Skip to main content
Top
Published in: Rare Metals 7/2022

02-02-2022 | Mini Review

Magnetic skyrmions in curved geometries

Authors: Yan Liu, Na Cai, Ming-Zhu Xin, Shuang Wang

Published in: Rare Metals | Issue 7/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In curved geometries, a lot of novel curvature-driven effects are discovered due to the curvature-induced effective anisotropy and Dzyaloshinskii–Moriya interaction. Curvature effect also provides means to modify conventional results and launch new functionalities in study of magnetic skyrmions. Magnetic skyrmions are particle-like spin textures with topological protections. It has been found in several magnetic materials and has been one of the research hotspots in magnetism and spintronics as the carriers of information. Both Dzyaloshinskii–Moriya interaction and anisotropy have significant effects on the formation and stability of magnetic skyrmions. The magnetic skyrmions in curved geometries show some novel characteristics, and the study in this field may promote the development of magnetic skyrmions. This article provides a review of the present state of the research on skyrmions in curved geometries including curved nanotracks, thin films with curved defect, nanotubes, spherical and hemispherical shells. The review mainly covers three aspects, the formation and stability of skyrmions, the shape and size of skyrmions, and the dynamical behaviors of skyrmions in curved geometries.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Faure B, Wetterskog E, Gunnarsson K, Josten E, Hermann RP, Brückel T, Andreasen AW, Meneau F, Meyer M, Lyubartsev A, Bergström L, Salazar-Alvarez F, Svedlindh P. 2D to 3D crossover of the magnetic properties in ordered arrays of iron oxide nanocrystals. Nanoscale. 2013;5:953.CrossRef Faure B, Wetterskog E, Gunnarsson K, Josten E, Hermann RP, Brückel T, Andreasen AW, Meneau F, Meyer M, Lyubartsev A, Bergström L, Salazar-Alvarez F, Svedlindh P. 2D to 3D crossover of the magnetic properties in ordered arrays of iron oxide nanocrystals. Nanoscale. 2013;5:953.CrossRef
[2]
go back to reference Sun H, Li W, Wollenberg L, Li B, Wu L, Li F, Xu L. Self-organized honeycomb structures of Mn12 single-molecule magnets. J Phys Chem B. 2009;113:14674.CrossRef Sun H, Li W, Wollenberg L, Li B, Wu L, Li F, Xu L. Self-organized honeycomb structures of Mn12 single-molecule magnets. J Phys Chem B. 2009;113:14674.CrossRef
[3]
go back to reference Sheka DD, Pylypovskyi OV, Landeros P, Gaididei Y, Kákay A, Makarov D. Nonlocal chiral symmetry breaking in curvilinear magnetic shells. Commun Phys. 2020;3(128):1. Sheka DD, Pylypovskyi OV, Landeros P, Gaididei Y, Kákay A, Makarov D. Nonlocal chiral symmetry breaking in curvilinear magnetic shells. Commun Phys. 2020;3(128):1.
[4]
go back to reference Streubel R, Fischer P, Kronast F, Kravchuk VP, Sheka DD, Gaididei Y, Schmidt OG, Makarov D. Magnetism in curved geometries. J Phys D: Appl Phys. 2016;49:363001.CrossRef Streubel R, Fischer P, Kronast F, Kravchuk VP, Sheka DD, Gaididei Y, Schmidt OG, Makarov D. Magnetism in curved geometries. J Phys D: Appl Phys. 2016;49:363001.CrossRef
[5]
go back to reference Fernández-Pacheco A, Serrano-Ramón L, Michalik JM, Ibarra RM, Teresa JM, O’Brien L, Petit D, Lee J, Cowburn P. Three dimensional magnetic nanowires grown by focused electron-beam induced deposition. Sci Rep. 2013;3:1492.CrossRef Fernández-Pacheco A, Serrano-Ramón L, Michalik JM, Ibarra RM, Teresa JM, O’Brien L, Petit D, Lee J, Cowburn P. Three dimensional magnetic nanowires grown by focused electron-beam induced deposition. Sci Rep. 2013;3:1492.CrossRef
[6]
go back to reference Fernández-Pacheco A, Streubel R, Fruchart O, Hertel R, Fischer P, Cowburn RP. Three-dimensional nanomagnetism. Nat Commun. 2017;8(1):15756.CrossRef Fernández-Pacheco A, Streubel R, Fruchart O, Hertel R, Fischer P, Cowburn RP. Three-dimensional nanomagnetism. Nat Commun. 2017;8(1):15756.CrossRef
[7]
go back to reference Otálora JA, López-López JA, Vargas P, Landeros P. Chirality switching and propagation control of a vortex domain wall in ferromagnetic nanotubes. Appl Phys Lett. 2012;100(7):072407.CrossRef Otálora JA, López-López JA, Vargas P, Landeros P. Chirality switching and propagation control of a vortex domain wall in ferromagnetic nanotubes. Appl Phys Lett. 2012;100(7):072407.CrossRef
[8]
[9]
go back to reference Li F, Nattermann T, Pokrovsky VL. Vortex domain walls in helical magnets. Phys Rev Lett. 2012;108(10):107203.CrossRef Li F, Nattermann T, Pokrovsky VL. Vortex domain walls in helical magnets. Phys Rev Lett. 2012;108(10):107203.CrossRef
[10]
go back to reference Zhu J, Wu Y, Hu Q, Kong L, Tang J, Tian M, Du H. Current-driven transformations of a skyrmion tube and a bobber in stepped nanostructures of chiral magnets. Sci China Phys Mech Astron. 2021;64(2):227511.CrossRef Zhu J, Wu Y, Hu Q, Kong L, Tang J, Tian M, Du H. Current-driven transformations of a skyrmion tube and a bobber in stepped nanostructures of chiral magnets. Sci China Phys Mech Astron. 2021;64(2):227511.CrossRef
[11]
go back to reference Yershov KV, Kravchuk VP, Sheka DD, Gaididei Y. Curvature and torsion effects in spin-current driven domain wall motion. Phys Rev B. 2016;93(9):094418.CrossRef Yershov KV, Kravchuk VP, Sheka DD, Gaididei Y. Curvature and torsion effects in spin-current driven domain wall motion. Phys Rev B. 2016;93(9):094418.CrossRef
[12]
go back to reference Pylypovskyi OV, Kravchuk VP, Sheka DD, Makarov D, Schmidt OG, Gaididei Y. Coupling of chiralities in spin and physical spaces: the möbius ring as a case study. Phys Rev Lett. 2015;114:197204.CrossRef Pylypovskyi OV, Kravchuk VP, Sheka DD, Makarov D, Schmidt OG, Gaididei Y. Coupling of chiralities in spin and physical spaces: the möbius ring as a case study. Phys Rev Lett. 2015;114:197204.CrossRef
[13]
go back to reference Streubel R, Thurmer DJ, Makarov D, Kronast F, Kosub T, Kravchuk V, Sheka DD, Gaididei Y, Schäfer R, Schmidt OG. Magnetically capped rolled-up nanomembranes. Nano Lett. 2012;12(8):3961.CrossRef Streubel R, Thurmer DJ, Makarov D, Kronast F, Kosub T, Kravchuk V, Sheka DD, Gaididei Y, Schäfer R, Schmidt OG. Magnetically capped rolled-up nanomembranes. Nano Lett. 2012;12(8):3961.CrossRef
[14]
go back to reference Forster H, Schrefl T, Suess D, Scholz W, Tsiantos V, Dittrich R, Fidler J. Domain wall motion in nanowires using moving grids (invited). J Appl Phys. 2002;91(10):1.CrossRef Forster H, Schrefl T, Suess D, Scholz W, Tsiantos V, Dittrich R, Fidler J. Domain wall motion in nanowires using moving grids (invited). J Appl Phys. 2002;91(10):1.CrossRef
[15]
go back to reference Hertel R. Computational micromagnetism of magnetization processes in nickel nanowires. J Magn Magn Mater. 2002;249:251.CrossRef Hertel R. Computational micromagnetism of magnetization processes in nickel nanowires. J Magn Magn Mater. 2002;249:251.CrossRef
[16]
go back to reference Biziere N, Gatel C, Lassalle-Balier R, Clochard MC, Wegrowe JE, Snoeck E. Imaging the fine structure of a magnetic domain wall in a Ni nanocylinder. Nano Lett. 2013;13(5):2053.CrossRef Biziere N, Gatel C, Lassalle-Balier R, Clochard MC, Wegrowe JE, Snoeck E. Imaging the fine structure of a magnetic domain wall in a Ni nanocylinder. Nano Lett. 2013;13(5):2053.CrossRef
[17]
go back to reference Col SD, Jamet S, Rougemaille N, Locatelli A, Mentes TO, Burgos BS, Afid R, Darques M, Cagnon L, Toussaint JC, Fruchart O. Observation of Bloch-point domain walls in cylindrical magnetic nanowires. Phys Rev B. 2014;89(18):180405.CrossRef Col SD, Jamet S, Rougemaille N, Locatelli A, Mentes TO, Burgos BS, Afid R, Darques M, Cagnon L, Toussaint JC, Fruchart O. Observation of Bloch-point domain walls in cylindrical magnetic nanowires. Phys Rev B. 2014;89(18):180405.CrossRef
[18]
[19]
go back to reference Gaididei Y, Kravchuk VP, Sheka DD. Curvature effects in thin magnetic shells. Phys Rev Lett. 2015;112(25):257203.CrossRef Gaididei Y, Kravchuk VP, Sheka DD. Curvature effects in thin magnetic shells. Phys Rev Lett. 2015;112(25):257203.CrossRef
[20]
go back to reference Sheka DD, Kravchuk VP, Gaididei Y. Curvature effects in statics and dynamics of low dimensional magnets. J Phys A: Math Theor. 2015;48(12):125202.CrossRef Sheka DD, Kravchuk VP, Gaididei Y. Curvature effects in statics and dynamics of low dimensional magnets. J Phys A: Math Theor. 2015;48(12):125202.CrossRef
[21]
go back to reference Yan M, Kákay A, Gliga S, Hertel R. Beating the Walker limit with massless domain walls in cylindrical nanowires. Phys Rev Lett. 2010;104(5):057201.CrossRef Yan M, Kákay A, Gliga S, Hertel R. Beating the Walker limit with massless domain walls in cylindrical nanowires. Phys Rev Lett. 2010;104(5):057201.CrossRef
[22]
go back to reference Yan M, Andreas C, Kákay A, García-Sánchez F, Hertel R. Chiral symmetry breaking and pair-creation mediated Walker breakdown in magnetic nanotubes. Appl Phys Lett. 2012;100(25):252401.CrossRef Yan M, Andreas C, Kákay A, García-Sánchez F, Hertel R. Chiral symmetry breaking and pair-creation mediated Walker breakdown in magnetic nanotubes. Appl Phys Lett. 2012;100(25):252401.CrossRef
[23]
go back to reference Li Z, Hu Y, He P, Sun L. Domain wall dynamics in magnetic nanotubes driven by an external magnetic field. Chin Phys B. 2018;27(7):077505.CrossRef Li Z, Hu Y, He P, Sun L. Domain wall dynamics in magnetic nanotubes driven by an external magnetic field. Chin Phys B. 2018;27(7):077505.CrossRef
[24]
go back to reference Hertel R. Ultrafast domain wall dynamics in magnetic nanotubes and nanowires. J Phys Condens Matter. 2016;28(48):483002.CrossRef Hertel R. Ultrafast domain wall dynamics in magnetic nanotubes and nanowires. J Phys Condens Matter. 2016;28(48):483002.CrossRef
[25]
go back to reference Yan M, Andreas C, Kákay A, García-Sánchez F, Hertel R. Fast domain wall dynamics in magnetic nanotubes: suppression of Walker breakdown and cherenkov-like spin wave emission. Appl Phys Lett. 2011;99(12):122505.CrossRef Yan M, Andreas C, Kákay A, García-Sánchez F, Hertel R. Fast domain wall dynamics in magnetic nanotubes: suppression of Walker breakdown and cherenkov-like spin wave emission. Appl Phys Lett. 2011;99(12):122505.CrossRef
[26]
go back to reference Sloika MI, Kravchuk VP, Sheka DD, Gaididei Y. Curvature induced chirality symmetry breaking in vortex core switching phenomena. Appl Phys Lett. 2014;104(25):252403.CrossRef Sloika MI, Kravchuk VP, Sheka DD, Gaididei Y. Curvature induced chirality symmetry breaking in vortex core switching phenomena. Appl Phys Lett. 2014;104(25):252403.CrossRef
[27]
go back to reference Yan M, Kákay A, Andreas C, Hertel R. Spin-Cherenkov effect and magnonic Mach cones. Phys Rev B. 2013;88(22):220412.CrossRef Yan M, Kákay A, Andreas C, Hertel R. Spin-Cherenkov effect and magnonic Mach cones. Phys Rev B. 2013;88(22):220412.CrossRef
[28]
go back to reference Kravchuk VP, Sheka DD, Streubel R, Makarov D, Schmidt OG, Gaididei Y. Out-of-surface vortices in spherical shells. Phys Rev B. 2012;85(14):144433.CrossRef Kravchuk VP, Sheka DD, Streubel R, Makarov D, Schmidt OG, Gaididei Y. Out-of-surface vortices in spherical shells. Phys Rev B. 2012;85(14):144433.CrossRef
[29]
go back to reference Parkin SSP, Hayashi M, Thomas L. Magnetic domain-wall racetrack memory. Science. 2008;320(5873):190.CrossRef Parkin SSP, Hayashi M, Thomas L. Magnetic domain-wall racetrack memory. Science. 2008;320(5873):190.CrossRef
[30]
go back to reference Hayashi M, Thomas L, Rettner C, Moriya R, Bazaliy YB, Parkin SSP. Current driven domain wall velocities exceeding the spin angular momentum transfer rate in permalloy nanowires. Phys Rev Lett. 2007;98(3):037204.CrossRef Hayashi M, Thomas L, Rettner C, Moriya R, Bazaliy YB, Parkin SSP. Current driven domain wall velocities exceeding the spin angular momentum transfer rate in permalloy nanowires. Phys Rev Lett. 2007;98(3):037204.CrossRef
[31]
go back to reference Nagaosa N, Tokura Y. Topological properties and dynamics of magnetic skyrmions. Nat Nanotech. 2013;8:899.CrossRef Nagaosa N, Tokura Y. Topological properties and dynamics of magnetic skyrmions. Nat Nanotech. 2013;8:899.CrossRef
[32]
go back to reference Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P. Skyrmion lattice in a chiral magnet. Science. 2009;323(5916):915.CrossRef Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P. Skyrmion lattice in a chiral magnet. Science. 2009;323(5916):915.CrossRef
[33]
go back to reference Seki S, Yu XZ, Ishiwata S, Tokura Y. Observation of skyrmions in a multiferroic material. Science. 2012;336(6078):198.CrossRef Seki S, Yu XZ, Ishiwata S, Tokura Y. Observation of skyrmions in a multiferroic material. Science. 2012;336(6078):198.CrossRef
[34]
go back to reference Iwasaki J, Mochizuki M, Nagaosa N. Current-induced skyrmion dynamics in constricted geometries. Nat Nanotech. 2013;8:742.CrossRef Iwasaki J, Mochizuki M, Nagaosa N. Current-induced skyrmion dynamics in constricted geometries. Nat Nanotech. 2013;8:742.CrossRef
[35]
go back to reference Li W, Jin C, Che R, Wei W, Lin L, Zhang L, Du H, Tian M, Zang J. Emergence of skyrmions from rich parent phases in the molybdenum nitrides. Phys Rev B. 2016;93(6):060409.CrossRef Li W, Jin C, Che R, Wei W, Lin L, Zhang L, Du H, Tian M, Zang J. Emergence of skyrmions from rich parent phases in the molybdenum nitrides. Phys Rev B. 2016;93(6):060409.CrossRef
[36]
go back to reference Tanigaki T, Shibata K, Kanazawa N, Yu X, Onnse Y, Park HS, Shindo D, Tokura Y. Real-space observation of short-period cubic lattice of skyrmions in MnGe. Nano Lett. 2015;15(8):5438.CrossRef Tanigaki T, Shibata K, Kanazawa N, Yu X, Onnse Y, Park HS, Shindo D, Tokura Y. Real-space observation of short-period cubic lattice of skyrmions in MnGe. Nano Lett. 2015;15(8):5438.CrossRef
[37]
go back to reference Kézsmárki I, Bordacs S, Milde P, Neuber E, Eng LM, White JS, Rønnow HM, Dewhurst CD, Mochizuki M, Yanai K, Nakamura H, Ehlers D, Tsurkan V, Loidl A. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat Mater. 2015;14(11):1116.CrossRef Kézsmárki I, Bordacs S, Milde P, Neuber E, Eng LM, White JS, Rønnow HM, Dewhurst CD, Mochizuki M, Yanai K, Nakamura H, Ehlers D, Tsurkan V, Loidl A. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat Mater. 2015;14(11):1116.CrossRef
[38]
go back to reference Hoffmann M, Zimmermann B, Müller GP, Schürhoff D, Kiselev NS, Melcher C, Blügel S. Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii–Moriya interactions. Nat Commun. 2017;8(1):308.CrossRef Hoffmann M, Zimmermann B, Müller GP, Schürhoff D, Kiselev NS, Melcher C, Blügel S. Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii–Moriya interactions. Nat Commun. 2017;8(1):308.CrossRef
[39]
go back to reference Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Huo Z, Zhang X, Li X, Liu E, Wang S, Cai J, Wang F, Li J, Hu F, Wu G, Shen B, Zhang X. A centrosymmetric hexagonal magnet with superstable biskyrmion magnetic nanodomains in a wide temperature range of 100–340 K. Adv Mater. 2016;28:6887.CrossRef Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Huo Z, Zhang X, Li X, Liu E, Wang S, Cai J, Wang F, Li J, Hu F, Wu G, Shen B, Zhang X. A centrosymmetric hexagonal magnet with superstable biskyrmion magnetic nanodomains in a wide temperature range of 100–340 K. Adv Mater. 2016;28:6887.CrossRef
[40]
go back to reference Romming N, Hanneken C, Menzel M, Bickel JE, Wolter B, Bergmann KV, Kubetzka A, Wiesendanger R. Writing and deleting single magnetic skyrmions. Science. 2013;341(6146):636.CrossRef Romming N, Hanneken C, Menzel M, Bickel JE, Wolter B, Bergmann KV, Kubetzka A, Wiesendanger R. Writing and deleting single magnetic skyrmions. Science. 2013;341(6146):636.CrossRef
[41]
go back to reference Woo S, Litzius K, Krüger B, Im MY, Caretta L, Richter K, Mann M, Krone A, Reeve RM, Weigand M, Agrawal P, Lemesh I, Mawass MA, Fischer P, Kläui M, Beach GSD. Observation of room temperature magnetic skyrmions and their current-driven dynamics in ultrathin Co films. Nat Mater. 2015;15(5):501.CrossRef Woo S, Litzius K, Krüger B, Im MY, Caretta L, Richter K, Mann M, Krone A, Reeve RM, Weigand M, Agrawal P, Lemesh I, Mawass MA, Fischer P, Kläui M, Beach GSD. Observation of room temperature magnetic skyrmions and their current-driven dynamics in ultrathin Co films. Nat Mater. 2015;15(5):501.CrossRef
[42]
go back to reference Boulle O, Vogel J, Yang H, Pizzini S, Chaves DS, Locatelli A, Menteş TO, Sala A, Buda-Prejbeanu LD, Klein O, Belmeguenai M, Roussigné Y, Stashkevich A, Chérif SM, Aballe L, Foerster M, Chshiev M, Auffret S, Miron IM, Gaudin G. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat Nanotech. 2016;11:449.CrossRef Boulle O, Vogel J, Yang H, Pizzini S, Chaves DS, Locatelli A, Menteş TO, Sala A, Buda-Prejbeanu LD, Klein O, Belmeguenai M, Roussigné Y, Stashkevich A, Chérif SM, Aballe L, Foerster M, Chshiev M, Auffret S, Miron IM, Gaudin G. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat Nanotech. 2016;11:449.CrossRef
[43]
go back to reference Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch MB, Fradin FY, Pearson JE, Tserkovnyak Y, Wang K, Heinonen O, Velthuis SGE, Hoffmann A. Blowing magnetic skyrmion bubbles. Science. 2015;349(6245):283.CrossRef Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch MB, Fradin FY, Pearson JE, Tserkovnyak Y, Wang K, Heinonen O, Velthuis SGE, Hoffmann A. Blowing magnetic skyrmion bubbles. Science. 2015;349(6245):283.CrossRef
[44]
go back to reference Karube K, White JS, Morikawa D, Bartkowiak M, Kikkawa A, Tokunaga Y, Arima T, Rønnow HM, Tokura Y, Taguchi Y. Skyrmion formation in a bulk chiral magnet at zero magnetic field and above room temperature. Phys Rev Mater. 2017;1(7):074405.CrossRef Karube K, White JS, Morikawa D, Bartkowiak M, Kikkawa A, Tokunaga Y, Arima T, Rønnow HM, Tokura Y, Taguchi Y. Skyrmion formation in a bulk chiral magnet at zero magnetic field and above room temperature. Phys Rev Mater. 2017;1(7):074405.CrossRef
[45]
go back to reference Jonietz F, Mulbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duinel RA, Everschor K, Garst M, Rosch A. Spin transfer torques in MnSi. Science. 2010;330(6011):1648.CrossRef Jonietz F, Mulbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duinel RA, Everschor K, Garst M, Rosch A. Spin transfer torques in MnSi. Science. 2010;330(6011):1648.CrossRef
[46]
go back to reference Nayak AK, Kumar V, Ma T, Werner P, Pippel E, Sahoo R, Damay F, Rößler UK, Felser C, Parkin SSP. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature. 2017;548(7669):561.CrossRef Nayak AK, Kumar V, Ma T, Werner P, Pippel E, Sahoo R, Damay F, Rößler UK, Felser C, Parkin SSP. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature. 2017;548(7669):561.CrossRef
[47]
go back to reference Soumyanarayanan A, Raju M, Oyarce ALG, Tan AKC, Im MY, Petrović AP, Ho P, Khoo KH, Tran M, Gan CK, Ernult F, Panagopoulos C. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nat Mater. 2017;16(9):898.CrossRef Soumyanarayanan A, Raju M, Oyarce ALG, Tan AKC, Im MY, Petrović AP, Ho P, Khoo KH, Tran M, Gan CK, Ernult F, Panagopoulos C. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nat Mater. 2017;16(9):898.CrossRef
[48]
go back to reference Zeissler K, Finizio S, Shahbazi K, Massey J, Al Ma’Mari F, Bracher DM, Kleibert A, Rosamond MC, Linfield EH, Moore TA, Raabe J, Burnell G, Marrows CH. Discrete Hall resistivity contribution from Néel skyrmions in multilayer nanodiscs. Nat Nanotech. 2018;13:1161.CrossRef Zeissler K, Finizio S, Shahbazi K, Massey J, Al Ma’Mari F, Bracher DM, Kleibert A, Rosamond MC, Linfield EH, Moore TA, Raabe J, Burnell G, Marrows CH. Discrete Hall resistivity contribution from Néel skyrmions in multilayer nanodiscs. Nat Nanotech. 2018;13:1161.CrossRef
[49]
go back to reference Legard W, Chauleau JY, Maccariello D, Reyren M, Collin S, Bouzehouane K, Jaouen N, Cros V, Fert A. Hybrid chiral domain walls and skyrmions in magnetic multilayers. Sci Adv. 2018;4:eaat0415.CrossRef Legard W, Chauleau JY, Maccariello D, Reyren M, Collin S, Bouzehouane K, Jaouen N, Cros V, Fert A. Hybrid chiral domain walls and skyrmions in magnetic multilayers. Sci Adv. 2018;4:eaat0415.CrossRef
[50]
go back to reference Wei W, He Z, Qu Z, Du H. Dzyaloshinsky-Moriya interaction(DMI)-induced magnetic skyrmion materials. Rare Met. 2021;40(11):3076.CrossRef Wei W, He Z, Qu Z, Du H. Dzyaloshinsky-Moriya interaction(DMI)-induced magnetic skyrmion materials. Rare Met. 2021;40(11):3076.CrossRef
[51]
go back to reference Moreau-Luchaire C, Mouta SC, Reyren N, Sampaio J, Vaz CAF, Horne NV, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhüter P, George JM, Weigand M, Raabe J, Cros V, Fert A. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat Nanotech. 2016;11:444.CrossRef Moreau-Luchaire C, Mouta SC, Reyren N, Sampaio J, Vaz CAF, Horne NV, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhüter P, George JM, Weigand M, Raabe J, Cros V, Fert A. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat Nanotech. 2016;11:444.CrossRef
[52]
go back to reference Liu Y, Du H, Jia M, Du A. Switching of a target skyrmion by a spin-polarized current. Phys Rev B. 2015;91(9):094425.CrossRef Liu Y, Du H, Jia M, Du A. Switching of a target skyrmion by a spin-polarized current. Phys Rev B. 2015;91(9):094425.CrossRef
[53]
go back to reference Zheng F, Li H, Wang S, Song D, Jin C, Wei W, Kovács A, Zang J, Tian M, Zhang Y, Du H, Dunin-Borkowski RE. Direct imaging of a zero-field target skyrmion and its polarity switch in a chiral magnetic nanodisk. Phys Rev Lett. 2017;119(19):197205.CrossRef Zheng F, Li H, Wang S, Song D, Jin C, Wei W, Kovács A, Zang J, Tian M, Zhang Y, Du H, Dunin-Borkowski RE. Direct imaging of a zero-field target skyrmion and its polarity switch in a chiral magnetic nanodisk. Phys Rev Lett. 2017;119(19):197205.CrossRef
[54]
go back to reference Rybakov FN, Borisov AB, Blügel S, Kiselev NS. New type of stable particlelike states in chiral magnets. Phys Rev Lett. 2015;115(11):117201.CrossRef Rybakov FN, Borisov AB, Blügel S, Kiselev NS. New type of stable particlelike states in chiral magnets. Phys Rev Lett. 2015;115(11):117201.CrossRef
[55]
go back to reference Liu Y, Lake RK, Zang J. Binding a hopfion in a chiral magnet nanodisk. Phys Rev B. 2018;98(17):174437.CrossRef Liu Y, Lake RK, Zang J. Binding a hopfion in a chiral magnet nanodisk. Phys Rev B. 2018;98(17):174437.CrossRef
[56]
go back to reference Zang J, Mostovoy M, Han JH, Nagaosa N. Dynamics of skyrmion crystals in metallic thin films. Phys Rev Lett. 2011;107(13):136804.CrossRef Zang J, Mostovoy M, Han JH, Nagaosa N. Dynamics of skyrmion crystals in metallic thin films. Phys Rev Lett. 2011;107(13):136804.CrossRef
[57]
go back to reference Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C, Chen X, Zang J, Zhang J, Tian M. Edge-mediated skyrmion chain and its collective dynamics in a confined geometry. Nat Commun. 2015;6:8504.CrossRef Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C, Chen X, Zang J, Zhang J, Tian M. Edge-mediated skyrmion chain and its collective dynamics in a confined geometry. Nat Commun. 2015;6:8504.CrossRef
[58]
go back to reference Du H, Zhao X, Rybakov FN, Borisov AB, Wang S, Tang J, Jin C, Wang C, Wei W, Kiselev NS, Zhang Y, Che R, Blügel F, Tian M. Interaction of individual skyrmions in a nanostructured cubic chiral magnet. Phys Rev Lett. 2018;120(19):197203.CrossRef Du H, Zhao X, Rybakov FN, Borisov AB, Wang S, Tang J, Jin C, Wang C, Wei W, Kiselev NS, Zhang Y, Che R, Blügel F, Tian M. Interaction of individual skyrmions in a nanostructured cubic chiral magnet. Phys Rev Lett. 2018;120(19):197203.CrossRef
[59]
go back to reference Du H, Liang D, Jin C, Kong L, Stolt MJ, Ning W, Yang J, Xing Y, Wang J, Che R, Zang J, Jin S, Zhang Y, Tian M. Electrical probing of field-driven cascading quantized transitions of skyrmion cluster states in MnSi nanowires. Nat Commun. 2015;6:7637.CrossRef Du H, Liang D, Jin C, Kong L, Stolt MJ, Ning W, Yang J, Xing Y, Wang J, Che R, Zang J, Jin S, Zhang Y, Tian M. Electrical probing of field-driven cascading quantized transitions of skyrmion cluster states in MnSi nanowires. Nat Commun. 2015;6:7637.CrossRef
[60]
go back to reference Maccariello D, Legrand W, Reyren N, Garcia K, Bouzehouane K, Collin S, Cros V, Fret A. Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature. Nat Nanotech. 2018;13:233.CrossRef Maccariello D, Legrand W, Reyren N, Garcia K, Bouzehouane K, Collin S, Cros V, Fret A. Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature. Nat Nanotech. 2018;13:233.CrossRef
[61]
go back to reference Kravchuk VP, Rößler UK, Volkov OM, Sheka DD, Brink JVD, Makarov D, Fuchs H, Fangohr H, Gaididei Y. Topologically stable magnetization states on a spherical shell: curvature-stabilized skyrmions. Phys Rev B. 2016;94(14):144402.CrossRef Kravchuk VP, Rößler UK, Volkov OM, Sheka DD, Brink JVD, Makarov D, Fuchs H, Fangohr H, Gaididei Y. Topologically stable magnetization states on a spherical shell: curvature-stabilized skyrmions. Phys Rev B. 2016;94(14):144402.CrossRef
[62]
go back to reference Pylypovskyi OV, Makarov D, Kravchuk VP, Gaididei Y, Saxena A, Sheka DD. Chiral skyrmion and skyrmionium states engineered by the gradient of curvature. Phys Rev Appl. 2018;10(6):064057.CrossRef Pylypovskyi OV, Makarov D, Kravchuk VP, Gaididei Y, Saxena A, Sheka DD. Chiral skyrmion and skyrmionium states engineered by the gradient of curvature. Phys Rev Appl. 2018;10(6):064057.CrossRef
[63]
go back to reference Kravchuk VP, Sheka DD, Kákay A, Volkov OM, Rößler UK, Brink JVD, Makarov D, Gaididei Y. Multiplet of skyrmion states on a curvilinear defect: reconfigurable skyrmion lattices. Phys Rev Lett. 2018;120(6):067201.CrossRef Kravchuk VP, Sheka DD, Kákay A, Volkov OM, Rößler UK, Brink JVD, Makarov D, Gaididei Y. Multiplet of skyrmion states on a curvilinear defect: reconfigurable skyrmion lattices. Phys Rev Lett. 2018;120(6):067201.CrossRef
[64]
go back to reference Koshibae W, Kaneko Y, Iwasaki J, Kawasaki M, Tokura Y, Nagaosa N. Memory functions of magnetic skyrmions. Jpn J Appl Phys. 2015;54(5):053001.CrossRef Koshibae W, Kaneko Y, Iwasaki J, Kawasaki M, Tokura Y, Nagaosa N. Memory functions of magnetic skyrmions. Jpn J Appl Phys. 2015;54(5):053001.CrossRef
[65]
go back to reference Zhang SL, Wang WW, Burn DM, Peng H, Berger H, Bauer A, Pfleiderer C, Van Der Laan G, Hesjedal T. Manipulation of skyrmion motion by magnetic field gradients. Nat Commun. 2018;9(1):2115.CrossRef Zhang SL, Wang WW, Burn DM, Peng H, Berger H, Bauer A, Pfleiderer C, Van Der Laan G, Hesjedal T. Manipulation of skyrmion motion by magnetic field gradients. Nat Commun. 2018;9(1):2115.CrossRef
[66]
go back to reference Luo ZC, Hrabec A, Dao TP, Sala G, Finizio S, Feng J, Mayr S, Raabe J, Gambardella P, Heyderman LJ. Current-driven magnetic domain-wall logic. Nature. 2020;579(7798):214.CrossRef Luo ZC, Hrabec A, Dao TP, Sala G, Finizio S, Feng J, Mayr S, Raabe J, Gambardella P, Heyderman LJ. Current-driven magnetic domain-wall logic. Nature. 2020;579(7798):214.CrossRef
[67]
go back to reference Luo ZC, Schären S, Hrabec A, Dao TP, Sala G, Finizio S, Feng J, Mayr S, Raabe J, Gambardella P, Heyderman LJ. Field- and current-driven magnetic domain-wall inverter and diode. Phys Rev Appl. 2021;15(3):034077.CrossRef Luo ZC, Schären S, Hrabec A, Dao TP, Sala G, Finizio S, Feng J, Mayr S, Raabe J, Gambardella P, Heyderman LJ. Field- and current-driven magnetic domain-wall inverter and diode. Phys Rev Appl. 2021;15(3):034077.CrossRef
[68]
go back to reference Qiang BW, Togashi N, Momose S, Wada T, Hajiri T, Kuwahara M, Asano H. Room-temperature magnetic skyrmion in epitaxial thin films of Fe2−xPdxMo3N with the filled β-Mn-type chiral structure. Appl Phys Lett. 2020;117(14):142401.CrossRef Qiang BW, Togashi N, Momose S, Wada T, Hajiri T, Kuwahara M, Asano H. Room-temperature magnetic skyrmion in epitaxial thin films of Fe2−xPdxMo3N with the filled β-Mn-type chiral structure. Appl Phys Lett. 2020;117(14):142401.CrossRef
[69]
go back to reference Karube K, White JS, Reynolds N, Gavilano JL, Oike H, Kikkawa A, Kagawa F, Tokunaga Y, Rønnow HM, Tokura Y, Taguchi Y. Robust metastable skyrmions and their triangular-square lattice structural transition in a high-temperature chiral magnet. Nat Mater. 2016;15(12):123768.CrossRef Karube K, White JS, Reynolds N, Gavilano JL, Oike H, Kikkawa A, Kagawa F, Tokunaga Y, Rønnow HM, Tokura Y, Taguchi Y. Robust metastable skyrmions and their triangular-square lattice structural transition in a high-temperature chiral magnet. Nat Mater. 2016;15(12):123768.CrossRef
[70]
go back to reference Tokunaga Y, Yu XZ, White JS, Rønnow HM, Morikawa D, Taguchi Y, Tokura Y. A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat Commun. 2015;6(1):7638.CrossRef Tokunaga Y, Yu XZ, White JS, Rønnow HM, Morikawa D, Taguchi Y, Tokura Y. A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat Commun. 2015;6(1):7638.CrossRef
[71]
go back to reference Balasubramanian B, Manchanda P, Pahari R, Chen Z, Zhang W, Valloppilly SR, Li X, Sarella A, Yue L, Ullah A, Dev P, Muller DA, Skomski R, Hadjipanayis GC, Sellmyer DJ. Chiral magnetism and higherature skyrmions in B20-ordered Co-Si. Phys Rev Lett. 2020;124(5):57201.CrossRef Balasubramanian B, Manchanda P, Pahari R, Chen Z, Zhang W, Valloppilly SR, Li X, Sarella A, Yue L, Ullah A, Dev P, Muller DA, Skomski R, Hadjipanayis GC, Sellmyer DJ. Chiral magnetism and higherature skyrmions in B20-ordered Co-Si. Phys Rev Lett. 2020;124(5):57201.CrossRef
[72]
go back to reference Yu XZ, Onose Y, Kanazawa N, Park JH, Han JH, Matsui Y, Nagaosa N, Tokura Y. Real-space observation of a two-dimensional skyrmion crystal. Nature. 2010;465(7300):901.CrossRef Yu XZ, Onose Y, Kanazawa N, Park JH, Han JH, Matsui Y, Nagaosa N, Tokura Y. Real-space observation of a two-dimensional skyrmion crystal. Nature. 2010;465(7300):901.CrossRef
[73]
go back to reference Yu XZ, Kanazawa N, Onose Y, Kimoto K, Zhang WZ, Ishiwata S, Matsui Y, Tokura Y. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat Mater. 2011;10(2):106.CrossRef Yu XZ, Kanazawa N, Onose Y, Kimoto K, Zhang WZ, Ishiwata S, Matsui Y, Tokura Y. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat Mater. 2011;10(2):106.CrossRef
[74]
go back to reference Li Y, Kanazawa N, Yu XZ, Tsukazaki A, Kawasaki M, Ichikawa M, Jin XF, Kagawa F, Tokura Y. Robust formation of skyrmions and topological hall effect anomaly in epitaxial thin films of MnSi. Phys Rev Lett. 2013;110(11):117202.CrossRef Li Y, Kanazawa N, Yu XZ, Tsukazaki A, Kawasaki M, Ichikawa M, Jin XF, Kagawa F, Tokura Y. Robust formation of skyrmions and topological hall effect anomaly in epitaxial thin films of MnSi. Phys Rev Lett. 2013;110(11):117202.CrossRef
[75]
go back to reference Huang SX, Chien CL. Extended skyrmion phase in epitaxial FeGe(111) thin films. Phys Rev Lett. 2012;108(26):267201.CrossRef Huang SX, Chien CL. Extended skyrmion phase in epitaxial FeGe(111) thin films. Phys Rev Lett. 2012;108(26):267201.CrossRef
[76]
go back to reference Yu X, Degrave JP, Hara Y, Hara T, Jin S, Tokura Y. Observation of the magnetic skyrmion lattice in a MnSi nanowire by Lorentz TEM. Nano Lett. 2013;13(8):3755.CrossRef Yu X, Degrave JP, Hara Y, Hara T, Jin S, Tokura Y. Observation of the magnetic skyrmion lattice in a MnSi nanowire by Lorentz TEM. Nano Lett. 2013;13(8):3755.CrossRef
[77]
go back to reference Du H, Degrave JP, Xue F, Liang D, Ning W, Yang J, Tian M, Zhang Y, Jin S. Highly stable skyrmion state in helimagnetic MnSi nanowires. Nano Lett. 2014;14(4):2026.CrossRef Du H, Degrave JP, Xue F, Liang D, Ning W, Yang J, Tian M, Zhang Y, Jin S. Highly stable skyrmion state in helimagnetic MnSi nanowires. Nano Lett. 2014;14(4):2026.CrossRef
[78]
go back to reference Rohart S, Thiaville A. Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction. Phys Rev B. 2013;88(18):184422.CrossRef Rohart S, Thiaville A. Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction. Phys Rev B. 2013;88(18):184422.CrossRef
[79]
go back to reference Beg M, Carey R, Wang W, Cortés-Ortuño D, Vousden M, Bisotti MA, Albert M, Chernyshenko D, Hovorka O, Stamps RL, Fangohr H. Ground state search, hysteretic behaviour, and reversal mechanism of skyrmionic textures in confined helimagnetic nanostructures. Sci Rep. 2015;5:17137.CrossRef Beg M, Carey R, Wang W, Cortés-Ortuño D, Vousden M, Bisotti MA, Albert M, Chernyshenko D, Hovorka O, Stamps RL, Fangohr H. Ground state search, hysteretic behaviour, and reversal mechanism of skyrmionic textures in confined helimagnetic nanostructures. Sci Rep. 2015;5:17137.CrossRef
[80]
go back to reference Gallagher JC, Meng KY, Brangham JT, Wang HL, Esser BD, McComb DW, Yang FY. Robust zero-field skyrmion formation in FeGe epitaxial thin films. Phys Rev Lett. 2017;118(2):027201.CrossRef Gallagher JC, Meng KY, Brangham JT, Wang HL, Esser BD, McComb DW, Yang FY. Robust zero-field skyrmion formation in FeGe epitaxial thin films. Phys Rev Lett. 2017;118(2):027201.CrossRef
[81]
go back to reference Wang X, Yuan H, Wang X. A theory on skyrmion size. Commun Phys. 2018;1(31):1. Wang X, Yuan H, Wang X. A theory on skyrmion size. Commun Phys. 2018;1(31):1.
[82]
go back to reference Büttner F, Lemesh I, Beach GSD. Theory of isolated magnetic skyrmions: from fundamentals to room temperature applications. Sci Rep. 2018;8(1):4464.CrossRef Büttner F, Lemesh I, Beach GSD. Theory of isolated magnetic skyrmions: from fundamentals to room temperature applications. Sci Rep. 2018;8(1):4464.CrossRef
[83]
go back to reference Karhu EA, Rößler UK, Bogdanov AN, Kahwaji S, Kirby JB, Fritzsche H, Robertson MD, Majkrzak CF, Monchesky TL. Chiral modulations and reorientation effects in MnSi thin films. Phys Rev B. 2012;85(9):094429.CrossRef Karhu EA, Rößler UK, Bogdanov AN, Kahwaji S, Kirby JB, Fritzsche H, Robertson MD, Majkrzak CF, Monchesky TL. Chiral modulations and reorientation effects in MnSi thin films. Phys Rev B. 2012;85(9):094429.CrossRef
[84]
go back to reference Meynell SA, Wilson MN, Fritzsche H, Bogdanov AN, Monchesky TL. Surface twist instabilities and skyrmion states in chiral ferromagnets. Phys Rev B. 2014;90(1):014406.CrossRef Meynell SA, Wilson MN, Fritzsche H, Bogdanov AN, Monchesky TL. Surface twist instabilities and skyrmion states in chiral ferromagnets. Phys Rev B. 2014;90(1):014406.CrossRef
[85]
go back to reference Wilson MN, Butenko AB, Bogdanov AN, Monchesky TL. Chiral skyrmions in cubic helimagnet films: the role of uniaxial anisotropy. Phys Rev B. 2014;89(9):094411.CrossRef Wilson MN, Butenko AB, Bogdanov AN, Monchesky TL. Chiral skyrmions in cubic helimagnet films: the role of uniaxial anisotropy. Phys Rev B. 2014;89(9):094411.CrossRef
[86]
go back to reference Johnson P, Gangopadhyay AK, Kalyanaraman R, Nussinov Z. Demagnetization-borne microscale skyrmions. Phys Rev B. 2012;86(6):064427.CrossRef Johnson P, Gangopadhyay AK, Kalyanaraman R, Nussinov Z. Demagnetization-borne microscale skyrmions. Phys Rev B. 2012;86(6):064427.CrossRef
[87]
go back to reference Yang J, Abert C, Suess D, Kim SK. Intrinsic DMI-free skyrmion formation and robust dynamic behaviors in magnetic hemispherical shells. Sci Rep. 2021;11(1):3886.CrossRef Yang J, Abert C, Suess D, Kim SK. Intrinsic DMI-free skyrmion formation and robust dynamic behaviors in magnetic hemispherical shells. Sci Rep. 2021;11(1):3886.CrossRef
[88]
go back to reference Romming N, Kubetzka A, Hanneken C, Von Bergmann K, Wiesendanger R. Field-dependent size and shape of single magnetic skyrmions. Phys Rev Lett. 2015;114(17):177203.CrossRef Romming N, Kubetzka A, Hanneken C, Von Bergmann K, Wiesendanger R. Field-dependent size and shape of single magnetic skyrmions. Phys Rev Lett. 2015;114(17):177203.CrossRef
[89]
go back to reference Carvalho-Santos VL, Corona RM, Altbir D, Castillo-Sepúlveda S. Shifts in the skyrmion stabilization due to curvature effects in dome- and antidome-shaped surfaces. Phys Rev B. 2020;102(2):24444.CrossRef Carvalho-Santos VL, Corona RM, Altbir D, Castillo-Sepúlveda S. Shifts in the skyrmion stabilization due to curvature effects in dome- and antidome-shaped surfaces. Phys Rev B. 2020;102(2):24444.CrossRef
[90]
go back to reference Tejo F, Toneto D, Oyarzún S, Hermosilla J, Danna CS, Palm JL, Silva RB, Dorneles LS, Denardi JC. Stabilization of magnetic skyrmions on arrays of self-assembled hexagonal nanodomes for magnetic recording applications. ACS Appl Mater Inter. 2020;12:53454.CrossRef Tejo F, Toneto D, Oyarzún S, Hermosilla J, Danna CS, Palm JL, Silva RB, Dorneles LS, Denardi JC. Stabilization of magnetic skyrmions on arrays of self-assembled hexagonal nanodomes for magnetic recording applications. ACS Appl Mater Inter. 2020;12:53454.CrossRef
[91]
go back to reference Huo X, Liu Y. The stability of a skyrmion in a nanotube. New J Phys. 2019;21(9):093024.CrossRef Huo X, Liu Y. The stability of a skyrmion in a nanotube. New J Phys. 2019;21(9):093024.CrossRef
[92]
go back to reference Yang J, Kim J, Abert C, Suess D, Kim SK. Stability of skyrmion formation and its abnormal dynamic modes in magnetic nanotubes. Phys Rev B. 2020;102(9):094439.CrossRef Yang J, Kim J, Abert C, Suess D, Kim SK. Stability of skyrmion formation and its abnormal dynamic modes in magnetic nanotubes. Phys Rev B. 2020;102(9):094439.CrossRef
[93]
go back to reference Liu Y, Cai N, Yu X, Xuan S. Nucleation and stability of skyrmions in three-dimensional chiral nanostructures. Sci Rep. 2020;10(1):21717.CrossRef Liu Y, Cai N, Yu X, Xuan S. Nucleation and stability of skyrmions in three-dimensional chiral nanostructures. Sci Rep. 2020;10(1):21717.CrossRef
[94]
go back to reference Kechrakos D, Tzannetou L, Patsopoulos A. Magnetic skyrmions in cylindrical ferromagnetic nanostructures with chiral interactions. Phys Rev B. 2020;102(5):054439.CrossRef Kechrakos D, Tzannetou L, Patsopoulos A. Magnetic skyrmions in cylindrical ferromagnetic nanostructures with chiral interactions. Phys Rev B. 2020;102(5):054439.CrossRef
[95]
go back to reference Wang X, Wang X, Wang C, Yang H, Cao Y, Yan P. Current-induced skyrmion motion on magnetic nanotubes. J Phys D: Appl Phys. 2019;52(22):225001.CrossRef Wang X, Wang X, Wang C, Yang H, Cao Y, Yan P. Current-induced skyrmion motion on magnetic nanotubes. J Phys D: Appl Phys. 2019;52(22):225001.CrossRef
[96]
go back to reference Chi X, Du A, Hu Y. Skyrmion driven by rotary magnetic field on the surface of magnetic nanotube: a Monte Carlo study. Nanotechnology. 2021;32(27):275702.CrossRef Chi X, Du A, Hu Y. Skyrmion driven by rotary magnetic field on the surface of magnetic nanotube: a Monte Carlo study. Nanotechnology. 2021;32(27):275702.CrossRef
[97]
go back to reference Du H, Ning W, Tian M, Zhang Y. Field-driven evolution of chiral spin textures in a thin helimagnet nanodisk. Phys Rev B. 2013;87(1):014401.CrossRef Du H, Ning W, Tian M, Zhang Y. Field-driven evolution of chiral spin textures in a thin helimagnet nanodisk. Phys Rev B. 2013;87(1):014401.CrossRef
[98]
go back to reference Tang J, Wu Y, Wang W, Kong L, Lv B, Wei W, Zang J, Tian M, Du H. Magnetic skyrmion bundles and their current-driven dynamics. Nat Nanotech. 2021;16:1086.CrossRef Tang J, Wu Y, Wang W, Kong L, Lv B, Wei W, Zang J, Tian M, Du H. Magnetic skyrmion bundles and their current-driven dynamics. Nat Nanotech. 2021;16:1086.CrossRef
[99]
go back to reference Yu X, Kanazawa N, Zhang W, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y. Skyrmion flow near room temperature in an ultralow current density. Nat Commun. 2012;3:988.CrossRef Yu X, Kanazawa N, Zhang W, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y. Skyrmion flow near room temperature in an ultralow current density. Nat Commun. 2012;3:988.CrossRef
[100]
go back to reference Tomasello R, Martinez E, Zivieri R, Torres L, Carpentieri M, Finocchio G. A strategy for the design of skyrmion racetrack memories. Sci Rep. 2014;4:6784.CrossRef Tomasello R, Martinez E, Zivieri R, Torres L, Carpentieri M, Finocchio G. A strategy for the design of skyrmion racetrack memories. Sci Rep. 2014;4:6784.CrossRef
[101]
go back to reference Zhang X, Ezawa M, Zhou Y. Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions. Sci Rep. 2015;5:9400.CrossRef Zhang X, Ezawa M, Zhou Y. Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions. Sci Rep. 2015;5:9400.CrossRef
[102]
go back to reference Zhang X, Zhou Y, Ezawa M, Zhao G, Zhao W. Magnetic skyrmion transistor: skyrmion motion in a voltage- gated nanotrack. Sci Rep. 2015;5:11369.CrossRef Zhang X, Zhou Y, Ezawa M, Zhao G, Zhao W. Magnetic skyrmion transistor: skyrmion motion in a voltage- gated nanotrack. Sci Rep. 2015;5:11369.CrossRef
[103]
go back to reference Kang W, Huang Y, Zheng C, Lv W, Lei N, Zhang Y. Voltage controlled magnetic skyrmion motion for racetrack memory. Sci Rep. 2016;6:23164.CrossRef Kang W, Huang Y, Zheng C, Lv W, Lei N, Zhang Y. Voltage controlled magnetic skyrmion motion for racetrack memory. Sci Rep. 2016;6:23164.CrossRef
[104]
go back to reference Zhao X, Ren R, Xie G, Liu Y. Single antiferromagnetic skyrmion transistor based on strain manipulation. Appl Phys Lett. 2018;112:252402.CrossRef Zhao X, Ren R, Xie G, Liu Y. Single antiferromagnetic skyrmion transistor based on strain manipulation. Appl Phys Lett. 2018;112:252402.CrossRef
[105]
go back to reference Cai N, Liu Y. Current-driven skyrmion movement in a curved nanotrack. J Phys D: Appl Phys. 2021;54:125001.CrossRef Cai N, Liu Y. Current-driven skyrmion movement in a curved nanotrack. J Phys D: Appl Phys. 2021;54:125001.CrossRef
[106]
go back to reference Luis RF, Raposo V, Alejos Ó, Martínez E. Current-driven skyrmion dynamics along curved tracks. IEEE T MAGN. 2019;55(7):1500408.CrossRef Luis RF, Raposo V, Alejos Ó, Martínez E. Current-driven skyrmion dynamics along curved tracks. IEEE T MAGN. 2019;55(7):1500408.CrossRef
[107]
go back to reference Purnama I, Gan WL, Wong DW, Lew WS. Guided current-induced skyrmion motion in 1D potential well. Sci Rep. 2015;5:10620.CrossRef Purnama I, Gan WL, Wong DW, Lew WS. Guided current-induced skyrmion motion in 1D potential well. Sci Rep. 2015;5:10620.CrossRef
[108]
go back to reference Fook HT, Gan W, Purnama I, Lew WS. Mitigation of magnus force in current-induced skyrmion dynamics. IEEE T MAGN. 2015;51(11):1500204.CrossRef Fook HT, Gan W, Purnama I, Lew WS. Mitigation of magnus force in current-induced skyrmion dynamics. IEEE T MAGN. 2015;51(11):1500204.CrossRef
[109]
go back to reference Jiang W, Zhang X, Yu G, Zhang W, Wang X, Jungfleisch MB, Pearson JE, Cheng X, Heinonen O, Wang Kang L, Zhou Y, Hofmann A, Velthuis SGE. Direct observation of the skyrmion Hall effect. Nat Phys. 2017;13:162.CrossRef Jiang W, Zhang X, Yu G, Zhang W, Wang X, Jungfleisch MB, Pearson JE, Cheng X, Heinonen O, Wang Kang L, Zhou Y, Hofmann A, Velthuis SGE. Direct observation of the skyrmion Hall effect. Nat Phys. 2017;13:162.CrossRef
[110]
go back to reference Jiang W, Chen G, Liu K, Zang J, Velthuis S, Hoffmann A. Skyrmions in magnetic multilayers. Phys Rep. 2017;704:1.CrossRef Jiang W, Chen G, Liu K, Zang J, Velthuis S, Hoffmann A. Skyrmions in magnetic multilayers. Phys Rep. 2017;704:1.CrossRef
[111]
go back to reference Xin M, Liu Y. Skyrmion Hall effect in a nanotube driven by a rotating magnetic field. J Magn Magn Mater. 2021;536:168142.CrossRef Xin M, Liu Y. Skyrmion Hall effect in a nanotube driven by a rotating magnetic field. J Magn Magn Mater. 2021;536:168142.CrossRef
[112]
go back to reference Sun W, Wang W, Zang J, Li H, Zhang G, Wang J, Cheng Z. Manipulation of magnetic skyrmion in a 2D van der Waals heterostructure via both electric and magnetic fields. Adv Funct Mater. 2021;2104452:1. Sun W, Wang W, Zang J, Li H, Zhang G, Wang J, Cheng Z. Manipulation of magnetic skyrmion in a 2D van der Waals heterostructure via both electric and magnetic fields. Adv Funct Mater. 2021;2104452:1.
[113]
go back to reference Wang Y, Wang L, Xia J, Lai Z, Tian G, Zhang X, Hou Z, Gao X, Mi W, Feng C, Zeng M, Zhou G, Yu G, Wu G, Zhou Y, Wang W, Zhang X, Liu J. Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure. Nat Commun. 2020;11:3577.CrossRef Wang Y, Wang L, Xia J, Lai Z, Tian G, Zhang X, Hou Z, Gao X, Mi W, Feng C, Zeng M, Zhou G, Yu G, Wu G, Zhou Y, Wang W, Zhang X, Liu J. Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure. Nat Commun. 2020;11:3577.CrossRef
[114]
go back to reference Feng Z, Yan H, Liu Z. Electric-field control of magnetic order: from FeRh to topological antiferromagnetic spintronics. Adv Electron Mater. 2019;5(1):1800466.CrossRef Feng Z, Yan H, Liu Z. Electric-field control of magnetic order: from FeRh to topological antiferromagnetic spintronics. Adv Electron Mater. 2019;5(1):1800466.CrossRef
[115]
go back to reference Liu Z, Chen H, Wang J, Liu J, Wang K, Feng Z, Yan H, Wang X, Jiang C, Coey JMD, Macdonald AH. Electrical switching of the topological anomalous hall effect in a non-collinear antiferromagnet above room temperature. Nat Electron. 2018;1(3):172.CrossRef Liu Z, Chen H, Wang J, Liu J, Wang K, Feng Z, Yan H, Wang X, Jiang C, Coey JMD, Macdonald AH. Electrical switching of the topological anomalous hall effect in a non-collinear antiferromagnet above room temperature. Nat Electron. 2018;1(3):172.CrossRef
[116]
go back to reference Qin P, Yan H, Wang X, Feng Z, Guo H, Zhou X, Wu H, Zhang X, Leng ZG, Chen H, Liu Z. Noncollinear spintronics and electric-field control: a review. Rare Met. 2020;39(2):95.CrossRef Qin P, Yan H, Wang X, Feng Z, Guo H, Zhou X, Wu H, Zhang X, Leng ZG, Chen H, Liu Z. Noncollinear spintronics and electric-field control: a review. Rare Met. 2020;39(2):95.CrossRef
[117]
go back to reference Nakatani Y, Hayashi M, Kanai S, Fukami S, Ohno H. Electric field control of skyrmions in magnetic nanodisks. Appl Phys Lett. 2016;108:152403.CrossRef Nakatani Y, Hayashi M, Kanai S, Fukami S, Ohno H. Electric field control of skyrmions in magnetic nanodisks. Appl Phys Lett. 2016;108:152403.CrossRef
[118]
go back to reference Li C, Yao X, Chen G. Writing and deleting skyrmions with electric fields in a multiferroic heterostructure. Phys Rev Res. 2021;3:L012026.CrossRef Li C, Yao X, Chen G. Writing and deleting skyrmions with electric fields in a multiferroic heterostructure. Phys Rev Res. 2021;3:L012026.CrossRef
[119]
go back to reference Ba Y, Zhuang S, Zhang Y, Wang Y, Gao Y, Zhou H, Chen M, Sun W, Liu Q, Chai G, Ma J, Zhang Y, Tian H, Du H, Jing W, Nan C, Hu J, Zhao Y. Electric-field control of skyrmions in multiferroic heterostructure via magnetoelectric coupling. Nat Commun. 2021;12:322.CrossRef Ba Y, Zhuang S, Zhang Y, Wang Y, Gao Y, Zhou H, Chen M, Sun W, Liu Q, Chai G, Ma J, Zhang Y, Tian H, Du H, Jing W, Nan C, Hu J, Zhao Y. Electric-field control of skyrmions in multiferroic heterostructure via magnetoelectric coupling. Nat Commun. 2021;12:322.CrossRef
[120]
go back to reference Ma C, Zhang X, Xia J, Ezawa M, Jiang W, Ono T, Piramanayagam SN, Morisako A, Zhou Y, Liu X. Electric field-induced creation and directional motion of domain walls and skyrmion bubbles. Nano Lett. 2019;19:353.CrossRef Ma C, Zhang X, Xia J, Ezawa M, Jiang W, Ono T, Piramanayagam SN, Morisako A, Zhou Y, Liu X. Electric field-induced creation and directional motion of domain walls and skyrmion bubbles. Nano Lett. 2019;19:353.CrossRef
[121]
go back to reference White JS, Levatić I, Omrani AA, Egetenmeyer N, Prša K, Živković I, Gavilano JL, Kohlbrecher J, Bartkowiak M, Berger H, Rønnow HM. Electric field control of the skyrmion lattice in Cu2OSeO3. J Phys Condens Matter. 2012;24:432201.CrossRef White JS, Levatić I, Omrani AA, Egetenmeyer N, Prša K, Živković I, Gavilano JL, Kohlbrecher J, Bartkowiak M, Berger H, Rønnow HM. Electric field control of the skyrmion lattice in Cu2OSeO3. J Phys Condens Matter. 2012;24:432201.CrossRef
[122]
go back to reference White JS, Prša K, Huang P, Omrani AA, Živković I, Bartkowiak M, Berger H, Magrez A, Gavilano JL, Nagy G, Zang J, Rønnow HM. Electric-field-induced skyrmion distortion and giant lattice rotation in the magnetoelectric insulator Cu2OSeO3. Phys Rev Lett. 2014;113:107203.CrossRef White JS, Prša K, Huang P, Omrani AA, Živković I, Bartkowiak M, Berger H, Magrez A, Gavilano JL, Nagy G, Zang J, Rønnow HM. Electric-field-induced skyrmion distortion and giant lattice rotation in the magnetoelectric insulator Cu2OSeO3. Phys Rev Lett. 2014;113:107203.CrossRef
[123]
go back to reference Wan X, Hu Y, Wang B. First and second order rotational transitions of skyrmion crystal in multiferroic Cu2OSeO3 under electric field. Appl Phys Lett. 2020;116:182403.CrossRef Wan X, Hu Y, Wang B. First and second order rotational transitions of skyrmion crystal in multiferroic Cu2OSeO3 under electric field. Appl Phys Lett. 2020;116:182403.CrossRef
[124]
go back to reference Kruchkov AJ, White JS, Bartkowiak M, Živković I, Magrez A, Rønnow HM. Direct electric field control of the skyrmion phase in a magnetoelectric insulator. Sci Rep. 2018;8:10466.CrossRef Kruchkov AJ, White JS, Bartkowiak M, Živković I, Magrez A, Rønnow HM. Direct electric field control of the skyrmion phase in a magnetoelectric insulator. Sci Rep. 2018;8:10466.CrossRef
[125]
go back to reference Mochizuki M. Spin-wave modes and their intense excitation effects in skyrmion crystals. Phys Rev Lett. 2012;108:017601.CrossRef Mochizuki M. Spin-wave modes and their intense excitation effects in skyrmion crystals. Phys Rev Lett. 2012;108:017601.CrossRef
[126]
go back to reference Okamura Y, Kagawa F, Mochizuki M, Kubota M, Seki S, Ishiwata S, Kawasaki M, Onose Y, Tokura Y. Microwave magnetoelectric effect via skyrmion resonance modes in a helimagnetic multiferroic. Nat Commun. 2013;4:2391.CrossRef Okamura Y, Kagawa F, Mochizuki M, Kubota M, Seki S, Ishiwata S, Kawasaki M, Onose Y, Tokura Y. Microwave magnetoelectric effect via skyrmion resonance modes in a helimagnetic multiferroic. Nat Commun. 2013;4:2391.CrossRef
[127]
go back to reference Schwarze T, Waizner J, Garst M, Bauer A, Stasinopoulos I, Berger H, Pfleiderer C, Grundler D. Universal helimagnon and skyrmion excitations in metallic, semiconducting and insulating chiral magnets. Nat Mater. 2015;14(5):478.CrossRef Schwarze T, Waizner J, Garst M, Bauer A, Stasinopoulos I, Berger H, Pfleiderer C, Grundler D. Universal helimagnon and skyrmion excitations in metallic, semiconducting and insulating chiral magnets. Nat Mater. 2015;14(5):478.CrossRef
[128]
go back to reference Mruczkiewicz M, Krawczyk M, Guslienko KY. Spin excitation spectrum in a magnetic nanodot with continuous transitions between the vortex, Bloch-type skyrmion, and Néel-type skyrmion states. Phys Rev B. 2017;95:094414.CrossRef Mruczkiewicz M, Krawczyk M, Guslienko KY. Spin excitation spectrum in a magnetic nanodot with continuous transitions between the vortex, Bloch-type skyrmion, and Néel-type skyrmion states. Phys Rev B. 2017;95:094414.CrossRef
[129]
go back to reference Kim J, Garcia-sanchez F, Moreau-luchaire C, Cros V, Fert A. Breathing modes of confined skyrmions in ultrathin magnetic dots. Phys Rev B. 2014;90(6):064410.CrossRef Kim J, Garcia-sanchez F, Moreau-luchaire C, Cros V, Fert A. Breathing modes of confined skyrmions in ultrathin magnetic dots. Phys Rev B. 2014;90(6):064410.CrossRef
[130]
go back to reference Mruczkiewicz M, Gruszecki P, Zelent M, Krawczyk M. Collective dynamical skyrmion excitations in a magnonic crystal. Phys Rev B. 2016;93(17):174429.CrossRef Mruczkiewicz M, Gruszecki P, Zelent M, Krawczyk M. Collective dynamical skyrmion excitations in a magnonic crystal. Phys Rev B. 2016;93(17):174429.CrossRef
[131]
go back to reference Liu Y, Lake RK, Zang J. Shape dependent resonant modes of skyrmions in magnetic nanodisks. J Magn Magn Mater. 2018;455:9.CrossRef Liu Y, Lake RK, Zang J. Shape dependent resonant modes of skyrmions in magnetic nanodisks. J Magn Magn Mater. 2018;455:9.CrossRef
[132]
go back to reference Korniienko A, Kákay A, Sheka DD, Kravchuk VP. Effect of curvature on the eigenstates of magnetic skyrmions. Phys Rev B. 2020;102(1):014432.CrossRef Korniienko A, Kákay A, Sheka DD, Kravchuk VP. Effect of curvature on the eigenstates of magnetic skyrmions. Phys Rev B. 2020;102(1):014432.CrossRef
[133]
go back to reference Garg C, Yang S, Phung T, Pushp A, Parkin SSP. Dramatic influence of curvature of nanowire on chiral domain wall velocity. Sci Adv. 2017;3:e1602804.CrossRef Garg C, Yang S, Phung T, Pushp A, Parkin SSP. Dramatic influence of curvature of nanowire on chiral domain wall velocity. Sci Adv. 2017;3:e1602804.CrossRef
[134]
go back to reference Fernandez-Roldan JA, Chrischon D, Dorneles LS, Chubykalo-Fesenko O, Vazquez M, Bran C. A comparative study of magnetic properties of large diameter Co nanowires and nanotubes. Nanomaterials. 2018;8:692.CrossRef Fernandez-Roldan JA, Chrischon D, Dorneles LS, Chubykalo-Fesenko O, Vazquez M, Bran C. A comparative study of magnetic properties of large diameter Co nanowires and nanotubes. Nanomaterials. 2018;8:692.CrossRef
[135]
go back to reference Weber DP, Rüffer D, Buchter A, Xue F, Russo-Averchi E, Huber R, Berberich P, Arbiol J, Morral AF, Grundler D, Poggio M. Cantilever magnetometry of individual Ni nanotubes. Nano Lett. 2012;12:6139.CrossRef Weber DP, Rüffer D, Buchter A, Xue F, Russo-Averchi E, Huber R, Berberich P, Arbiol J, Morral AF, Grundler D, Poggio M. Cantilever magnetometry of individual Ni nanotubes. Nano Lett. 2012;12:6139.CrossRef
[136]
go back to reference Winkler R, Fowlkes JD, Rack PD, Plank H. 3D nanoprinting via focused electron beams 3D nanoprinting via focused electron beams. J Appl Phys. 2019;125:210901.CrossRef Winkler R, Fowlkes JD, Rack PD, Plank H. 3D nanoprinting via focused electron beams 3D nanoprinting via focused electron beams. J Appl Phys. 2019;125:210901.CrossRef
[137]
go back to reference Balhorn F, Mansfeld S, Krohn A, Topp J, Hansen W, Heitmann D, Mendach S. Spin-wave interference in three-dimensional rolled-up ferromagnetic microtubes. Phys Rev Lett. 2010;104:037205.CrossRef Balhorn F, Mansfeld S, Krohn A, Topp J, Hansen W, Heitmann D, Mendach S. Spin-wave interference in three-dimensional rolled-up ferromagnetic microtubes. Phys Rev Lett. 2010;104:037205.CrossRef
[138]
go back to reference Bachmann J, Jing J, Knez M, Barth S, Shen B, Mathur S, Gosele U, Nielsch K. Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition. J Am Chem Soc. 2007;129(31):9554.CrossRef Bachmann J, Jing J, Knez M, Barth S, Shen B, Mathur S, Gosele U, Nielsch K. Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition. J Am Chem Soc. 2007;129(31):9554.CrossRef
[139]
go back to reference Smith EJ, Makarov D, Sanchez S, Fomin VM, Schmidt OG. Magnetic microhelix coil structures. Phys Rev Lett. 2011;107:097204.CrossRef Smith EJ, Makarov D, Sanchez S, Fomin VM, Schmidt OG. Magnetic microhelix coil structures. Phys Rev Lett. 2011;107:097204.CrossRef
[140]
go back to reference Smith EJ, Makarov D, Schmidt OG. Polymer delamination: towards unique three-demensional microstructures. Soft Matter. 2011;7:11309.CrossRef Smith EJ, Makarov D, Schmidt OG. Polymer delamination: towards unique three-demensional microstructures. Soft Matter. 2011;7:11309.CrossRef
[141]
go back to reference Streubel R, Han L, Kronast F, Ünal AA, Schmidt OG, Makarov D. Imaging of buried 3D magnetic rolled-up nanomembranes. Nano Lett. 2014;14:3981.CrossRef Streubel R, Han L, Kronast F, Ünal AA, Schmidt OG, Makarov D. Imaging of buried 3D magnetic rolled-up nanomembranes. Nano Lett. 2014;14:3981.CrossRef
[142]
go back to reference Soares MM, de Biasi E, Coelho LN, dos Santos MC, de Menezes FS, Knobel M, Sampaio LC, Garcia F. Magnetic vortices in tridimensional nanomagnetic caps observed using transmission electron microscopy and magnetic force microscopy. Phys Rev B. 2008;77:224405.CrossRef Soares MM, de Biasi E, Coelho LN, dos Santos MC, de Menezes FS, Knobel M, Sampaio LC, Garcia F. Magnetic vortices in tridimensional nanomagnetic caps observed using transmission electron microscopy and magnetic force microscopy. Phys Rev B. 2008;77:224405.CrossRef
[143]
go back to reference Ulbrich TC, Makarov D, Hu G, Guhr IL, Suess D, Schrefl T, Albrecht M. Magnetization reversal in a novel geadient nanomaterial. Phys Rev Lett. 2006;96:077202.CrossRef Ulbrich TC, Makarov D, Hu G, Guhr IL, Suess D, Schrefl T, Albrecht M. Magnetization reversal in a novel geadient nanomaterial. Phys Rev Lett. 2006;96:077202.CrossRef
[144]
go back to reference Albrecht M, Hu G, Guhr IL, Ulbrich Till C, Boneberg J, Leiderer P, Schatz G. Magnetic multilayers on nanospheres. Nat Mater. 2005;4(3):203.CrossRef Albrecht M, Hu G, Guhr IL, Ulbrich Till C, Boneberg J, Leiderer P, Schatz G. Magnetic multilayers on nanospheres. Nat Mater. 2005;4(3):203.CrossRef
[145]
go back to reference Sapozhnikov MV, Ermolaeva OL, Gribkov BG, Nefedov IM, Karetnikova IR, Gusev SA, Rogov VV, Troitskii BB, Khokhlova LV. Frustrated magnetic vortices in hexagonal lattice of magnetic nanocaps. Phys Rev B. 2012;85(5):054402.CrossRef Sapozhnikov MV, Ermolaeva OL, Gribkov BG, Nefedov IM, Karetnikova IR, Gusev SA, Rogov VV, Troitskii BB, Khokhlova LV. Frustrated magnetic vortices in hexagonal lattice of magnetic nanocaps. Phys Rev B. 2012;85(5):054402.CrossRef
[146]
go back to reference Fischer P, Sanz-Hernández D, Streubel R, Fernández-Pacheco A. Launching a new dimension with 3D magnetic nanostructures. APL Mater. 2020;8:010701.CrossRef Fischer P, Sanz-Hernández D, Streubel R, Fernández-Pacheco A. Launching a new dimension with 3D magnetic nanostructures. APL Mater. 2020;8:010701.CrossRef
Metadata
Title
Magnetic skyrmions in curved geometries
Authors
Yan Liu
Na Cai
Ming-Zhu Xin
Shuang Wang
Publication date
02-02-2022
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 7/2022
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01916-9

Other articles of this Issue 7/2022

Rare Metals 7/2022 Go to the issue

Premium Partners