu J, Jin Y (2015a) Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization. Cellulose 22:351–361CrossRef
go back to reference Wang W, Sabo RC, Mozuch MD, Kersten P, Zhu J, Jin Y (2015b) Physical and mechanical properties of cellulose nanofibril films from bleached eucalyptus pulp by endoglucanase treatment and microfluidization. J Polym Environ 23:551–558CrossRef Wang W, Sabo RC, Mozuch MD, Kersten P, Zhu J, Jin Y (2015b) Physical and mechanical properties of cellulose nanofibril films from bleached eucalyptus pulp by endoglucanase treatment and microfluidization. J Polym Environ 23:551–558CrossRef
Metadata
Title
Fabrication of microfibrillated cellulose gel from waste pulp sludge via mild maceration combined with mechanical shearing
Authors
Nusheng Chen
J. Y. Zhu
Zhaohui Tong
Publication date
17-05-2016
Publisher
Springer Netherlands
Published in
Cellulose / Issue 4/2016
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-016-0959-1

Other articles of this Issue 4/2016

Cellulose 4/2016 Go to the issue