Skip to main content
Erschienen in: Rare Metals 2/2020

07.12.2019

Noncollinear spintronics and electric-field control: a review

verfasst von: Pei-Xin Qin, Han Yan, Xiao-Ning Wang, Ze-Xin Feng, Hui-Xin Guo, Xiao-Rong Zhou, Hao-Jiang Wu, Xin Zhang, Zhao-Guo-Gang Leng, Hong-Yu Chen, Zhi-Qi Liu

Erschienen in: Rare Metals | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Our world is composed of various materials with different structures, where spin structures have been playing a pivotal role in spintronic devices of the contemporary information technology. Apart from conventional collinear spin materials such as collinear ferromagnets and collinear antiferromagnetically coupled materials, noncollinear spintronic materials have emerged as hot spots of research attention due to exotic physical phenomena. In this review, we first introduce two types of noncollinear spin structures, i.e., the chiral spin structure that yields real-space Berry phases and the coplanar noncollinear spin structure that could generate momentum-space Berry phases, and then move to relevant novel physical phenomena including topological Hall effect, anomalous Hall effect, multiferroic, Weyl fermions, spin-polarized current and spin Hall effect without spin–orbit coupling in these noncollinear spin systems. Afterward, we summarize and elaborate the electric-field control of the noncollinear spin structure and related physical effects, which could enable ultralow power spintronic devices in future. In the final outlook part, we emphasize the importance and possible routes for experimentally detecting the intriguing theoretically predicted spin-polarized current, verifying the spin Hall effect in the absence of spin–orbit coupling and exploring the anisotropic magnetoresistance and domain-wall-related magnetoresistance effects for noncollinear antiferromagnetic materials.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Baibich MN, Broto JM, Fert A, Nguyen VD, Petroff F, Eitenne P, Creuzet G, Friederich A, Chazelas J. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett. 1988;61(21):2472. Baibich MN, Broto JM, Fert A, Nguyen VD, Petroff F, Eitenne P, Creuzet G, Friederich A, Chazelas J. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett. 1988;61(21):2472.
[2]
Zurück zum Zitat Binasch G, Grünberg P, Saurenbach F, Zinn W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B. 1989;39(7):4828. Binasch G, Grünberg P, Saurenbach F, Zinn W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B. 1989;39(7):4828.
[3]
Zurück zum Zitat Julliere M. Tunneling between ferromagnetic flims. Phys Lett. 1975;54A(3):225. Julliere M. Tunneling between ferromagnetic flims. Phys Lett. 1975;54A(3):225.
[4]
Zurück zum Zitat Parkin SSP, Kaiser C, Panchula A, Rice PM, Hughes B, Samant M, Yang SH. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat Mater. 2004;3(12):862. Parkin SSP, Kaiser C, Panchula A, Rice PM, Hughes B, Samant M, Yang SH. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat Mater. 2004;3(12):862.
[5]
Zurück zum Zitat Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat Mater. 2004;3(12):868. Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat Mater. 2004;3(12):868.
[6]
Zurück zum Zitat Ikeda S, Hayakawa J, Ashizawa Y, Lee YM, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H. Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl Phys Lett. 2008;93(8):082508. Ikeda S, Hayakawa J, Ashizawa Y, Lee YM, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H. Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl Phys Lett. 2008;93(8):082508.
[7]
Zurück zum Zitat Katine JA, Albert FJ, Buhrman RA. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys Rev Lett. 2000;84(14):3149. Katine JA, Albert FJ, Buhrman RA. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys Rev Lett. 2000;84(14):3149.
[8]
Zurück zum Zitat Albert FJ, Katine JA, Buhrman RA, Ralph DC. Spin-polarized current switching of a Co thin film nanomagnet. Appl Phys Lett. 2000;77(23):3809. Albert FJ, Katine JA, Buhrman RA, Ralph DC. Spin-polarized current switching of a Co thin film nanomagnet. Appl Phys Lett. 2000;77(23):3809.
[9]
Zurück zum Zitat Borgea J, Gorinib C, Vignalec G, Raimondi R. Spin Hall and Edelstein effects in metallic films. Acta Phys Pol, A. 2015;127(2):457. Borgea J, Gorinib C, Vignalec G, Raimondi R. Spin Hall and Edelstein effects in metallic films. Acta Phys Pol, A. 2015;127(2):457.
[10]
Zurück zum Zitat Jamali M, Narayanapillai K, Qiu XP, Loong LM, Manchon A, Yang H. Spin-orbit torques in Co/Pd multilayer nanowires. Phys Rev Lett. 2013;111(24):246602. Jamali M, Narayanapillai K, Qiu XP, Loong LM, Manchon A, Yang H. Spin-orbit torques in Co/Pd multilayer nanowires. Phys Rev Lett. 2013;111(24):246602.
[11]
Zurück zum Zitat Miao XF, Hu SY, Xu F, Brück E. Overview of magnetoelastic coupling in (Mn, Fe)2(P, Si)-type magnetocaloric materials. Rare Met. 2018;37(9):723. Miao XF, Hu SY, Xu F, Brück E. Overview of magnetoelastic coupling in (Mn, Fe)2(P, Si)-type magnetocaloric materials. Rare Met. 2018;37(9):723.
[12]
Zurück zum Zitat Sinova J, Valenzuela SO, Wunderlich J, Back CH, Jungwirth T. Spin Hall effects. Rev Mod Phys. 2015;87(4):1213. Sinova J, Valenzuela SO, Wunderlich J, Back CH, Jungwirth T. Spin Hall effects. Rev Mod Phys. 2015;87(4):1213.
[13]
Zurück zum Zitat Qiu XP, Shi Z, Fan WJ, Zhou SM, Yang H. Characterization and manipulation of spin orbit torque in magnetic heterostructures. Adv Mater. 2018;30(17):1705699. Qiu XP, Shi Z, Fan WJ, Zhou SM, Yang H. Characterization and manipulation of spin orbit torque in magnetic heterostructures. Adv Mater. 2018;30(17):1705699.
[14]
Zurück zum Zitat Feng Z, Yan H, Liu Z. Electric-field control of magnetic order: from FeRh to topological antiferromagnetic spintronics. Adv Electron Mater. 2019;5(1):1800466. Feng Z, Yan H, Liu Z. Electric-field control of magnetic order: from FeRh to topological antiferromagnetic spintronics. Adv Electron Mater. 2019;5(1):1800466.
[15]
Zurück zum Zitat Yan H, Feng Z, Shang S, Wang X, Hu Z, Wang J, Zhu Z, Wang H, Chen Z, Hua H, Lu W, Wang J, Qin P, Guo H, Zhou X, Leng Z, Liu Z, Jiang C, Coey M, Liu Z. A piezoelectric, strain-controlled antiferromagnetic memory insensitive to magnetic fields. Nat Nanotechnol. 2019;14(2):131. Yan H, Feng Z, Shang S, Wang X, Hu Z, Wang J, Zhu Z, Wang H, Chen Z, Hua H, Lu W, Wang J, Qin P, Guo H, Zhou X, Leng Z, Liu Z, Jiang C, Coey M, Liu Z. A piezoelectric, strain-controlled antiferromagnetic memory insensitive to magnetic fields. Nat Nanotechnol. 2019;14(2):131.
[16]
Zurück zum Zitat Skyrme THR. A unified field theory of mesons and baryons. Nucl Phys. 1962;31:556. Skyrme THR. A unified field theory of mesons and baryons. Nucl Phys. 1962;31:556.
[17]
Zurück zum Zitat Belavin AA, Polyakov AM. Metastable state of two-dimensional isotropic ferromagnets. JETP Lett. 1975;22(10):503. Belavin AA, Polyakov AM. Metastable state of two-dimensional isotropic ferromagnets. JETP Lett. 1975;22(10):503.
[18]
Zurück zum Zitat Dzyaloshinsky I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J Phys Chem Solids. 1958;4(4):241. Dzyaloshinsky I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J Phys Chem Solids. 1958;4(4):241.
[19]
Zurück zum Zitat Moriya T. Critical fields of superconducting Sn, In and Ta. Phys Rev. 1960;120(7):91. Moriya T. Critical fields of superconducting Sn, In and Ta. Phys Rev. 1960;120(7):91.
[20]
Zurück zum Zitat Rößler UK, Bogdanov AN, Pfleiderer C. Spontaneous skyrmion ground states in magnetic metals. Nature. 2006;442(7104):797. Rößler UK, Bogdanov AN, Pfleiderer C. Spontaneous skyrmion ground states in magnetic metals. Nature. 2006;442(7104):797.
[21]
Zurück zum Zitat Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz PG, Böni P. Topological Hall effect in the a phase of MnSi. Phys Rev Lett. 2009;102(18):186602. Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz PG, Böni P. Topological Hall effect in the a phase of MnSi. Phys Rev Lett. 2009;102(18):186602.
[22]
Zurück zum Zitat Lee M, Kang W, Onose Y, Tokura Y, Ong NP. Unusual Hall effect anomaly in MnSi under pressure. Phys Rev Lett. 2009;102(18):186601. Lee M, Kang W, Onose Y, Tokura Y, Ong NP. Unusual Hall effect anomaly in MnSi under pressure. Phys Rev Lett. 2009;102(18):186601.
[23]
Zurück zum Zitat Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P. Skyrmion lattice in a chiral magnet. Science. 2009;323(5916):915. Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P. Skyrmion lattice in a chiral magnet. Science. 2009;323(5916):915.
[24]
Zurück zum Zitat Heinze S, Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blügel S. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat Phys. 2011;7(9):713. Heinze S, Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blügel S. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat Phys. 2011;7(9):713.
[25]
Zurück zum Zitat Yu XZ, Kanazawa N, Onose Y, Kimoto K, Zhang WZ, Ishiwata S, Matsui Y, Tokura Y. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat Mater. 2011;10(2):106. Yu XZ, Kanazawa N, Onose Y, Kimoto K, Zhang WZ, Ishiwata S, Matsui Y, Tokura Y. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat Mater. 2011;10(2):106.
[26]
Zurück zum Zitat Ohuchi Y, Kozuka Y, Uchida M, Ueno K, Tsukazaki A, Kawasaki M. Topological Hall effect in thin films of the Heisenberg ferromagnet EuO. Phys Rev B. 2015;91(24):245115. Ohuchi Y, Kozuka Y, Uchida M, Ueno K, Tsukazaki A, Kawasaki M. Topological Hall effect in thin films of the Heisenberg ferromagnet EuO. Phys Rev B. 2015;91(24):245115.
[27]
Zurück zum Zitat Lin YS, Grundy PJ, Giess EA. Bubble domains in magnetostatically coupled garnet films. Appl Phys Lett. 1973;23(8):485. Lin YS, Grundy PJ, Giess EA. Bubble domains in magnetostatically coupled garnet films. Appl Phys Lett. 1973;23(8):485.
[28]
Zurück zum Zitat Garel T, Doniach S. Phase transitions with spontaneous modulation-the dipolar Ising ferromagnet. Phys Rev B. 1982;26(1):325. Garel T, Doniach S. Phase transitions with spontaneous modulation-the dipolar Ising ferromagnet. Phys Rev B. 1982;26(1):325.
[29]
Zurück zum Zitat Suzuki T. A study of magnetization distribution of submicron bubbles in sputtered Ho-Co thin films. J Magn Magn Mater. 1983;31–34(Part 2):1009. Suzuki T. A study of magnetization distribution of submicron bubbles in sputtered Ho-Co thin films. J Magn Magn Mater. 1983;31–34(Part 2):1009.
[30]
Zurück zum Zitat Okubo T, Chung S, Kawamura H. Multiple-q states and the skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. Phys Rev Lett. 2012;108(1):017206. Okubo T, Chung S, Kawamura H. Multiple-q states and the skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. Phys Rev Lett. 2012;108(1):017206.
[32]
Zurück zum Zitat Matsuno J, Ogawa N, Yasuda K, Kagawa F, Koshibae W, Nagaosa N, Tokura Y, Kawasaki M. Interface-driven topological Hall effect in SrRuO3-SrIrO3 bilayer. Sci Adv. 2016;2(7):e1600304. Matsuno J, Ogawa N, Yasuda K, Kagawa F, Koshibae W, Nagaosa N, Tokura Y, Kawasaki M. Interface-driven topological Hall effect in SrRuO3-SrIrO3 bilayer. Sci Adv. 2016;2(7):e1600304.
[33]
Zurück zum Zitat Wang WB, Daniels MW, Liao ZL, Zhao YF, Wang J, Koster G, Rijnders G, Chang CZ, Xiao D, Wu WD. Spin chirality fluctuation in two-dimensional ferromagnets with perpendicular magnetic anisotropy. Nat Mater. 2019;18(10):1054. Wang WB, Daniels MW, Liao ZL, Zhao YF, Wang J, Koster G, Rijnders G, Chang CZ, Xiao D, Wu WD. Spin chirality fluctuation in two-dimensional ferromagnets with perpendicular magnetic anisotropy. Nat Mater. 2019;18(10):1054.
[34]
Zurück zum Zitat Hall EH. On a new action of the magnet on electric currents. Am J Math. 1879;2(3):287. Hall EH. On a new action of the magnet on electric currents. Am J Math. 1879;2(3):287.
[35]
Zurück zum Zitat Hall EH. On the new action of magnetism on a permanent electric current. Phil Mag. 1880;10(63):301. Hall EH. On the new action of magnetism on a permanent electric current. Phil Mag. 1880;10(63):301.
[36]
Zurück zum Zitat Chen H, Niu Q, MacDonald AH. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys Rev Lett. 2014;112(1):017205. Chen H, Niu Q, MacDonald AH. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys Rev Lett. 2014;112(1):017205.
[37]
Zurück zum Zitat Nakatsuji S, Kiyohara N, Higo T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature. 2015;527(7577):212. Nakatsuji S, Kiyohara N, Higo T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature. 2015;527(7577):212.
[38]
Zurück zum Zitat Kübler J, Felser C. Non-collinear antiferromagnets and the anomalous Hall effect. EPL. 2014;108(6):67001. Kübler J, Felser C. Non-collinear antiferromagnets and the anomalous Hall effect. EPL. 2014;108(6):67001.
[39]
Zurück zum Zitat Yang H, Sun Y, Zhang Y, Shi WJ, Parkin SSP, Yan BH. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J Phys. 2017;19(1):015008. Yang H, Sun Y, Zhang Y, Shi WJ, Parkin SSP, Yan BH. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J Phys. 2017;19(1):015008.
[40]
Zurück zum Zitat Kuroda K, Tomita T, Suzuki MT, Bareille C, Nugroho AA, Goswami P, Ochi M, Ikhlas M, Nakayama M, Akebi S, Noguchi R, Ishii R, Inami N, Ono K, Kumigashira H, Varykhalov A, Muro T, Koretsune T, Arita R, Shin S, Kondo T, Nakatsuji S. Evidence for magnetic Weyl fermions in a correlated metal. Nat Mater. 2017;16(11):1090. Kuroda K, Tomita T, Suzuki MT, Bareille C, Nugroho AA, Goswami P, Ochi M, Ikhlas M, Nakayama M, Akebi S, Noguchi R, Ishii R, Inami N, Ono K, Kumigashira H, Varykhalov A, Muro T, Koretsune T, Arita R, Shin S, Kondo T, Nakatsuji S. Evidence for magnetic Weyl fermions in a correlated metal. Nat Mater. 2017;16(11):1090.
[41]
Zurück zum Zitat Železný J, Zhang Y, Felser C, Yan BH. Spin-polarized current in noncollinear antiferromagnets. Phys Rev Lett. 2017;119(18):187204. Železný J, Zhang Y, Felser C, Yan BH. Spin-polarized current in noncollinear antiferromagnets. Phys Rev Lett. 2017;119(18):187204.
[42]
Zurück zum Zitat Zhang Y, Sun Y, Yang H, Železný J, Parkin SSP, Felser C, Yan BH. Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh, and Pt). Phys Rev B. 2017;95(7):075128. Zhang Y, Sun Y, Yang H, Železný J, Parkin SSP, Felser C, Yan BH. Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh, and Pt). Phys Rev B. 2017;95(7):075128.
[43]
Zurück zum Zitat Zhang Y, Železný J, Sun Y, Brink J, Yan BH. Spin Hall effect emerging from a noncollinear magnetic lattice without spin-orbit coupling. New J Phys. 2018;20(7):073028. Zhang Y, Železný J, Sun Y, Brink J, Yan BH. Spin Hall effect emerging from a noncollinear magnetic lattice without spin-orbit coupling. New J Phys. 2018;20(7):073028.
[44]
Zurück zum Zitat Nakatani Y, Hayashi Kanai S, Fukami S, Ohno H. Electric field control of Skyrmions in magnetic nanodisks. Appl Phys Lett. 2016;108(15):152403. Nakatani Y, Hayashi Kanai S, Fukami S, Ohno H. Electric field control of Skyrmions in magnetic nanodisks. Appl Phys Lett. 2016;108(15):152403.
[45]
Zurück zum Zitat Ma C, Zhang XC, Xia J, Ezawa M, Jiang WJ, Ono T, Piramanayagam SN, Morisako A, Zhou Y, Liu XX. Electric field-induced creation and directional motion of domain walls and skyrmion bubbles. Nano Lett. 2019;19(1):353. Ma C, Zhang XC, Xia J, Ezawa M, Jiang WJ, Ono T, Piramanayagam SN, Morisako A, Zhou Y, Liu XX. Electric field-induced creation and directional motion of domain walls and skyrmion bubbles. Nano Lett. 2019;19(1):353.
[46]
Zurück zum Zitat White JS, Levatić I, Omrani AA, Egetenmeyer N, Prša K, Źvković I, Gavilano JL, Kohlbrecher J, Bartkowiak M, Berger H, Rønnow HM. Electric field control of the skyrmion lattice in Cu2OSeO3. J Phys-Condens Matter. 2012;24(43):432201. White JS, Levatić I, Omrani AA, Egetenmeyer N, Prša K, Źvković I, Gavilano JL, Kohlbrecher J, Bartkowiak M, Berger H, Rønnow HM. Electric field control of the skyrmion lattice in Cu2OSeO3. J Phys-Condens Matter. 2012;24(43):432201.
[47]
Zurück zum Zitat Kruchkov AJ, White JS, Bartkowiak M, Živković I, Magrez A, Rønnow HM. Direct electric field control of the skyrmion phase in a magnetoelectric insulator. Sci Rep. 2018;8:10466. Kruchkov AJ, White JS, Bartkowiak M, Živković I, Magrez A, Rønnow HM. Direct electric field control of the skyrmion phase in a magnetoelectric insulator. Sci Rep. 2018;8:10466.
[48]
Zurück zum Zitat Ohuchi Y, Matsuno J, Ogawa N, Kozuka Y, Uchida M, Tokura Y, Kawasaki M. Electric-field control of anomalous and topological Hall effects in oxide bilayer thin films. Nat Commun. 2018;9:213. Ohuchi Y, Matsuno J, Ogawa N, Kozuka Y, Uchida M, Tokura Y, Kawasaki M. Electric-field control of anomalous and topological Hall effects in oxide bilayer thin films. Nat Commun. 2018;9:213.
[49]
Zurück zum Zitat Qin Q, Liu L, Lin WN, Shu XY, Xie QD, Lim ZS, Li CJ, He SK, Chow GM, Chen JS. Emergence of topological Hall effect in a SrRuO3 single layer. Adv Mater. 2019;31(8):1807008. Qin Q, Liu L, Lin WN, Shu XY, Xie QD, Lim ZS, Li CJ, He SK, Chow GM, Chen JS. Emergence of topological Hall effect in a SrRuO3 single layer. Adv Mater. 2019;31(8):1807008.
[50]
Zurück zum Zitat Finger T, Senff D, Schmalz K, Schmidt W, Regnault LP, Becker P, Bohatỳ L, Braden M. Electric-field control of the chiral magnetism of multiferroic MnWO4 as seen via polarized neutron diffraction. Phys Rev B. 2010;81(5):054430. Finger T, Senff D, Schmalz K, Schmidt W, Regnault LP, Becker P, Bohatỳ L, Braden M. Electric-field control of the chiral magnetism of multiferroic MnWO4 as seen via polarized neutron diffraction. Phys Rev B. 2010;81(5):054430.
[51]
Zurück zum Zitat Liu ZQ, Chen H, Wang JM, Liu JH, Wang K, Feng ZX, Yan H, Wang XR, Jiang CB, Coey JMD, MacDonald AH. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnets above room temperature. Nat Electron. 2018;1(3):172. Liu ZQ, Chen H, Wang JM, Liu JH, Wang K, Feng ZX, Yan H, Wang XR, Jiang CB, Coey JMD, MacDonald AH. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnets above room temperature. Nat Electron. 2018;1(3):172.
[52]
Zurück zum Zitat Wang X, Feng Z, Qin P, Yan H, Zhou X, Guo H, Leng Z, Chen W, Jia Q, Hu Z, Wu H, Zhang X, Jiang C, Liu Z. Integration of the noncollinear antiferromagnetic metal Mn3Sn onto ferroelectric oxides for electric-field control. Acta Mater. 2019;181:537. Wang X, Feng Z, Qin P, Yan H, Zhou X, Guo H, Leng Z, Chen W, Jia Q, Hu Z, Wu H, Zhang X, Jiang C, Liu Z. Integration of the noncollinear antiferromagnetic metal Mn3Sn onto ferroelectric oxides for electric-field control. Acta Mater. 2019;181:537.
[53]
Zurück zum Zitat Lukashev P, Sabirianov RF, Belashchenko K. Theory of the piezomagnetic effect in Mn-based antiperovskites. Phys Rev B. 2008;78(18):184414. Lukashev P, Sabirianov RF, Belashchenko K. Theory of the piezomagnetic effect in Mn-based antiperovskites. Phys Rev B. 2008;78(18):184414.
[54]
Zurück zum Zitat Liu Z, Biegalski MD, Hsu SL, Shang S, Marker C, Liu J, Li L, Fan L, Meyer TL, Wong AT, Nichols JA, Chen D, You L, Chen Z, Wang K, Wang K, Ward TZ, Gai Z, Lee HN, Sefat AS, Lauter V, Liu ZK, Christen HM. Epitaxial growth of intermetallic MnPt films on oxides and large exchange bias. Adv Mater. 2016;28(1):118. Liu Z, Biegalski MD, Hsu SL, Shang S, Marker C, Liu J, Li L, Fan L, Meyer TL, Wong AT, Nichols JA, Chen D, You L, Chen Z, Wang K, Wang K, Ward TZ, Gai Z, Lee HN, Sefat AS, Lauter V, Liu ZK, Christen HM. Epitaxial growth of intermetallic MnPt films on oxides and large exchange bias. Adv Mater. 2016;28(1):118.
[55]
Zurück zum Zitat Liu Z, Feng Z, Yan H, Wang X, Zhou X, Qin P, Guo H, Yu R, Jiang C. Antiferromagnetic piezospintronics. Adv Electron Mater. 2019;5(7):1900176. Liu Z, Feng Z, Yan H, Wang X, Zhou X, Qin P, Guo H, Yu R, Jiang C. Antiferromagnetic piezospintronics. Adv Electron Mater. 2019;5(7):1900176.
[56]
Zurück zum Zitat Liu ZQ, Liu JH, Biegalski MD, Hu JM, Shang SL, Ji Y, Wang JM, Hsu SL, Wong AT, Cordill MJ, Gludovatz B, Marker C, Yan H, Feng ZX, You L, Lin MW, Ward TZ, Liu ZK, Jiang CB, Chen LQ, Ritchie RO, Christen HM, Ramesh R. Electrically reversible cracks in an intermetallic film controlled by an electric field. Nat Commun. 2018;9:41. Liu ZQ, Liu JH, Biegalski MD, Hu JM, Shang SL, Ji Y, Wang JM, Hsu SL, Wong AT, Cordill MJ, Gludovatz B, Marker C, Yan H, Feng ZX, You L, Lin MW, Ward TZ, Liu ZK, Jiang CB, Chen LQ, Ritchie RO, Christen HM, Ramesh R. Electrically reversible cracks in an intermetallic film controlled by an electric field. Nat Commun. 2018;9:41.
[57]
Zurück zum Zitat Lee Y, Liu ZQ, Heron JT, Clarkson JD, Hong J, Ko C, Biegalski MD, Aschauer U, Hsu SL, Nowakowski ME, Wu J, Christen HM, Salahuddin S, Bokor JB, Spaldin NA, Schlom DG, Ramesh R. Large resistivity modulation in mixed-phase metallic systems. Nat Commun. 2015;6:5959. Lee Y, Liu ZQ, Heron JT, Clarkson JD, Hong J, Ko C, Biegalski MD, Aschauer U, Hsu SL, Nowakowski ME, Wu J, Christen HM, Salahuddin S, Bokor JB, Spaldin NA, Schlom DG, Ramesh R. Large resistivity modulation in mixed-phase metallic systems. Nat Commun. 2015;6:5959.
[58]
Zurück zum Zitat Liu ZQ, Leusink DP, Wang X, Lü WM, Gopinadhan K, Annadi A, Zhao YL, Huang XH, Zeng SW, Huang Z, Srivasava A, Dhar S, Venkatesan T, Ariando A. Metal-insulator transition in SrTiO3-x thin films induced by frozen-out carriers. Phys Rev Lett. 2011;107(14):146802. Liu ZQ, Leusink DP, Wang X, Lü WM, Gopinadhan K, Annadi A, Zhao YL, Huang XH, Zeng SW, Huang Z, Srivasava A, Dhar S, Venkatesan T, Ariando A. Metal-insulator transition in SrTiO3-x thin films induced by frozen-out carriers. Phys Rev Lett. 2011;107(14):146802.
[59]
Zurück zum Zitat Liu ZQ, Li CJ, Lü WM, Huang XH, Huang Z, Zeng SW, Qiu XP, Huang LS, Annadi A, Chen JS, Coey JMD, Venkatesan T, Ariando A. Origin of the two-dimensional electron gas at LaAlO3/SrTiO3 interfaces—the role of oxygen vacancies and electronic reconstruction. Phys Rev X. 2013;3(2):021010. Liu ZQ, Li CJ, Lü WM, Huang XH, Huang Z, Zeng SW, Qiu XP, Huang LS, Annadi A, Chen JS, Coey JMD, Venkatesan T, Ariando A. Origin of the two-dimensional electron gas at LaAlO3/SrTiO3 interfaces—the role of oxygen vacancies and electronic reconstruction. Phys Rev X. 2013;3(2):021010.
[60]
Zurück zum Zitat Chen Z, Chen ZH, Liu ZQ, Holtz ME, Li CJ, Wang XR, Lü WM, Motapothula M, Fan LS, Turcaud JA, Dedon LR, Frederick C, Xu RJ, Gao R, N’Diaye AT, Arenholz E, Mundy JA, Venkatesan T, Muller DA, Wang LW, Liu J, Martin LW. Electron accumulation and emergent magnetism in LaMnO3/SrTiO3 heterostructures. Phys Rev Lett. 2017;119(15):156801. Chen Z, Chen ZH, Liu ZQ, Holtz ME, Li CJ, Wang XR, Lü WM, Motapothula M, Fan LS, Turcaud JA, Dedon LR, Frederick C, Xu RJ, Gao R, N’Diaye AT, Arenholz E, Mundy JA, Venkatesan T, Muller DA, Wang LW, Liu J, Martin LW. Electron accumulation and emergent magnetism in LaMnO3/SrTiO3 heterostructures. Phys Rev Lett. 2017;119(15):156801.
[61]
Zurück zum Zitat Liu ZQ, Li L, Clarkson JD, Hsu SL, Wong AT, Fan LS, Lin MW, Rouleau CM, Ward TZ, Lee HN, Sefat AS, Christen HM, Ramesh R. Full electroresistance modulation in a mixed-phase metallic alloy. Phys Rev Lett. 2016;116(9):097203. Liu ZQ, Li L, Clarkson JD, Hsu SL, Wong AT, Fan LS, Lin MW, Rouleau CM, Ward TZ, Lee HN, Sefat AS, Christen HM, Ramesh R. Full electroresistance modulation in a mixed-phase metallic alloy. Phys Rev Lett. 2016;116(9):097203.
[62]
Zurück zum Zitat Li CJ, Huang LS, Li T, Lü WM, Qiu XP, Huang Z, Liu ZQ, Zeng SW, Zhao YL, Zeng KY, Chen JS, Coey JMD, Ariando A, Venkatesan T. Untra thin BaTiO3 based ferroelectric tunneling junctions through interface engineering. Nano Lett. 2015;15(4):2568. Li CJ, Huang LS, Li T, Lü WM, Qiu XP, Huang Z, Liu ZQ, Zeng SW, Zhao YL, Zeng KY, Chen JS, Coey JMD, Ariando A, Venkatesan T. Untra thin BaTiO3 based ferroelectric tunneling junctions through interface engineering. Nano Lett. 2015;15(4):2568.
[63]
Zurück zum Zitat Qiu X, Narayanapillai K, Wu Y, Deorani P, Yang DH, Noh WS, Park JH, Lee KJ, Lee HW, Yang H. Spin-orbit-torque engineering via oxygen manipulation. Nat Nanotechnol. 2015;10(4):333. Qiu X, Narayanapillai K, Wu Y, Deorani P, Yang DH, Noh WS, Park JH, Lee KJ, Lee HW, Yang H. Spin-orbit-torque engineering via oxygen manipulation. Nat Nanotechnol. 2015;10(4):333.
[64]
Zurück zum Zitat Lü W, Li C, Zheng L, Xiao J, Lin W, Li Q, Wang XR, Huang Z, Zeng S, Han K, Zhou W, Zeng K, Chen J, Ariando A, Cao W, Venkatesan T. Multi-nonvolatile state resistive switching arising from ferroelectricity and oxygen vacancy migration. Adv Mater. 2017;29(24):1606165. Lü W, Li C, Zheng L, Xiao J, Lin W, Li Q, Wang XR, Huang Z, Zeng S, Han K, Zhou W, Zeng K, Chen J, Ariando A, Cao W, Venkatesan T. Multi-nonvolatile state resistive switching arising from ferroelectricity and oxygen vacancy migration. Adv Mater. 2017;29(24):1606165.
[65]
Zurück zum Zitat Zheng LM, Wang XR, Lü WM, Li CJ, Paudel TR, Liu ZQ, Huang Z, Zeng SW, Han K, Chen ZH, Qiu XP, Li MS, Yang S, Yang B, Chisholm MF, Martin LW, Pennycook SJ, Tysmbal EY, Coey JMD, Cao WW. Ambipolar ferromagnetism by electrostatic doping of a manganite. Nat Commun. 2018;9:1897. Zheng LM, Wang XR, Lü WM, Li CJ, Paudel TR, Liu ZQ, Huang Z, Zeng SW, Han K, Chen ZH, Qiu XP, Li MS, Yang S, Yang B, Chisholm MF, Martin LW, Pennycook SJ, Tysmbal EY, Coey JMD, Cao WW. Ambipolar ferromagnetism by electrostatic doping of a manganite. Nat Commun. 2018;9:1897.
[66]
Zurück zum Zitat Wang XR, Li CJ, Lü WM, Paudel TR, Leusink DP, Hoek M, Poccia N, Vailionis A, Venkatesan T, Coey JMD, Tsymbal EY, Ariando A, Hilgenkamp H. Imaging and control of ferromagnetism in LaMnO3/SrTiO3 heterostructures. Science. 2015;349(6249):716. Wang XR, Li CJ, Lü WM, Paudel TR, Leusink DP, Hoek M, Poccia N, Vailionis A, Venkatesan T, Coey JMD, Tsymbal EY, Ariando A, Hilgenkamp H. Imaging and control of ferromagnetism in LaMnO3/SrTiO3 heterostructures. Science. 2015;349(6249):716.
[67]
Zurück zum Zitat Liu ZQ, Ming Y, Lü WM, Huang Z, Wang X, Zhang BM, Li CJ, Gopinadhan K, Zeng SW, Annadi A, Feng YP, Venkatesan T, Ariando A. Tailoring the electronic properties of SrRuO3 films in SrRuO3/LaAlO3 superlattices. Appl Phys Lett. 2012;101(22):223105. Liu ZQ, Ming Y, Lü WM, Huang Z, Wang X, Zhang BM, Li CJ, Gopinadhan K, Zeng SW, Annadi A, Feng YP, Venkatesan T, Ariando A. Tailoring the electronic properties of SrRuO3 films in SrRuO3/LaAlO3 superlattices. Appl Phys Lett. 2012;101(22):223105.
[68]
Zurück zum Zitat Ziese M, Jin L, Lindfors-Vrejoiu I. Unconventional anomalous Hall effect driven by oxygen-octahedra-tailoring of the SrRuO3 structure. J Phys Mater. 2019;2:034008. Ziese M, Jin L, Lindfors-Vrejoiu I. Unconventional anomalous Hall effect driven by oxygen-octahedra-tailoring of the SrRuO3 structure. J Phys Mater. 2019;2:034008.
[69]
Zurück zum Zitat Gu Y, Wei YW, Xu K, Zhang H, Wang F, Li F, Saleem MS, Chang CZ, Sun J, Song C, Feng J, Zhong X, Liu W, Zhang Z, Zhu J, Pan F. Interfacial oxygen-octahedral-tilting-driven electrically tunable topological Hall effect in ultrathin SrRuO3 films. J Phys D Appl Phys. 2019;52(40):404001. Gu Y, Wei YW, Xu K, Zhang H, Wang F, Li F, Saleem MS, Chang CZ, Sun J, Song C, Feng J, Zhong X, Liu W, Zhang Z, Zhu J, Pan F. Interfacial oxygen-octahedral-tilting-driven electrically tunable topological Hall effect in ultrathin SrRuO3 films. J Phys D Appl Phys. 2019;52(40):404001.
[70]
Zurück zum Zitat Qiu XP, Yang DZ, Zhou SM, Chantrell R, O’Grady K, Nowak U, Du J, Bai XJ. Rotation of the pinning direction in the exchange bias training effect in polycrystalline NiFe/FeMn bilayers. Phys Rev Lett. 2008;101(14):147207. Qiu XP, Yang DZ, Zhou SM, Chantrell R, O’Grady K, Nowak U, Du J, Bai XJ. Rotation of the pinning direction in the exchange bias training effect in polycrystalline NiFe/FeMn bilayers. Phys Rev Lett. 2008;101(14):147207.
[71]
Zurück zum Zitat Lü WM, Saha S, Wang XR, Liu ZQ, Gopinadhan K, Annadi A, Zeng SW, Huang Z, Bao BC, Cong CX, Venkatesan M, Yu T, Coey JMD, Ariando A, Venkatesan T. Long-range magnetic coupling across a polar insulating layer. Nat Commun. 2016;7:11015. Lü WM, Saha S, Wang XR, Liu ZQ, Gopinadhan K, Annadi A, Zeng SW, Huang Z, Bao BC, Cong CX, Venkatesan M, Yu T, Coey JMD, Ariando A, Venkatesan T. Long-range magnetic coupling across a polar insulating layer. Nat Commun. 2016;7:11015.
[72]
Zurück zum Zitat Qiu X, Legrand W, He P, Wu Y, Yu J, Ramaswamy R, Manchon A, Yang H. Enhanced spin-orbit torque via modulation of spin current absorption. Phys Rev Lett. 2016;117(21):217206. Qiu X, Legrand W, He P, Wu Y, Yu J, Ramaswamy R, Manchon A, Yang H. Enhanced spin-orbit torque via modulation of spin current absorption. Phys Rev Lett. 2016;117(21):217206.
[73]
Zurück zum Zitat Han K, Hu K, Li X, Huang K, Huang Z, Zeng S, Qi D, Ye C, Yang J, Xu H, Ariando A, Yi J, Lü W, Yan S, Wang XR. Erasable and recreatable two-dimensional electron gas at the heterointerface of SrTiO3 and a water-dissolvable overlayer. Sci Adv. 2019;5(8):eaaw7286. Han K, Hu K, Li X, Huang K, Huang Z, Zeng S, Qi D, Ye C, Yang J, Xu H, Ariando A, Yi J, Lü W, Yan S, Wang XR. Erasable and recreatable two-dimensional electron gas at the heterointerface of SrTiO3 and a water-dissolvable overlayer. Sci Adv. 2019;5(8):eaaw7286.
[74]
Zurück zum Zitat Kaspar Z, Surynek M, Zubac J, Krizek J, Novak V, Campion RP, Wornle MS, Gambardella P, Marti X, Nemec P, Wadley P, Wunderlich J, Tungwirth T, Olejnik K. High resistive unipolar-electrical and fs-optical switching in a single-layer antiferromagnetic memory. 2019. arXiv:1909.0907. Kaspar Z, Surynek M, Zubac J, Krizek J, Novak V, Campion RP, Wornle MS, Gambardella P, Marti X, Nemec P, Wadley P, Wunderlich J, Tungwirth T, Olejnik K. High resistive unipolar-electrical and fs-optical switching in a single-layer antiferromagnetic memory. 2019. arXiv:1909.0907.
[75]
Zurück zum Zitat Yu S, Skourski Y, Bommanaboyena SP, Klaui M, Jourdan M. Domain wall and anisotropic magnetoresistance of the antiferromagnetic Mn2Au. 2019. arXiv:1909.12606. Yu S, Skourski Y, Bommanaboyena SP, Klaui M, Jourdan M. Domain wall and anisotropic magnetoresistance of the antiferromagnetic Mn2Au. 2019. arXiv:1909.12606.
Metadaten
Titel
Noncollinear spintronics and electric-field control: a review
verfasst von
Pei-Xin Qin
Han Yan
Xiao-Ning Wang
Ze-Xin Feng
Hui-Xin Guo
Xiao-Rong Zhou
Hao-Jiang Wu
Xin Zhang
Zhao-Guo-Gang Leng
Hong-Yu Chen
Zhi-Qi Liu
Publikationsdatum
07.12.2019
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 2/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-019-01352-w

Weitere Artikel der Ausgabe 2/2020

Rare Metals 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.