Skip to main content
Erschienen in: Rare Metals 2/2020

09.12.2019

Ultra-stable metal nano-catalyst synthesis strategy: a perspective

verfasst von: Xiao-Qing Cao, Jun Zhou, Song Li, Gao-Wu Qin

Erschienen in: Rare Metals | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Supported metal nanoparticles (NPs) as an important heterogeneous catalyst have been widely applied in various industrial processes. During the catalytic reaction, size of the particles plays an important role in determining their catalytic performance. Generally, the small particles exhibit superior catalytic activity in comparison with the larger particles because of an increase in low-coordinated metal atoms on the particle surface that work as active sites, such as edges and corner atoms. However, these small NPs are typically unstable and tend to migrate and coalescence to reduce their surface free energy during the real catalytic processes, particularly in high-temperature reactions. Therefore, a means to fabricate stable small metal NP catalysts with excellent sinter-resistant performance is necessary for maintaining their high catalytic activity. In this study, we have summarized recent advances in stabilizing metal NPs from two aspects including thermodynamic and kinetic strategies. The former mainly involve preparing uniform NPs (with an identical size and homogeneous distribution) in order to restrain Ostwald ripening to achieve stability, while the latter primarily involves fixing metal NPs in some special confinement materials (e.g., zeolites, mesoporous silica and mesoporous carbons), encapsulating NPs using an oxide-coating film (e.g., forming core–shell structures), or constructing strong metal–support interactions to improve stability. At the end of this review, we highlight our recent work on the preparation of high-stability metal catalysts via a unique interfacial plasma electrolytic oxidation technology, that is, metal NPs are well embedded in a porous MgO layer that has both high thermal stability and excellent catalytic activity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat He Q, Freakley SJ, Edwards JK, Carley AF, Borisevich AY, Mineo Y, Haruta M, Hutchings GJ, Kiely CJ. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation. Nat Commun. 2016;7:12905. He Q, Freakley SJ, Edwards JK, Carley AF, Borisevich AY, Mineo Y, Haruta M, Hutchings GJ, Kiely CJ. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation. Nat Commun. 2016;7:12905.
[2]
Zurück zum Zitat Yang XF, Wang AQ, Qiao BT, Li J, Liu JY, Zhang T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res. 2013;46(8):1740. Yang XF, Wang AQ, Qiao BT, Li J, Liu JY, Zhang T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res. 2013;46(8):1740.
[3]
Zurück zum Zitat Huda M, Minamisawa K, Tsukamoto T, Tanabe M, Yamamoto K. Aerobic toluene oxidation catalyzed by subnano metal particles. Angew Chem Int Edit. 2019;58(4):1002. Huda M, Minamisawa K, Tsukamoto T, Tanabe M, Yamamoto K. Aerobic toluene oxidation catalyzed by subnano metal particles. Angew Chem Int Edit. 2019;58(4):1002.
[4]
Zurück zum Zitat Imaoka T, Akanuma Y, Haruta N, Tsuchiya S, Ishihara K, Okayasu T, Chun WJ, Takahashi M, Yamamoto K. Platinum clusters with precise numbers of atoms for preparative-scale catalysis. Nat Commun. 2017;8:688. Imaoka T, Akanuma Y, Haruta N, Tsuchiya S, Ishihara K, Okayasu T, Chun WJ, Takahashi M, Yamamoto K. Platinum clusters with precise numbers of atoms for preparative-scale catalysis. Nat Commun. 2017;8:688.
[5]
Zurück zum Zitat Ouyang RH, Liu JX, Li WX. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions. J Am Chem Soc. 2013;135(5):1760. Ouyang RH, Liu JX, Li WX. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions. J Am Chem Soc. 2013;135(5):1760.
[6]
Zurück zum Zitat Hansen TW, Delariva AT, Challa SR, Datye AK. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Acc Chem Res. 2013;46(8):1720. Hansen TW, Delariva AT, Challa SR, Datye AK. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Acc Chem Res. 2013;46(8):1720.
[7]
Zurück zum Zitat Cargnello M, Jaen JJD, Garrido JCH, Bakhmutsky K, Montini T, Gamez JJC, Gorte RJ, Fornasiero P. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science. 2012;337(6095):713. Cargnello M, Jaen JJD, Garrido JCH, Bakhmutsky K, Montini T, Gamez JJC, Gorte RJ, Fornasiero P. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science. 2012;337(6095):713.
[8]
Zurück zum Zitat Polo-Garzon F, Fung V, Nguyen L, Tang Y, Tao F, Cheng YQ, Daemen LL, Ramirez-Cuesta AJ, Foo GS, Zhu MH, Wachs IE, Jiang DE, Wu ZL. Elucidation of the reaction mechanism for high-temperature water gas shift over an industrial-type copper–chromium–iron oxide catalyst. J Am Chem Soc. 2019;141(19):7990. Polo-Garzon F, Fung V, Nguyen L, Tang Y, Tao F, Cheng YQ, Daemen LL, Ramirez-Cuesta AJ, Foo GS, Zhu MH, Wachs IE, Jiang DE, Wu ZL. Elucidation of the reaction mechanism for high-temperature water gas shift over an industrial-type copper–chromium–iron oxide catalyst. J Am Chem Soc. 2019;141(19):7990.
[9]
Zurück zum Zitat Morgan K, Goguet A, Hardacre C. Metal redispersion strategies for recycling of supported metal catalysts: a perspective. ACS Catal. 2015;5(6):3430. Morgan K, Goguet A, Hardacre C. Metal redispersion strategies for recycling of supported metal catalysts: a perspective. ACS Catal. 2015;5(6):3430.
[10]
Zurück zum Zitat Arnal PM, Comotti M, Schuth F. High-temperature-stable catalysts by hollow sphere encapsulation. Angew Chem Int Edit. 2006;45(48):8224. Arnal PM, Comotti M, Schuth F. High-temperature-stable catalysts by hollow sphere encapsulation. Angew Chem Int Edit. 2006;45(48):8224.
[11]
Zurück zum Zitat Prieto G, Zecevic J, Friedrich H, de Jong KP, de Jongh PE. Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat Mater. 2013;12(1):34. Prieto G, Zecevic J, Friedrich H, de Jong KP, de Jongh PE. Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat Mater. 2013;12(1):34.
[12]
Zurück zum Zitat Li WZ, Kovarik L, Mei DH, Liu J, Wang Y, Peden CHF. Stable platinum nanoparticles on specific MgAl2O4 spinel facets at high temperatures in oxidizing atmospheres. Nat Commun. 2013;4:2481. Li WZ, Kovarik L, Mei DH, Liu J, Wang Y, Peden CHF. Stable platinum nanoparticles on specific MgAl2O4 spinel facets at high temperatures in oxidizing atmospheres. Nat Commun. 2013;4:2481.
[13]
Zurück zum Zitat Dong JH, Fu Q, Jiang Z, Mei BB, Bao XH. Carbide-supported Au catalysts for water–gas shift reactions: a new territory for the strong metal-support interaction effect. J Am Chem Soc. 2018;140(42):13808. Dong JH, Fu Q, Jiang Z, Mei BB, Bao XH. Carbide-supported Au catalysts for water–gas shift reactions: a new territory for the strong metal-support interaction effect. J Am Chem Soc. 2018;140(42):13808.
[14]
Zurück zum Zitat Goel S, Wu ZJ, Zones SI, Iglesia E. Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites. J Am Chem Soc. 2012;134(42):17688. Goel S, Wu ZJ, Zones SI, Iglesia E. Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites. J Am Chem Soc. 2012;134(42):17688.
[15]
Zurück zum Zitat Chen YS, Cao YD, Ran R, Wu XD, Weng D. Controlled pore size of Pt/KIT-6 used for propane total oxidation. Rare Met. 2018;37(2):123. Chen YS, Cao YD, Ran R, Wu XD, Weng D. Controlled pore size of Pt/KIT-6 used for propane total oxidation. Rare Met. 2018;37(2):123.
[16]
Zurück zum Zitat Liu RH, Zhang CM, Ma JX. High thermal stable gold catalyst supported on La2O3 doped Fe2O3 for low-temperature CO oxidation. J Rare Earth. 2010;28(3):376. Liu RH, Zhang CM, Ma JX. High thermal stable gold catalyst supported on La2O3 doped Fe2O3 for low-temperature CO oxidation. J Rare Earth. 2010;28(3):376.
[17]
Zurück zum Zitat Zhang TT, Zhao HY, He SN, Liu K, Liu HY, Yin YD, Gao CB. Unconventional route to encapsulated ultrasmall gold nanoparticles for high-temperature catalysis. ACS Nano. 2014;8(7):7297. Zhang TT, Zhao HY, He SN, Liu K, Liu HY, Yin YD, Gao CB. Unconventional route to encapsulated ultrasmall gold nanoparticles for high-temperature catalysis. ACS Nano. 2014;8(7):7297.
[18]
Zurück zum Zitat Zhao HY, Yao SY, Zhang MT, Huang F, Fan QK, Zhang SM, Liu HY, Ma D, Gao CB. Ultra-small platinum nanoparticles encapsulated in sub-50 nm hollow titania nanospheres for low-temperature water–gas shift reaction. ACS Appl Mater Interface. 2018;10(43):36954. Zhao HY, Yao SY, Zhang MT, Huang F, Fan QK, Zhang SM, Liu HY, Ma D, Gao CB. Ultra-small platinum nanoparticles encapsulated in sub-50 nm hollow titania nanospheres for low-temperature water–gas shift reaction. ACS Appl Mater Interface. 2018;10(43):36954.
[19]
Zurück zum Zitat Luo H, Wu XD, Weng D, Liu S, Ran R. A novel insight into enhanced propane combustion performance on PtUSY catalyst. Rare Met. 2017;36(1):1. Luo H, Wu XD, Weng D, Liu S, Ran R. A novel insight into enhanced propane combustion performance on PtUSY catalyst. Rare Met. 2017;36(1):1.
[20]
Zurück zum Zitat Liu YL, Chen H, Xu CJ, Sun YM, Li S, Qin GW. Control of catalytic activity of nano-Au through tailoring the Fermi level of support. Small. 2019;15(34):1901789. Liu YL, Chen H, Xu CJ, Sun YM, Li S, Qin GW. Control of catalytic activity of nano-Au through tailoring the Fermi level of support. Small. 2019;15(34):1901789.
[21]
Zurück zum Zitat Tang HL, Wei JK, Liu F, Qiao BT, Pan XL, Li L, Liu JY, Wang JH, Zhang T. Strong metal-support interactions between gold nanoparticles and nonoxides. J Am Chem Soc. 2016;138(1):56. Tang HL, Wei JK, Liu F, Qiao BT, Pan XL, Li L, Liu JY, Wang JH, Zhang T. Strong metal-support interactions between gold nanoparticles and nonoxides. J Am Chem Soc. 2016;138(1):56.
[22]
Zurück zum Zitat Yang XW, Li Q, Lu EJ, Wang ZQ, Gong XQ, Yu ZY, Guo Y, Wang L, Guo YL, Zhan WC, Zhang JS, Dai S. Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nat Commun. 2019;10:1611. Yang XW, Li Q, Lu EJ, Wang ZQ, Gong XQ, Yu ZY, Guo Y, Wang L, Guo YL, Zhan WC, Zhang JS, Dai S. Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nat Commun. 2019;10:1611.
[23]
Zurück zum Zitat Zhang J, Wang H, Wang L, Ali S, Wang CT, Wang LX, Meng XJ, Li B, Su DS, Xiao FS. Wet-chemistry strong metal-support interactions in titania-supported Au catalysts. J Am Chem Soc. 2019;141(7):2975. Zhang J, Wang H, Wang L, Ali S, Wang CT, Wang LX, Meng XJ, Li B, Su DS, Xiao FS. Wet-chemistry strong metal-support interactions in titania-supported Au catalysts. J Am Chem Soc. 2019;141(7):2975.
[24]
Zurück zum Zitat Farrusseng D, Tuel A. Perspectives on zeolite-encapsulated metal nanoparticles and their applications in catalysis. New J Chem. 2016;40(5):3933. Farrusseng D, Tuel A. Perspectives on zeolite-encapsulated metal nanoparticles and their applications in catalysis. New J Chem. 2016;40(5):3933.
[25]
Zurück zum Zitat Wang QT, Han WW, Lyu JH, Zhang QF, Guo LL, Li XN. In situ encapsulation of platinum clusters within H-ZSM-5 zeolite for highly stable benzene methylation catalysis. Catal Sci Technol. 2017;7(4):6140. Wang QT, Han WW, Lyu JH, Zhang QF, Guo LL, Li XN. In situ encapsulation of platinum clusters within H-ZSM-5 zeolite for highly stable benzene methylation catalysis. Catal Sci Technol. 2017;7(4):6140.
[26]
Zurück zum Zitat Cui TL, Ke WY, Zhang WB, Wang HH, Li XH, Chen JS. Encapsulating palladium nanoparticles inside mesoporous MFI zeolite nanocrystals for shape-selective catalysis. Angew Chem Int Edit. 2016;55(32):9178. Cui TL, Ke WY, Zhang WB, Wang HH, Li XH, Chen JS. Encapsulating palladium nanoparticles inside mesoporous MFI zeolite nanocrystals for shape-selective catalysis. Angew Chem Int Edit. 2016;55(32):9178.
[27]
Zurück zum Zitat Wang N, Sun QM, Bai RS, Li X, Guo GQ, Yu JH. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J Am Chem Soc. 2016;138(24):7484. Wang N, Sun QM, Bai RS, Li X, Guo GQ, Yu JH. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J Am Chem Soc. 2016;138(24):7484.
[28]
Zurück zum Zitat Liu LC, Diaz U, Arenal R, Agostini G, Concepcion P, Corma A. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat Mater. 2017;16(12):132. Liu LC, Diaz U, Arenal R, Agostini G, Concepcion P, Corma A. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat Mater. 2017;16(12):132.
[29]
Zurück zum Zitat Wang GX, Xu SD, Wang L, Liu ZQ, Dong X, Wang LX, Zheng AM, Meng XJ, Xiao FS. Fish-in-hole: rationally positioning palladium into traps of zeolite crystals for sinter-resistant catalysts. Chem Commun. 2018;54(26):3274. Wang GX, Xu SD, Wang L, Liu ZQ, Dong X, Wang LX, Zheng AM, Meng XJ, Xiao FS. Fish-in-hole: rationally positioning palladium into traps of zeolite crystals for sinter-resistant catalysts. Chem Commun. 2018;54(26):3274.
[30]
Zurück zum Zitat Soni Y, Kavya I, Ajithkumar TG, Vinod CP. One pot ligand exchange method for a highly stable Au-SBA-15 catalyst and its room temperature CO oxidation. Chem Commun. 2018;54(91):12412. Soni Y, Kavya I, Ajithkumar TG, Vinod CP. One pot ligand exchange method for a highly stable Au-SBA-15 catalyst and its room temperature CO oxidation. Chem Commun. 2018;54(91):12412.
[31]
Zurück zum Zitat Yan Y, Zhang ZH, Bak SM, Yao SY, Hu XB, Shadike Z, Do-Thanh CL, Zhang F, Chen H, Lyu XL, Chen KQ, Zhu YM, Lu XY, Ouyang PK, Fu J, Dai S. Confinement of ultrasmall cobalt oxide clusters within silicalite-1 crystals for efficient conversion of fructose into methyl lactate. ACS Catal. 2019;9(3):1923. Yan Y, Zhang ZH, Bak SM, Yao SY, Hu XB, Shadike Z, Do-Thanh CL, Zhang F, Chen H, Lyu XL, Chen KQ, Zhu YM, Lu XY, Ouyang PK, Fu J, Dai S. Confinement of ultrasmall cobalt oxide clusters within silicalite-1 crystals for efficient conversion of fructose into methyl lactate. ACS Catal. 2019;9(3):1923.
[32]
Zurück zum Zitat Zhang J, Wang L, Zhang BS, Zhao HS, Kolb U, Zhu YH, Liu LM, Han Y, Wang GX, Wang CT, Su DS, Gates BC, Xiao FS. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nat Catal. 2018;1(7):540. Zhang J, Wang L, Zhang BS, Zhao HS, Kolb U, Zhu YH, Liu LM, Han Y, Wang GX, Wang CT, Su DS, Gates BC, Xiao FS. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nat Catal. 2018;1(7):540.
[33]
Zurück zum Zitat Kistler JD, Chotigkrai N, Xu PH, Enderle B, Praserthdam P, Chen CY, Browning ND, Gates BC. A single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms. Angew Chem Int Edit. 2014;53(34):8904. Kistler JD, Chotigkrai N, Xu PH, Enderle B, Praserthdam P, Chen CY, Browning ND, Gates BC. A single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms. Angew Chem Int Edit. 2014;53(34):8904.
[34]
Zurück zum Zitat He P, Gatip R, Yung M, Zeng HB, Song H. Co-aromatization of olefin and methane over Ag-Ga/ZSM-5 catalyst at low temperature. Appl Catal B Environ. 2017;211:275. He P, Gatip R, Yung M, Zeng HB, Song H. Co-aromatization of olefin and methane over Ag-Ga/ZSM-5 catalyst at low temperature. Appl Catal B Environ. 2017;211:275.
[35]
Zurück zum Zitat Shan JJ, Li MW, Allard LF, Lee SS, Flytzani-Stephanopoulos M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature. 2017;551(7682):605. Shan JJ, Li MW, Allard LF, Lee SS, Flytzani-Stephanopoulos M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature. 2017;551(7682):605.
[36]
Zurück zum Zitat Choi M, Wu ZJ, Iglesia E. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. J Am Chem Soc. 2010;132(26):9129. Choi M, Wu ZJ, Iglesia E. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. J Am Chem Soc. 2010;132(26):9129.
[37]
Zurück zum Zitat Zhu FX, Wang W, Li HX. Water-medium and solvent-free organic reactions over a bifunctional catalyst with Au nanoparticles covalently bonded to HS/SO3H functionalized periodic mesoporous organosilica. J Am Chem Soc. 2011;133(30):11632. Zhu FX, Wang W, Li HX. Water-medium and solvent-free organic reactions over a bifunctional catalyst with Au nanoparticles covalently bonded to HS/SO3H functionalized periodic mesoporous organosilica. J Am Chem Soc. 2011;133(30):11632.
[38]
Zurück zum Zitat Wang S, Zhao QF, Wei HM, Wang JQ, Cho MY, Cho HS, Terasaki O, Wan Y. Aggregation-free gold nanoparticles in ordered mesoporous carbons: toward highly active and stable heterogeneous catalysts. J Am Chem Soc. 2013;135(32):11849. Wang S, Zhao QF, Wei HM, Wang JQ, Cho MY, Cho HS, Terasaki O, Wan Y. Aggregation-free gold nanoparticles in ordered mesoporous carbons: toward highly active and stable heterogeneous catalysts. J Am Chem Soc. 2013;135(32):11849.
[39]
Zurück zum Zitat Xiao CX, Maligal-Ganesh RV, Li T, Qi ZY, Guo ZY, Brashler KT, Goes S, Li XL, Goh TW, Winans RE, Huang WY. High-temperature-stable and regenerable catalysts: platinum nanoparticles in aligned mesoporous silica wells. Chemsuschem. 2013;6(10):1915. Xiao CX, Maligal-Ganesh RV, Li T, Qi ZY, Guo ZY, Brashler KT, Goes S, Li XL, Goh TW, Winans RE, Huang WY. High-temperature-stable and regenerable catalysts: platinum nanoparticles in aligned mesoporous silica wells. Chemsuschem. 2013;6(10):1915.
[40]
Zurück zum Zitat Shang L, Bian T, Zhang BH, Zhang DH, Wu LZ, Tung CH, Yin YD, Zhang TR. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions. Angew Chem Int Edit. 2014;53(1):250. Shang L, Bian T, Zhang BH, Zhang DH, Wu LZ, Tung CH, Yin YD, Zhang TR. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions. Angew Chem Int Edit. 2014;53(1):250.
[41]
Zurück zum Zitat Gao Z, Qin Y. Design and properties of confined nanocatalysts by atomic layer deposition. Acc Chem Res. 2017;50(9):2309. Gao Z, Qin Y. Design and properties of confined nanocatalysts by atomic layer deposition. Acc Chem Res. 2017;50(9):2309.
[42]
Zurück zum Zitat Li YQ, Zhao SC, Hu QM, Gao Z, Liu YQ, Zhang JK, Qin Y. Highly efficient CoOx/SBA-15 catalysts prepared by atomic layer deposition for the epoxidation reaction of styrene. Catal Sci Technol. 2017;7(10):2032. Li YQ, Zhao SC, Hu QM, Gao Z, Liu YQ, Zhang JK, Qin Y. Highly efficient CoOx/SBA-15 catalysts prepared by atomic layer deposition for the epoxidation reaction of styrene. Catal Sci Technol. 2017;7(10):2032.
[43]
Zurück zum Zitat Gao Z, Dong M, Wang GZ, Sheng P, Wu ZW, Yang HM, Zhang B, Wang GF, Wang JG, Qin Y. Multiply confined nickel nanocatalysts produced by atomic layer deposition for hydrogenation reactions. Angew Chem Int Edit. 2015;54(31):9006. Gao Z, Dong M, Wang GZ, Sheng P, Wu ZW, Yang HM, Zhang B, Wang GF, Wang JG, Qin Y. Multiply confined nickel nanocatalysts produced by atomic layer deposition for hydrogenation reactions. Angew Chem Int Edit. 2015;54(31):9006.
[44]
Zurück zum Zitat Peng HG, Zhang XH, Zhang L, Rao C, Lian J, Liu WM, Ying JW, Zhang GH, Wang Z, Zhang N, Wang X. One-pot facile fabrication of multiple nickel nanoparticles confined in microporous silica giving a multiple-cores@shell structure as a highly efficient catalyst for methane dry reforming. ChemCatChem. 2017;9(1):127. Peng HG, Zhang XH, Zhang L, Rao C, Lian J, Liu WM, Ying JW, Zhang GH, Wang Z, Zhang N, Wang X. One-pot facile fabrication of multiple nickel nanoparticles confined in microporous silica giving a multiple-cores@shell structure as a highly efficient catalyst for methane dry reforming. ChemCatChem. 2017;9(1):127.
[45]
Zurück zum Zitat Zhou HP, Wu HS, Shen J, Yin AX, Sun LD, Yan CH. Thermally stable Pt/CeO2 hetero-nanocomposites with high catalytic activity. J Am Chem Soc. 2010;132(14):4998. Zhou HP, Wu HS, Shen J, Yin AX, Sun LD, Yan CH. Thermally stable Pt/CeO2 hetero-nanocomposites with high catalytic activity. J Am Chem Soc. 2010;132(14):4998.
[46]
Zurück zum Zitat Zanganeh N, Guda VK, Toghiani H, Keith JM. Sinter-resistant and highly active sub-5 nm bimetallic Au–Cu nanoparticle catalysts encapsulated in silica for high-temperature carbon monoxide oxidation. ACS Appl Mater Interface. 2018;10(5):4776. Zanganeh N, Guda VK, Toghiani H, Keith JM. Sinter-resistant and highly active sub-5 nm bimetallic Au–Cu nanoparticle catalysts encapsulated in silica for high-temperature carbon monoxide oxidation. ACS Appl Mater Interface. 2018;10(5):4776.
[47]
Zurück zum Zitat Pei YC, Maligal-Ganesh RV, Xiao CX, Goh TW, Brashler K, Gustafson JA, Huang WY. An inorganic capping strategy for the seeded growth of versatile bimetallic nanostructures. Nanoscale. 2015;7(40):16721. Pei YC, Maligal-Ganesh RV, Xiao CX, Goh TW, Brashler K, Gustafson JA, Huang WY. An inorganic capping strategy for the seeded growth of versatile bimetallic nanostructures. Nanoscale. 2015;7(40):16721.
[48]
Zurück zum Zitat Yao Y, Zhang XM, Peng J, Yang QH. One-pot fabrication of yolk–shell nanospheres with ultra-small Au nanoparticles for catalysis. Chem Commun. 2015;51(18):3750. Yao Y, Zhang XM, Peng J, Yang QH. One-pot fabrication of yolk–shell nanospheres with ultra-small Au nanoparticles for catalysis. Chem Commun. 2015;51(18):3750.
[49]
Zurück zum Zitat Yue Q, Zhang Y, Wang C, Wang XQ, Sun ZK, Hou XF, Zhao DY, Deng YH. Magnetic yolk–shell mesoporous silica microspheres with supported Au nanoparticles as recyclable high-performance nanocatalysts. J Mater Chem A. 2015;3(8):4586. Yue Q, Zhang Y, Wang C, Wang XQ, Sun ZK, Hou XF, Zhao DY, Deng YH. Magnetic yolk–shell mesoporous silica microspheres with supported Au nanoparticles as recyclable high-performance nanocatalysts. J Mater Chem A. 2015;3(8):4586.
[50]
Zurück zum Zitat Zhao HY, Wang DW, Gao CB, Liu HY, Han L, Yin YD. Ultrafine platinum/iron oxide nanoconjugates confined in silica nanoshells for highly durable catalytic oxidation. J Mater Chem A. 2016;4(4):1366. Zhao HY, Wang DW, Gao CB, Liu HY, Han L, Yin YD. Ultrafine platinum/iron oxide nanoconjugates confined in silica nanoshells for highly durable catalytic oxidation. J Mater Chem A. 2016;4(4):1366.
[51]
Zurück zum Zitat Zhan WC, Shu Y, Sheng YJ, Zhu HY, Guo YL, Wang L, Guo Y, Zhang JS, Lu GZ, Dai S. Surfactant-assisted stabilization of Au colloids on solids for heterogeneous catalysis. Angew Chem Int Edit. 2017;56(16):4494. Zhan WC, Shu Y, Sheng YJ, Zhu HY, Guo YL, Wang L, Guo Y, Zhang JS, Lu GZ, Dai S. Surfactant-assisted stabilization of Au colloids on solids for heterogeneous catalysis. Angew Chem Int Edit. 2017;56(16):4494.
[52]
Zurück zum Zitat Lu JL, Fu BS, Kung MC, Xiao GM, Elam JW, Kung HH, Stair PC. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science. 2012;335(6073):1205. Lu JL, Fu BS, Kung MC, Xiao GM, Elam JW, Kung HH, Stair PC. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science. 2012;335(6073):1205.
[53]
Zurück zum Zitat O’Neill BJ, Jackson DHK, Crisci AJ, Farberow CA, Shi FY, Alba-Rubio AC, Lu JL, Dietrich PJ, Gu XK, Marshall CL, Stair PC, Elam JW, Miller JT, Ribeiro FH, Voyles PM, Greeley J, Mavrikakis M, Scott SL, Kuech TF, Dumesic JA. Stabilization of copper catalysts for liquid-phase reactions by atomic layer deposition. Angew Chem Int Edit. 2013;52(51):13808. O’Neill BJ, Jackson DHK, Crisci AJ, Farberow CA, Shi FY, Alba-Rubio AC, Lu JL, Dietrich PJ, Gu XK, Marshall CL, Stair PC, Elam JW, Miller JT, Ribeiro FH, Voyles PM, Greeley J, Mavrikakis M, Scott SL, Kuech TF, Dumesic JA. Stabilization of copper catalysts for liquid-phase reactions by atomic layer deposition. Angew Chem Int Edit. 2013;52(51):13808.
[54]
Zurück zum Zitat Tauster SJ, Fung SC, Garten RL. Strong metal-support interactions. Group 8 noble-metals supported on TiO2. J Am Chem Soc. 1978;100(1):170. Tauster SJ, Fung SC, Garten RL. Strong metal-support interactions. Group 8 noble-metals supported on TiO2. J Am Chem Soc. 1978;100(1):170.
[55]
Zurück zum Zitat Tauster SJ. Strong metal-support interactions. Acc Chem Res. 1987;20(11):389. Tauster SJ. Strong metal-support interactions. Acc Chem Res. 1987;20(11):389.
[56]
Zurück zum Zitat Tauster SJ, Fung SC, Baker RTK, Horsley JA. Strong-interactions in supported-metal catalysts. Science. 1981;211(4487):1121. Tauster SJ, Fung SC, Baker RTK, Horsley JA. Strong-interactions in supported-metal catalysts. Science. 1981;211(4487):1121.
[57]
Zurück zum Zitat Tian CC, Zhu X, Abney CW, Liu XF, Foo GS, Wu ZL, Li MJ, Meyer HM, Brown S, Mahurin SM, Wu SJ, Yang SZ, Liu JY, Dai S. Toward the design of a hierarchical perovskite support: Ultra-sintering-resistant gold nanocatalysts for CO oxidation. ACS Catal. 2017;7(5):3388. Tian CC, Zhu X, Abney CW, Liu XF, Foo GS, Wu ZL, Li MJ, Meyer HM, Brown S, Mahurin SM, Wu SJ, Yang SZ, Liu JY, Dai S. Toward the design of a hierarchical perovskite support: Ultra-sintering-resistant gold nanocatalysts for CO oxidation. ACS Catal. 2017;7(5):3388.
[58]
Zurück zum Zitat Wang L, Zhang J, Zhu YH, Xu SD, Wang CT, Bian CQ, Meng XJ, Xiao FS. Strong metal-support interactions achieved by hydroxide-to-oxide support transformation for preparation of sinter-resistant gold nanoparticle catalysts. ACS Catal. 2017;7(11):7461. Wang L, Zhang J, Zhu YH, Xu SD, Wang CT, Bian CQ, Meng XJ, Xiao FS. Strong metal-support interactions achieved by hydroxide-to-oxide support transformation for preparation of sinter-resistant gold nanoparticle catalysts. ACS Catal. 2017;7(11):7461.
[59]
Zurück zum Zitat Yan WF, Brown S, Pan ZW, Mahurin SM, Overbury SH, Dai S. Ultrastable gold nanocatalyst supported by nanosized non-oxide substrate. Angew Chem Int Edit. 2006;45(22):3614. Yan WF, Brown S, Pan ZW, Mahurin SM, Overbury SH, Dai S. Ultrastable gold nanocatalyst supported by nanosized non-oxide substrate. Angew Chem Int Edit. 2006;45(22):3614.
[60]
Zurück zum Zitat Zhang LY, Liu HY, Huang X, Sun XP, Jiang Z, Schlogl R, Su DS. Stabilization of palladium nanoparticles on nanodiamond-graphene core–shell supports for CO oxidation. Angew Chem Int Edit. 2015;54(52):15823. Zhang LY, Liu HY, Huang X, Sun XP, Jiang Z, Schlogl R, Su DS. Stabilization of palladium nanoparticles on nanodiamond-graphene core–shell supports for CO oxidation. Angew Chem Int Edit. 2015;54(52):15823.
[61]
Zurück zum Zitat Ta N, Liu JY, Chenna S, Crozier PA, Li Y, Chen AL, Shen WJ. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring. J Am Chem Soc. 2012;134(51):20585. Ta N, Liu JY, Chenna S, Crozier PA, Li Y, Chen AL, Shen WJ. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring. J Am Chem Soc. 2012;134(51):20585.
[62]
Zurück zum Zitat Zhan WC, He Q, Liu XF, Guo YL, Wang YQ, Wang L, Guo Y, Borisevich AY, Zhang JS, Lu GZ, Dai S. A sacrificial coating strategy toward enhancement of metal-support interaction for ultrastable Au nanocatalysts. J Am Chem Soc. 2016;138(49):16130. Zhan WC, He Q, Liu XF, Guo YL, Wang YQ, Wang L, Guo Y, Borisevich AY, Zhang JS, Lu GZ, Dai S. A sacrificial coating strategy toward enhancement of metal-support interaction for ultrastable Au nanocatalysts. J Am Chem Soc. 2016;138(49):16130.
[63]
Zurück zum Zitat Li BL, Li LL, Zhao C. A highly stable Ru/LaCO3OH catalyst consisting of support-coated Ru nanoparticles in aqueous-phase hydrogenolysis reactions. Green Chem. 2017;19(22):5412. Li BL, Li LL, Zhao C. A highly stable Ru/LaCO3OH catalyst consisting of support-coated Ru nanoparticles in aqueous-phase hydrogenolysis reactions. Green Chem. 2017;19(22):5412.
[64]
Zurück zum Zitat Wang J, Lu AH, Li MR, Zhang WP, Chen YS, Tian DX, Li WC. Thin porous alumina sheets as supports for stabilizing gold nanoparticles. ACS Nano. 2013;7(6):4902. Wang J, Lu AH, Li MR, Zhang WP, Chen YS, Tian DX, Li WC. Thin porous alumina sheets as supports for stabilizing gold nanoparticles. ACS Nano. 2013;7(6):4902.
[65]
Zurück zum Zitat Tang HL, Liu F, Wei JK, Qiao BT, Zhao KF, Su Y, Jin CZ, Li L, Liu JY, Wang JH, Zhang T. Ultrastable hydroxyapatite/titanium-dioxide-supported gold nanocatalyst with strong metal-support interaction for carbon monoxide oxidation. Angew Chem Int Edit. 2016;55(36):10606. Tang HL, Liu F, Wei JK, Qiao BT, Zhao KF, Su Y, Jin CZ, Li L, Liu JY, Wang JH, Zhang T. Ultrastable hydroxyapatite/titanium-dioxide-supported gold nanocatalyst with strong metal-support interaction for carbon monoxide oxidation. Angew Chem Int Edit. 2016;55(36):10606.
[66]
Zurück zum Zitat Kwak JH, Hu JZ, Mei D, Yi CW, Kim DH, Peden CHF, Allard LF, Szanyi J. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on gamma-Al2O3. Science. 2009;325(5948):1670. Kwak JH, Hu JZ, Mei D, Yi CW, Kim DH, Peden CHF, Allard LF, Szanyi J. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on gamma-Al2O3. Science. 2009;325(5948):1670.
[67]
Zurück zum Zitat Yang J, Lv CQ, Guo Y, Wang GC. A DFT plus U study of acetylene selective hydrogenation on oxygen defective anatase (101) and rutile (110) TiO2 supported Pd4 cluster. J Chem Phys. 2012;136(10):104107. Yang J, Lv CQ, Guo Y, Wang GC. A DFT plus U study of acetylene selective hydrogenation on oxygen defective anatase (101) and rutile (110) TiO2 supported Pd4 cluster. J Chem Phys. 2012;136(10):104107.
[68]
Zurück zum Zitat Guo D, Wang GC. Partial oxidation of methane on anatase and rutile defective TiO2 supported Rh4 cluster: a density functional theory study. J Phys Chem C. 2017;121(47):26308. Guo D, Wang GC. Partial oxidation of methane on anatase and rutile defective TiO2 supported Rh4 cluster: a density functional theory study. J Phys Chem C. 2017;121(47):26308.
[69]
Zurück zum Zitat Cao F, Wang YA, Wang JM, Lv X, Liu DY, Ren J, Zhou J, Deng RP, Li S, Qin GW. Oxygen vacancy induced superior visible-light-driven photodegradation pollutant performance in BiOCl microflowers. New J Chem. 2018;42(5):3614. Cao F, Wang YA, Wang JM, Lv X, Liu DY, Ren J, Zhou J, Deng RP, Li S, Qin GW. Oxygen vacancy induced superior visible-light-driven photodegradation pollutant performance in BiOCl microflowers. New J Chem. 2018;42(5):3614.
[70]
Zurück zum Zitat Wang YA, Cao F, Lin WW, Zhao FY, Zhou J, Li S, Qin GW. In situ synthesis of Ni/NiO composites with defect-rich ultrathin nanosheets for highly efficient biomass-derivative selective hydrogenation. J Mater Chem A. 2019;7(30):17834. Wang YA, Cao F, Lin WW, Zhao FY, Zhou J, Li S, Qin GW. In situ synthesis of Ni/NiO composites with defect-rich ultrathin nanosheets for highly efficient biomass-derivative selective hydrogenation. J Mater Chem A. 2019;7(30):17834.
[71]
Zurück zum Zitat Liu JC, Wang YG, Li J. Toward rational design of oxide-supported single-atom catalysts: atomic dispersion of gold on ceria. J Am Chem Soc. 2017;139(17):6190. Liu JC, Wang YG, Li J. Toward rational design of oxide-supported single-atom catalysts: atomic dispersion of gold on ceria. J Am Chem Soc. 2017;139(17):6190.
[72]
Zurück zum Zitat Wan JW, Chen WX, Jia CY, Zheng LR, Dong JC, Zheng XS, Wang Y, Yan WS, Chen C, Peng Q, Wang DS, Li YD. Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Adv Mater. 2018;30(11):1705369. Wan JW, Chen WX, Jia CY, Zheng LR, Dong JC, Zheng XS, Wang Y, Yan WS, Chen C, Peng Q, Wang DS, Li YD. Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Adv Mater. 2018;30(11):1705369.
[73]
Zurück zum Zitat Boronat M, Corma A. Generation of defects on oxide supports by doping with metals and their role in oxygen activation. Catal Today. 2011;169(1):52. Boronat M, Corma A. Generation of defects on oxide supports by doping with metals and their role in oxygen activation. Catal Today. 2011;169(1):52.
[74]
Zurück zum Zitat Laguna OH, Perez A, Centeno MA, Odriozola JA. Synergy between gold and oxygen vacancies in gold supported on Zr-doped ceria catalysts for the CO oxidation. Appl Catal B Environ. 2015;176:385. Laguna OH, Perez A, Centeno MA, Odriozola JA. Synergy between gold and oxygen vacancies in gold supported on Zr-doped ceria catalysts for the CO oxidation. Appl Catal B Environ. 2015;176:385.
[75]
Zurück zum Zitat Carter JH, Shah PM, Nowicka E, Freakley SJ, Morgan DJ, Golunski S, Hutchings GJ. Enhanced activity and stability of gold/ceria-titania for the low-temperature water–gas shift reaction. Front Chem. 2019;7:443. Carter JH, Shah PM, Nowicka E, Freakley SJ, Morgan DJ, Golunski S, Hutchings GJ. Enhanced activity and stability of gold/ceria-titania for the low-temperature water–gas shift reaction. Front Chem. 2019;7:443.
[76]
Zurück zum Zitat Plata JJ, Marquez AM, Sanz JF, Avellaneda RS, Romero-Sarria F, Dominguez MI, Centeno MA, Odriozola JA. Gold nanoparticles on yttrium modified titania: support properties and catalytic activity. Top Catal. 2011;54(1–4):219. Plata JJ, Marquez AM, Sanz JF, Avellaneda RS, Romero-Sarria F, Dominguez MI, Centeno MA, Odriozola JA. Gold nanoparticles on yttrium modified titania: support properties and catalytic activity. Top Catal. 2011;54(1–4):219.
[77]
Zurück zum Zitat Hernandez WY, Romero-Sarria F, Centeno MA, Odriozola JA. In situ characterization of the dynamic gold-support interaction over ceria modified Eu3+. Influence of the oxygen vacancies on the CO oxidation reaction. J Phys Chem C. 2010;114(24):10857. Hernandez WY, Romero-Sarria F, Centeno MA, Odriozola JA. In situ characterization of the dynamic gold-support interaction over ceria modified Eu3+. Influence of the oxygen vacancies on the CO oxidation reaction. J Phys Chem C. 2010;114(24):10857.
[78]
Zurück zum Zitat Li S, Cai JJ, Liu YL, Gao MQ, Cao F, Qin GW. Tuning orientation of doped hematite photoanodes for enhanced photoelectrochemical water oxidation. Sol Energ Mat Sol C. 2018;179:328. Li S, Cai JJ, Liu YL, Gao MQ, Cao F, Qin GW. Tuning orientation of doped hematite photoanodes for enhanced photoelectrochemical water oxidation. Sol Energ Mat Sol C. 2018;179:328.
[79]
Zurück zum Zitat Cao XQ, Zhou J, Wang HN, Li S, Wang W, Qin GW. Abnormal thermal stability of sub-10 nm Au nanoparticles and their high catalytic activity. J Mater Chem A. 2019;7(18):10980. Cao XQ, Zhou J, Wang HN, Li S, Wang W, Qin GW. Abnormal thermal stability of sub-10 nm Au nanoparticles and their high catalytic activity. J Mater Chem A. 2019;7(18):10980.
Metadaten
Titel
Ultra-stable metal nano-catalyst synthesis strategy: a perspective
verfasst von
Xiao-Qing Cao
Jun Zhou
Song Li
Gao-Wu Qin
Publikationsdatum
09.12.2019
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 2/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-019-01350-y

Weitere Artikel der Ausgabe 2/2020

Rare Metals 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.