Skip to main content
Top
Published in: Rare Metals 7/2022

01-06-2022 | Letter

Facile synthesis of transition metal carbide nanoparticles embedded in mesoporous carbon nanosheets for hydrogen evolution reaction

Authors: Ying Yu, Xuan-Li Wang, Hong-Kun Zhang, Zhi-Qin Cao, Hao-Yang Wu, Bao-Rui Jia, Jun-Jun Yang, Xuan-Hui Qu, Ming-Li Qin

Published in: Rare Metals | Issue 7/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …
Transition metal carbides (TMC) modified by mesoporous carbon nanosheets (MCNSs) with high activity, fast electron/ion transfer and long durability are considered as promising electrocatalysts for hydrogen evolution reaction (HER). However, most current synthesis methods involve in multistep, long duration and low output. In this work, Cr3C2, WC and VC nanoparticles embedded in mesoporous carbon nanosheets (TMC-NPs@MCNSs) were fabricated via a template-free and time-saving route by solution combustion synthesis. All TMC-NPs@MCNSs displayed good electrocatalytic activity for HER, and the Tafel plots of Cr3C2-NPs@MCNS, VC-NPs@MCNS and WC-NPs@MCNS electrocatalysts were 85, 77 and 56 mV·dec−1, respectively. WC-NPs@MCNSs exhibited lower Tafel slope and overpotentials of 137 mV at ŋ10 (a current density of 10 mA·cm−2), which could be ascribed to mesoporous structure, smaller particles size and strong electron interaction between W and C that promoted electron/ion transfer, maintained the structure integrity and enhanced the HER activity.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
[1]
go back to reference Sun J, Zhong D, Gamelin D. Composite photoanodes for photoelectrochemical solar water splitting. Energy Environ Sci. 2010;3:1252.CrossRef Sun J, Zhong D, Gamelin D. Composite photoanodes for photoelectrochemical solar water splitting. Energy Environ Sci. 2010;3:1252.CrossRef
[2]
go back to reference Chen X, Zhang H, Zhang Y. Transition metal doped graphene-like germanium carbide: screening of high performance electrocatalysts for oxygen reduction, oxygen evolution, or hydrogen evolution. Colloid Surf A. 2021;630:127628.CrossRef Chen X, Zhang H, Zhang Y. Transition metal doped graphene-like germanium carbide: screening of high performance electrocatalysts for oxygen reduction, oxygen evolution, or hydrogen evolution. Colloid Surf A. 2021;630:127628.CrossRef
[3]
go back to reference Huang C, Miao X, Pi C, Gao B, Zhang X, Qin P, Huo K, Peng X, Chu PK. Mo2C/VC heterojunction embedded in graphitic carbon network: an advanced electrocatalyst for hydrogen evolution. Nano Energy. 2019;60:520.CrossRef Huang C, Miao X, Pi C, Gao B, Zhang X, Qin P, Huo K, Peng X, Chu PK. Mo2C/VC heterojunction embedded in graphitic carbon network: an advanced electrocatalyst for hydrogen evolution. Nano Energy. 2019;60:520.CrossRef
[4]
go back to reference Zou X, Zhang Y. ChemInform abstract: noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev. 2015;44:5148.CrossRef Zou X, Zhang Y. ChemInform abstract: noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev. 2015;44:5148.CrossRef
[5]
go back to reference Popczun EJ, Mckone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc. 2013;135(25):9267.CrossRef Popczun EJ, Mckone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc. 2013;135(25):9267.CrossRef
[6]
go back to reference Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013;13(12):6222.CrossRef Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013;13(12):6222.CrossRef
[7]
go back to reference Tackett B, Sheng W, Chen J. Opportunities and challenges in utilizing metal-modified transition metal carbides as low-cost electrocatalysts. Joule. 2017;1(2):253.CrossRef Tackett B, Sheng W, Chen J. Opportunities and challenges in utilizing metal-modified transition metal carbides as low-cost electrocatalysts. Joule. 2017;1(2):253.CrossRef
[8]
go back to reference Cao Z, Qin M, Zuo C, Gu Y, Jia B. Facile route for synthesis of mesoporous graphite encapsulated iron carbide/iron nanosheet composites and their electrocatalytic activity. J Colloid Interf Sci. 2017;491:55.CrossRef Cao Z, Qin M, Zuo C, Gu Y, Jia B. Facile route for synthesis of mesoporous graphite encapsulated iron carbide/iron nanosheet composites and their electrocatalytic activity. J Colloid Interf Sci. 2017;491:55.CrossRef
[9]
go back to reference Emin S, Altinkaya C, Semerci A, Okuyucu H, Yildiz A, Stefanov P. Tungsten carbide electrocatalysts prepared from metallic tungsten nanoparticles for efficient hydrogen evolution. Appl Catal B Environ. 2018;236(15):147.CrossRef Emin S, Altinkaya C, Semerci A, Okuyucu H, Yildiz A, Stefanov P. Tungsten carbide electrocatalysts prepared from metallic tungsten nanoparticles for efficient hydrogen evolution. Appl Catal B Environ. 2018;236(15):147.CrossRef
[10]
go back to reference Shi Z, Wang Y, Lin H, Zhang H, Shen M, Xie S, Zhang Y, Gao Q, Tang Y. Porous nanoMoC@graphite shell derived from a MOFs-directed strategy: an efficient electrocatalyst for the hydrogen evolution reaction. J Mater Chem A. 2016;4:6006.CrossRef Shi Z, Wang Y, Lin H, Zhang H, Shen M, Xie S, Zhang Y, Gao Q, Tang Y. Porous nanoMoC@graphite shell derived from a MOFs-directed strategy: an efficient electrocatalyst for the hydrogen evolution reaction. J Mater Chem A. 2016;4:6006.CrossRef
[11]
go back to reference Fan H, Yu H, Zhang Y, Zheng Y, Luo Y, Dai Z, Li B, Zong Y, Yan Q. Fe-doped Ni3C nanodots in N-doped carbon nanosheets for efficient hydrogen-evolution and oxygen-evolution electrocatalysis. Angew. Chem. Int. Ed. 2017;56(41):12566.CrossRef Fan H, Yu H, Zhang Y, Zheng Y, Luo Y, Dai Z, Li B, Zong Y, Yan Q. Fe-doped Ni3C nanodots in N-doped carbon nanosheets for efficient hydrogen-evolution and oxygen-evolution electrocatalysis. Angew. Chem. Int. Ed. 2017;56(41):12566.CrossRef
[12]
go back to reference Peng X, Hu L, Wang L, Zhang X, Fu J, Huo K, Lee LYS, Wong KY, Chu PK. Vanadium carbide nanoparticles encapsulated in graphitic carbon network nanosheets: a high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Energy. 2016;26:603.CrossRef Peng X, Hu L, Wang L, Zhang X, Fu J, Huo K, Lee LYS, Wong KY, Chu PK. Vanadium carbide nanoparticles encapsulated in graphitic carbon network nanosheets: a high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Energy. 2016;26:603.CrossRef
[13]
go back to reference Xiong K, Li L, Zhang L, Ding W, Peng L, Wang Y, Chen S, Tan S, Wei Z. Ni-doped Mo2C nanowires supported on Ni foam as a binder-free electrode for enhancing the hydrogen evolution performance. J Mater Chem A. 2015;3:1863.CrossRef Xiong K, Li L, Zhang L, Ding W, Peng L, Wang Y, Chen S, Tan S, Wei Z. Ni-doped Mo2C nanowires supported on Ni foam as a binder-free electrode for enhancing the hydrogen evolution performance. J Mater Chem A. 2015;3:1863.CrossRef
[14]
go back to reference Wan C, Leonard BM. Iron-doped molybdenum carbide catalyst with high activity and stability for the hydrogen evolution reaction. Chem Mater. 2015;27(12):4281.CrossRef Wan C, Leonard BM. Iron-doped molybdenum carbide catalyst with high activity and stability for the hydrogen evolution reaction. Chem Mater. 2015;27(12):4281.CrossRef
[15]
go back to reference Lin H, Liu N, Shi Z, Guo Y, Tang Y, Gao Q. Nanowires: cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution. Adv Funct Mater. 2016;26(31):5581.CrossRef Lin H, Liu N, Shi Z, Guo Y, Tang Y, Gao Q. Nanowires: cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution. Adv Funct Mater. 2016;26(31):5581.CrossRef
[16]
go back to reference Hu Y, Jensen JO, Zhang W, Cleemann LN, Xing W, Bjerrum NJ, Li Q. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angew Chem Int Ed. 2014;53(14):3675.CrossRef Hu Y, Jensen JO, Zhang W, Cleemann LN, Xing W, Bjerrum NJ, Li Q. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angew Chem Int Ed. 2014;53(14):3675.CrossRef
[17]
go back to reference Deng D, Yu L, Chen X, Wang G, Jin L, Pan X, Deng J, Sun G, Bao X. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew Chem Int Ed. 2013;52(1):371.CrossRef Deng D, Yu L, Chen X, Wang G, Jin L, Pan X, Deng J, Sun G, Bao X. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew Chem Int Ed. 2013;52(1):371.CrossRef
[18]
go back to reference Liu Y, Xu XY, Sun PC, Chen TH. N-doped porous carbon nanosheets with embedded iron carbide nanoparticles for oxygen reduction reaction in acidic media. Int J Hydrogen Energy. 2015;40(13):4531.CrossRef Liu Y, Xu XY, Sun PC, Chen TH. N-doped porous carbon nanosheets with embedded iron carbide nanoparticles for oxygen reduction reaction in acidic media. Int J Hydrogen Energy. 2015;40(13):4531.CrossRef
[19]
go back to reference Mukasyan AS, Epstein P, Dinka P. Solution combustion synthesis of nanomaterials. P Combust Inst. 2007;31(2):1789.CrossRef Mukasyan AS, Epstein P, Dinka P. Solution combustion synthesis of nanomaterials. P Combust Inst. 2007;31(2):1789.CrossRef
[20]
go back to reference Varma A, Mukasyan AS, Rogachev AS, Manukyan KV. Solution combustion synthesis of nanoscale materials. Chem Rev. 2016;116(23):14493.CrossRef Varma A, Mukasyan AS, Rogachev AS, Manukyan KV. Solution combustion synthesis of nanoscale materials. Chem Rev. 2016;116(23):14493.CrossRef
[21]
go back to reference Li F, Ran J, Jaroniec M, Qiao SZ. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale. 2015;7(42):17590.CrossRef Li F, Ran J, Jaroniec M, Qiao SZ. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale. 2015;7(42):17590.CrossRef
[22]
go back to reference Zhu C, Wang AL, Xiao W, Chao D, Zhang X, Tiep NH, Chen S, Kang J, Wang X, Ding J, Wang J, Zhang H, Fan H. In situ grown epitaxial heterojunction exhibits high-performance electrocatalytic water splitting. Adv Mater. 2018;30(13):1705516.CrossRef Zhu C, Wang AL, Xiao W, Chao D, Zhang X, Tiep NH, Chen S, Kang J, Wang X, Ding J, Wang J, Zhang H, Fan H. In situ grown epitaxial heterojunction exhibits high-performance electrocatalytic water splitting. Adv Mater. 2018;30(13):1705516.CrossRef
[23]
go back to reference Eftekhari A. Electrocatalysts for hydrogen evolution reaction. Int J Hydrogen Energy. 2017;42(16):11053.CrossRef Eftekhari A. Electrocatalysts for hydrogen evolution reaction. Int J Hydrogen Energy. 2017;42(16):11053.CrossRef
[24]
go back to reference Fang B, Kim JH, Kim MS, Yu JS. Hierarchical nanostructured carbons with meso-macroporosity: design, characterization, and applications. Acc Chem Res. 2013;46(7):1397.CrossRef Fang B, Kim JH, Kim MS, Yu JS. Hierarchical nanostructured carbons with meso-macroporosity: design, characterization, and applications. Acc Chem Res. 2013;46(7):1397.CrossRef
[25]
go back to reference Anjali J, Jose VK, Lee JM. Carbon-based hydrogels: synthesis and their recent energy applications. J Mater Chem A. 2019;7:15491.CrossRef Anjali J, Jose VK, Lee JM. Carbon-based hydrogels: synthesis and their recent energy applications. J Mater Chem A. 2019;7:15491.CrossRef
[26]
go back to reference Yu S, Song S, Li R, Fang B. The lightest solid meets the lightest gas: an overview of carbon aerogels and their composites for hydrogen related applications. Nanoscale. 2020;12:19536.CrossRef Yu S, Song S, Li R, Fang B. The lightest solid meets the lightest gas: an overview of carbon aerogels and their composites for hydrogen related applications. Nanoscale. 2020;12:19536.CrossRef
[27]
go back to reference Prabhu P, Jose V, Lee JM. Design strategies for development of TMD-based heterostructures in electrochemical energy systems. Matter. 2020;2:526.CrossRef Prabhu P, Jose V, Lee JM. Design strategies for development of TMD-based heterostructures in electrochemical energy systems. Matter. 2020;2:526.CrossRef
[28]
go back to reference Wang H, Li J, Li K, Lin Y, Chen J, Gao L, Nicolosi V, Xiao X, Lee JM. Transition metal nitrides for electrochemical energy applications. Chem Soc Rev. 2021;50:1354.CrossRef Wang H, Li J, Li K, Lin Y, Chen J, Gao L, Nicolosi V, Xiao X, Lee JM. Transition metal nitrides for electrochemical energy applications. Chem Soc Rev. 2021;50:1354.CrossRef
[29]
go back to reference Wang J, Wang G, Miao S, Li J, Bao X. Graphene-supported iron-based nanoparticles encapsulated in nitrogen-doped carbon as a synergistic catalyst for hydrogen evolution and oxygen reduction reactions. Faraday Discuss. 2014;176:135.CrossRef Wang J, Wang G, Miao S, Li J, Bao X. Graphene-supported iron-based nanoparticles encapsulated in nitrogen-doped carbon as a synergistic catalyst for hydrogen evolution and oxygen reduction reactions. Faraday Discuss. 2014;176:135.CrossRef
[30]
go back to reference Zhang H, Ma Z, Duan J, Liu H, Liu G, Wang T, Chang K, Li M, Shi L, Meng X, Wu K, Ye J. Active sites implanted carbon cages in core–shell architecture: highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano. 2016;10(1):684.CrossRef Zhang H, Ma Z, Duan J, Liu H, Liu G, Wang T, Chang K, Li M, Shi L, Meng X, Wu K, Ye J. Active sites implanted carbon cages in core–shell architecture: highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano. 2016;10(1):684.CrossRef
Metadata
Title
Facile synthesis of transition metal carbide nanoparticles embedded in mesoporous carbon nanosheets for hydrogen evolution reaction
Authors
Ying Yu
Xuan-Li Wang
Hong-Kun Zhang
Zhi-Qin Cao
Hao-Yang Wu
Bao-Rui Jia
Jun-Jun Yang
Xuan-Hui Qu
Ming-Li Qin
Publication date
01-06-2022
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 7/2022
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-022-01991-6

Other articles of this Issue 7/2022

Rare Metals 7/2022 Go to the issue

Premium Partners