Skip to main content
Erschienen in: Rare Metals 2/2020

09.12.2019

Improved open-circuit voltage and ambient stability of CsPbI2Br perovskite solar cells by incorporating CH3NH3Cl

verfasst von: Chuan-Liang Chen, Sha-Sha Zhang, Tian-Lun Liu, Shao-Hang Wu, Zhi-Chun Yang, Wei-Tao Chen, Rui Chen, Wei Chen

Erschienen in: Rare Metals | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Inorganic cesium metal halide perovskites have gained research interest as absorbers in perovskite solar cells due to their superior thermal stability. Among these, CsPbI2Br, with a narrower band gap than CsPbBr3 and a better phase stability than CsPbI3, has received tremendous interest of the researchers. However, CsPbI2Br takes adverse phase transfer easily with an exposure to the water vapor in ambient air which not only brings inconvenience for researches but also puts forward very high requirement for encapsulation. Herein, a dense and uniform film is obtained by incorporating hydrophobic CH3NH3Cl (MACl) into the precursor solution. Being attributed to a good passivation effect, the defect density is decreased from 3.12 × 1016 to 1.49 × 1016 cm−3 and the average photoluminescence lifetime is increased from 8.84 to 20.6 ns. The photovoltaic device achieves a high open-circuit voltage of 1.22 V based on optimized MACl-doped film and accordingly a higher power conversion efficiency (PCE) of 12.9% which is 21.7% higher than the pristine CsPbI2Br device with PCE of 10.6%. In addition, the ambient stability of MACl-doped device has been enhanced, which is greatly attributed to the hydrophobic properties of MACl. This work provides a clue to improve ambient stability of inorganic perovskite solar cells and inspires toward further development of this material.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131(17):6050.CrossRef Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131(17):6050.CrossRef
[2]
Zurück zum Zitat Mao G, Wang W, Shao S, Sun X, Chen S, Li M, Li H. Research progress in electron transport layer in perovskite solar cells. Rare Met. 2018;37(2):95.CrossRef Mao G, Wang W, Shao S, Sun X, Chen S, Li M, Li H. Research progress in electron transport layer in perovskite solar cells. Rare Met. 2018;37(2):95.CrossRef
[3]
Zurück zum Zitat Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater. 2014;13(9):897.CrossRef Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater. 2014;13(9):897.CrossRef
[4]
Zurück zum Zitat Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI. SOLAR CELLS. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science. 2015;348(6240):1234.CrossRef Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI. SOLAR CELLS. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science. 2015;348(6240):1234.CrossRef
[5]
Zurück zum Zitat Yang WS, Park BW, Jung EH, Jeon NJ, Kim YC, Lee DU, Shin SS, Seo J, Kim EK, Noh JH, Seok SI. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science. 2017;356(6345):1376.CrossRef Yang WS, Park BW, Jung EH, Jeon NJ, Kim YC, Lee DU, Shin SS, Seo J, Kim EK, Noh JH, Seok SI. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science. 2017;356(6345):1376.CrossRef
[6]
Zurück zum Zitat Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D’Haen J, D’Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E, Angelis FD, Boyen HG. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv Energy Mater. 2015;5(15):1500477.CrossRef Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D’Haen J, D’Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E, Angelis FD, Boyen HG. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv Energy Mater. 2015;5(15):1500477.CrossRef
[7]
Zurück zum Zitat Kim J, Park N, Yun JS, Huang S, Green MA, Ho-Baillie AWY. An effective method of predicting perovskite solar cell lifetime–Case study on planar CH3NH2PbI3 and HC(NH2)2PbI3 perovskite solar cells and hole transfer materials of spiro-OMeTAD and PTAA. Sol Energy Mater Sol Cells. 2017;162:41.CrossRef Kim J, Park N, Yun JS, Huang S, Green MA, Ho-Baillie AWY. An effective method of predicting perovskite solar cell lifetime–Case study on planar CH3NH2PbI3 and HC(NH2)2PbI3 perovskite solar cells and hole transfer materials of spiro-OMeTAD and PTAA. Sol Energy Mater Sol Cells. 2017;162:41.CrossRef
[8]
Zurück zum Zitat Sutton RJ, Eperon GE, Miranda L, Parrott ES, Kamino BA, Patel JB, Hörantner MT, Johnston MB, Haghighirad AA, Moore DT, Snaith HJ. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv Energy Mater. 2016;6(8):1502458.CrossRef Sutton RJ, Eperon GE, Miranda L, Parrott ES, Kamino BA, Patel JB, Hörantner MT, Johnston MB, Haghighirad AA, Moore DT, Snaith HJ. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv Energy Mater. 2016;6(8):1502458.CrossRef
[9]
Zurück zum Zitat Frolova LA, Anokhin DV, Piryazev AA, Luchkin SY, Dremova NN, Stevenson KJ, Troshin PA. Highly efficient all-inorganic planar heterojunction perovskite solar cells produced by thermal coevaporation of CsI and PbI2. J Phys Chem Lett. 2017;8(1):67.CrossRef Frolova LA, Anokhin DV, Piryazev AA, Luchkin SY, Dremova NN, Stevenson KJ, Troshin PA. Highly efficient all-inorganic planar heterojunction perovskite solar cells produced by thermal coevaporation of CsI and PbI2. J Phys Chem Lett. 2017;8(1):67.CrossRef
[10]
Zurück zum Zitat Choi H, Jeong J, Kim HB, Kim S, Walker B, Kim GH, Kim JY. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy. 2014;7:80.CrossRef Choi H, Jeong J, Kim HB, Kim S, Walker B, Kim GH, Kim JY. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy. 2014;7:80.CrossRef
[11]
Zurück zum Zitat Eperon GE, Paterno GM, Sutton RJ, Zampetti A, Haghighirad AA, Cacialli F, Snaith HJ. Inorganic caesium lead iodide perovskite solar cells. J Mater Chem A. 2015;3(39):19688.CrossRef Eperon GE, Paterno GM, Sutton RJ, Zampetti A, Haghighirad AA, Cacialli F, Snaith HJ. Inorganic caesium lead iodide perovskite solar cells. J Mater Chem A. 2015;3(39):19688.CrossRef
[12]
Zurück zum Zitat Kulbak M, Cahen D, Hodes G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr 3 cells. J Phys Chem Lett. 2015;6(13):2452.CrossRef Kulbak M, Cahen D, Hodes G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr 3 cells. J Phys Chem Lett. 2015;6(13):2452.CrossRef
[13]
Zurück zum Zitat Kulbak M, Gupta S, Kedem N, Levine I, Bendikov T, Hodes G, Cahen D. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J Phys Chem Lett. 2016;7(1):167.CrossRef Kulbak M, Gupta S, Kedem N, Levine I, Bendikov T, Hodes G, Cahen D. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J Phys Chem Lett. 2016;7(1):167.CrossRef
[14]
Zurück zum Zitat Bremner SP, Yi C, Almansouri I, Ho BA, Green MA. Optimum band gap combinations to make best use of new photovoltaic materials. Sol Energy. 2016;135:750.CrossRef Bremner SP, Yi C, Almansouri I, Ho BA, Green MA. Optimum band gap combinations to make best use of new photovoltaic materials. Sol Energy. 2016;135:750.CrossRef
[15]
Zurück zum Zitat Bian H, Bai D, Jin Z, Wang K, Liang L, Wang H, Zhang J, Wang Q, Liu S. Graded bandgap CsPbI2+xBr1−x perovskite solar cells with a stabilized efficiency of 14.4%. Joule. 2018;2(8):1500.CrossRef Bian H, Bai D, Jin Z, Wang K, Liang L, Wang H, Zhang J, Wang Q, Liu S. Graded bandgap CsPbI2+xBr1−x perovskite solar cells with a stabilized efficiency of 14.4%. Joule. 2018;2(8):1500.CrossRef
[16]
Zurück zum Zitat Lau CFJ, Deng X, Ma Q, Zheng J, Yun JS, Green MA, Huang S, Ho-Baillie AWY. CsPbIBr2 perovskite solar cell by spray-assisted deposition. ACS Energy Lett. 2016;1(3):573.CrossRef Lau CFJ, Deng X, Ma Q, Zheng J, Yun JS, Green MA, Huang S, Ho-Baillie AWY. CsPbIBr2 perovskite solar cell by spray-assisted deposition. ACS Energy Lett. 2016;1(3):573.CrossRef
[17]
Zurück zum Zitat Bai DL, Bian H, Jin ZW, Wang HR, Meng LN, Wang Q, Liu SZ. Temperature-assisted crystallization for inorganic CsPbI2Br perovskite solar cells to attain high stabilized efficiency 14.81%. Nano Energy. 2018;52:408.CrossRef Bai DL, Bian H, Jin ZW, Wang HR, Meng LN, Wang Q, Liu SZ. Temperature-assisted crystallization for inorganic CsPbI2Br perovskite solar cells to attain high stabilized efficiency 14.81%. Nano Energy. 2018;52:408.CrossRef
[18]
Zurück zum Zitat Wang K, Jin Z, Liang L, Bian H, Bai D, Wang H, Zhang J, Wang Q, Liu S. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%. Nat Commun. 2018;9:4544.CrossRef Wang K, Jin Z, Liang L, Bian H, Bai D, Wang H, Zhang J, Wang Q, Liu S. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%. Nat Commun. 2018;9:4544.CrossRef
[19]
Zurück zum Zitat Gao Y, Dong Y, Huang K, Zhang C, Liu B, Wang S, Shi J, Xie H, Huang H, Xiao S, He J, Gao Y, Hatton Ross A, Yang J. Highly efficient, solution-processed CsPbI2Br planar heterojunction perovskite solar cells via flash annealing. ACS Photonics. 2018;10:4104.CrossRef Gao Y, Dong Y, Huang K, Zhang C, Liu B, Wang S, Shi J, Xie H, Huang H, Xiao S, He J, Gao Y, Hatton Ross A, Yang J. Highly efficient, solution-processed CsPbI2Br planar heterojunction perovskite solar cells via flash annealing. ACS Photonics. 2018;10:4104.CrossRef
[20]
Zurück zum Zitat Jae KN, Myung SJ, Sung UC, Yung JC, Dongho K, Jong HP. Unveiling the crystal formation of cesium lead mixed-halide perovskites for efficient and stable solar cells. J Phys Chem Lett. 2017;8(13):2936.CrossRef Jae KN, Myung SJ, Sung UC, Yung JC, Dongho K, Jong HP. Unveiling the crystal formation of cesium lead mixed-halide perovskites for efficient and stable solar cells. J Phys Chem Lett. 2017;8(13):2936.CrossRef
[21]
Zurück zum Zitat Zhang SS, Wu SH, Chen WT, Zhu HM, Xiong ZZ, Yang ZC, Chen CL, Chen R, Han LY, Chen W. solvent engineering for efficient inverted perovskite solar cells based on inorganic CsPbI2Br light absorber. Mater Today Energy. 2018;8:125.CrossRef Zhang SS, Wu SH, Chen WT, Zhu HM, Xiong ZZ, Yang ZC, Chen CL, Chen R, Han LY, Chen W. solvent engineering for efficient inverted perovskite solar cells based on inorganic CsPbI2Br light absorber. Mater Today Energy. 2018;8:125.CrossRef
[22]
Zurück zum Zitat Beal RE, Slotcavage DJ, Leijtens T, Bowring AR, Belisle RA, Nguyen WH, Burkhard GF, Hoke ET, McGehee MD. Cesium lead halide perovskites with improved stability for tandem solar cells. J Phys Chem Lett. 2016;7(5):746.CrossRef Beal RE, Slotcavage DJ, Leijtens T, Bowring AR, Belisle RA, Nguyen WH, Burkhard GF, Hoke ET, McGehee MD. Cesium lead halide perovskites with improved stability for tandem solar cells. J Phys Chem Lett. 2016;7(5):746.CrossRef
[23]
Zurück zum Zitat Zeng Q, Zhang X, Feng X, Lu S, Chen Z, Yong X, Redfern SAT, Wei H, Wang H, Shen H, Zhang W, Zheng W, Zhang H, Tse JS, Yang B. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Adv Mater. 2018;30(9):1705393.CrossRef Zeng Q, Zhang X, Feng X, Lu S, Chen Z, Yong X, Redfern SAT, Wei H, Wang H, Shen H, Zhang W, Zheng W, Zhang H, Tse JS, Yang B. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Adv Mater. 2018;30(9):1705393.CrossRef
[24]
Zurück zum Zitat Niezgoda JS, Foley BJ, Chen AZ, Choi JJ. Improved charge collection in highly efficient CsPbBrI2 solar cells with light-induced dealloying. ACS Energy Lett. 2017;2(5):1043.CrossRef Niezgoda JS, Foley BJ, Chen AZ, Choi JJ. Improved charge collection in highly efficient CsPbBrI2 solar cells with light-induced dealloying. ACS Energy Lett. 2017;2(5):1043.CrossRef
[25]
Zurück zum Zitat Chen CY, Lin HY, Chiang KM, Tsai WL, Huang YC, Tsao CS, Lin HW. All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11. Adv Mater. 2017;29(12):1605290.CrossRef Chen CY, Lin HY, Chiang KM, Tsai WL, Huang YC, Tsao CS, Lin HW. All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11. Adv Mater. 2017;29(12):1605290.CrossRef
[26]
Zurück zum Zitat Ma Q, Huang S, Wen X, Green MA, Ho BAWY. Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation. Adv Energy Mater. 2016;6(7):1502202.CrossRef Ma Q, Huang S, Wen X, Green MA, Ho BAWY. Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation. Adv Energy Mater. 2016;6(7):1502202.CrossRef
[27]
Zurück zum Zitat Liu C, Li W, Zhang C, Ma Y, Fan J, Mai Y. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13. J Am Chem Soc. 2018;140(11):3825.CrossRef Liu C, Li W, Zhang C, Ma Y, Fan J, Mai Y. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13. J Am Chem Soc. 2018;140(11):3825.CrossRef
[28]
Zurück zum Zitat Lau CFJ, Zhang M, Deng X, Zheng J, Bing J, Ma Q, Kim J, Hu L, Green MA, Huang S, Ho BA. Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells. ACS Energy Lett. 2017;2(10):2319.CrossRef Lau CFJ, Zhang M, Deng X, Zheng J, Bing J, Ma Q, Kim J, Hu L, Green MA, Huang S, Ho BA. Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells. ACS Energy Lett. 2017;2(10):2319.CrossRef
[29]
Zurück zum Zitat Bai D, Zhang J, Jin Z, Bian H, Wang K, Wang H, Liang L, Wang Q, Liu SF. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells. ACS Energy Letters. 2018;3(4):970.CrossRef Bai D, Zhang J, Jin Z, Bian H, Wang K, Wang H, Liang L, Wang Q, Liu SF. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells. ACS Energy Letters. 2018;3(4):970.CrossRef
[30]
Zurück zum Zitat Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Gratzel M, Han L. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science. 2015;350(6263):944.CrossRef Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Gratzel M, Han L. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science. 2015;350(6263):944.CrossRef
[31]
Zurück zum Zitat Lau CFJ, Deng X, Zheng J, Kim J, Zhang Z, Zhang M, Bing J, Wilkinson B, Hu L, Patterson R, Huang S, Ho BA. Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency. J Mater Chem A. 2018;6(14):5580.CrossRef Lau CFJ, Deng X, Zheng J, Kim J, Zhang Z, Zhang M, Bing J, Wilkinson B, Hu L, Patterson R, Huang S, Ho BA. Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency. J Mater Chem A. 2018;6(14):5580.CrossRef
[32]
Zurück zum Zitat Chen C, Xu Y, Wu S, Zhang S, Yang Z, Zhang W, Zhu H, Xiong Z, Chen W, Chen W. CaI2: a more effective passivator of perovskite films than PbI2 for high efficiency and long-term stability of perovskite solar cells. J Mater Chem A. 2018;6(17):7903.CrossRef Chen C, Xu Y, Wu S, Zhang S, Yang Z, Zhang W, Zhu H, Xiong Z, Chen W, Chen W. CaI2: a more effective passivator of perovskite films than PbI2 for high efficiency and long-term stability of perovskite solar cells. J Mater Chem A. 2018;6(17):7903.CrossRef
[33]
Zurück zum Zitat Laban WA, Etgar L. Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ Sci. 2013;6(11):3249.CrossRef Laban WA, Etgar L. Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ Sci. 2013;6(11):3249.CrossRef
[34]
Zurück zum Zitat Fan J, Liu C, Li H, Zhang C, Li W, Mai Y. Molecular self-assembly fabrication and carrier dynamics of stable and efficient CH3NH3Pb(1−x)SnxI3 perovskite solar cells. Chemsuschem. 2017;10(19):3839.CrossRef Fan J, Liu C, Li H, Zhang C, Li W, Mai Y. Molecular self-assembly fabrication and carrier dynamics of stable and efficient CH3NH3Pb(1−x)SnxI3 perovskite solar cells. Chemsuschem. 2017;10(19):3839.CrossRef
[35]
Zurück zum Zitat Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben PA, Mohammed OF, Sargent EH, Bakr OM. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science. 2015;347(6221):519.CrossRef Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben PA, Mohammed OF, Sargent EH, Bakr OM. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science. 2015;347(6221):519.CrossRef
[36]
Zurück zum Zitat Yang Z, Surrente A, Galkowski K, Miyata A, Portugall O, Sutton RJ, Haghighirad AA, Snaith HJ, Maude DK, Plochocka P, Nicholas RJ. Impact of the halide cage on the electronic properties of fully inorganic cesium lead halide perovskites. ACS Energy Lett. 2017;2(7):1621.CrossRef Yang Z, Surrente A, Galkowski K, Miyata A, Portugall O, Sutton RJ, Haghighirad AA, Snaith HJ, Maude DK, Plochocka P, Nicholas RJ. Impact of the halide cage on the electronic properties of fully inorganic cesium lead halide perovskites. ACS Energy Lett. 2017;2(7):1621.CrossRef
Metadaten
Titel
Improved open-circuit voltage and ambient stability of CsPbI2Br perovskite solar cells by incorporating CH3NH3Cl
verfasst von
Chuan-Liang Chen
Sha-Sha Zhang
Tian-Lun Liu
Shao-Hang Wu
Zhi-Chun Yang
Wei-Tao Chen
Rui Chen
Wei Chen
Publikationsdatum
09.12.2019
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 2/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-019-01341-z

Weitere Artikel der Ausgabe 2/2020

Rare Metals 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.