Skip to main content
Erschienen in: Rare Metals 2/2020

09.11.2018

Electrochemical hydrogen storage behaviors of as-cast and spun RE–Mg–Ni–Co–Al-based AB2-type alloys applied to Ni–MH battery

verfasst von: Yang-Huan Zhang, Gang Huang, Ze-Ming Yuan, Shi-Hai Guo, Yan Qi, Dong-Liang Zhao

Erschienen in: Rare Metals | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Preparation of La–Mg–Ni–Co–Al-based AB2-type alloys La0.8−xCe0.2YxMgNi3.4Co0.4Al0.1 (x = 0, 0.05, 0.10, 0.15, 0.20) was performed using melt spinning technology. The influences of spun rate and Y content on structures and electrochemical hydrogen storage characteristics were studied. The base phase LaMgNi4 and the lesser phase LaNi5 were detected by X-ray diffraction (XRD) and scanning electron microscope (SEM). The variations of spinning rate and Y content cause an obvious change in phase content, but without altering phase composition, namely, with spinning rate and Y content growing, LaMgNi4 phase content augments while LaNi5 content declines. Furthermore, melt spinning and the replacing La by Y refine the grains dramatically. The electrochemical tests show a favorable activation capability of the two kinds of alloys, and the maximum discharge capacities are achieved during the first cycle. Discharge capacity firstly increases and subsequently decreases with spinning rate rising, while cycle stability is ameliorated and discharge capacity decreases with Y addition increasing. It is found that the amelioration of cycle stability is due to the enhancement of anti-pulverization, anti-corrosion and anti-oxidation abilities by both replacement of La with Y and melt spinning. Moreover, with the increase of Y addition and/or spinning rate, the electrochemical kinetics that contain charge transfer rate, limiting current density (IL), hydrogen diffusion coefficient (D) and the high rate discharge ability (HRD) firstly augment and then reduce.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Mori D, Hirose K. Recent challenges of hydrogen storage technologies for fuel cell vehicles. Int J Hydrogen Energy. 2009;34(10):4569.CrossRef Mori D, Hirose K. Recent challenges of hydrogen storage technologies for fuel cell vehicles. Int J Hydrogen Energy. 2009;34(10):4569.CrossRef
[2]
Zurück zum Zitat Lan R, Irvine JTS, Tao SW. Ammonia and related chemicals as potential indirect hydrogen storage materials. Int J Hydrogen Energy. 2012;37(2):1482.CrossRef Lan R, Irvine JTS, Tao SW. Ammonia and related chemicals as potential indirect hydrogen storage materials. Int J Hydrogen Energy. 2012;37(2):1482.CrossRef
[3]
Zurück zum Zitat Zhang YH, Chen LC, Yang T, Xu C, Ren HP, Zhao DL. The electrochemical hydrogen storage performances of Si-added La–Mg–Ni–Co-based A2B7-type electrode alloys. Rare Met. 2015;34(8):569.CrossRef Zhang YH, Chen LC, Yang T, Xu C, Ren HP, Zhao DL. The electrochemical hydrogen storage performances of Si-added La–Mg–Ni–Co-based A2B7-type electrode alloys. Rare Met. 2015;34(8):569.CrossRef
[4]
Zurück zum Zitat Kohno T, Yoshida H, Kawashima F, Inaba T, Sakai I, Yamamoto M, Kanda M. Hydrogen storage properties of new ternary system alloys: La5MgNi9, La5Mg2Ni23, La3MgNi14. J Alloys Compd. 2000;311(2):L5.CrossRef Kohno T, Yoshida H, Kawashima F, Inaba T, Sakai I, Yamamoto M, Kanda M. Hydrogen storage properties of new ternary system alloys: La5MgNi9, La5Mg2Ni23, La3MgNi14. J Alloys Compd. 2000;311(2):L5.CrossRef
[5]
Zurück zum Zitat Kadir K, Noréus D, Yamashita I. Structural determination of AMgNi4 (where A: Ca, La, Ce, Pr, Nd and Y) in the AuBe5 type structure. J Alloys Compd. 2003;345(1–2):140. Kadir K, Noréus D, Yamashita I. Structural determination of AMgNi4 (where A: Ca, La, Ce, Pr, Nd and Y) in the AuBe5 type structure. J Alloys Compd. 2003;345(1–2):140.
[6]
Zurück zum Zitat Wang ZM, Zhou HY, Gu ZF, Cheng G, Yu AB. Preparation of LaMgNi4 alloy and its electrode properties. J Alloys Compd. 2004;377(1–2):L7.CrossRef Wang ZM, Zhou HY, Gu ZF, Cheng G, Yu AB. Preparation of LaMgNi4 alloy and its electrode properties. J Alloys Compd. 2004;377(1–2):L7.CrossRef
[7]
Zurück zum Zitat Guénée L, Favre-Nicolin V, Yvon K. Synthesis, crystal structure and hydrogenation properties of the ternary compounds LaNi4Mg and NdNi4Mg. J Alloys Compd. 2003;348(1–2):129.CrossRef Guénée L, Favre-Nicolin V, Yvon K. Synthesis, crystal structure and hydrogenation properties of the ternary compounds LaNi4Mg and NdNi4Mg. J Alloys Compd. 2003;348(1–2):129.CrossRef
[8]
Zurück zum Zitat Tian X, Yun GH, Wang HY, Shang T, Yao ZQ, Wei W, Liang XX. Preparation and electrochemical properties of La–Mg–Ni-based La0.75Mg0.25Ni3.3Co0.5 multiphase hydrogen storage alloy as negative material of Ni/MH battery. Int J Hydrogen Energy. 2014;39(16):847.CrossRef Tian X, Yun GH, Wang HY, Shang T, Yao ZQ, Wei W, Liang XX. Preparation and electrochemical properties of La–Mg–Ni-based La0.75Mg0.25Ni3.3Co0.5 multiphase hydrogen storage alloy as negative material of Ni/MH battery. Int J Hydrogen Energy. 2014;39(16):847.CrossRef
[9]
Zurück zum Zitat Zhuo N, Du WB, Zhang PL, Zhu YG, Wang ZH, Liu K, Li SB. Microstructure and electrochemical properties of La0.8−xMMxMg0.2Ni3.1Co0.3Al0.1 (x = 0, 0.1, 0.2, 0.3) alloys. Rare Met. 2017;36(8):645.CrossRef Zhuo N, Du WB, Zhang PL, Zhu YG, Wang ZH, Liu K, Li SB. Microstructure and electrochemical properties of La0.8−xMMxMg0.2Ni3.1Co0.3Al0.1 (x = 0, 0.1, 0.2, 0.3) alloys. Rare Met. 2017;36(8):645.CrossRef
[10]
Zurück zum Zitat Yang T, Zhai TT, Yuan ZM, Bu WG, Xu S, Zhang YH. Hydrogen storage properties of LaMgNi3.6M0.4 (M = Ni Co, Mn, Cu, Al) alloys. J Alloys Compd. 2014;617(3):29.CrossRef Yang T, Zhai TT, Yuan ZM, Bu WG, Xu S, Zhang YH. Hydrogen storage properties of LaMgNi3.6M0.4 (M = Ni Co, Mn, Cu, Al) alloys. J Alloys Compd. 2014;617(3):29.CrossRef
[11]
Zurück zum Zitat Zhang YH, Liu SL, Yang T, Zhang GF, Li X, Zhao DL. Gaseous and electrochemical hydrogen storage behaviors of nanocrystalline and amorphous Nd-added Mg2Ni-type alloys. Rare Met. 2015;34(7):463.CrossRef Zhang YH, Liu SL, Yang T, Zhang GF, Li X, Zhao DL. Gaseous and electrochemical hydrogen storage behaviors of nanocrystalline and amorphous Nd-added Mg2Ni-type alloys. Rare Met. 2015;34(7):463.CrossRef
[12]
Zurück zum Zitat Yang T, Yuan ZM, Bu WG, Jia ZC, Qi Y, Zhang YH. Effect of elemental substitution on the structure and hydrogen storage properties of LaMgNi4 alloy. Mater Des. 2015;93:46.CrossRef Yang T, Yuan ZM, Bu WG, Jia ZC, Qi Y, Zhang YH. Effect of elemental substitution on the structure and hydrogen storage properties of LaMgNi4 alloy. Mater Des. 2015;93:46.CrossRef
[13]
Zurück zum Zitat Xing L, Li YM, Zhang YH, Ren HP, Jin ZL. Electrochemical hydrogen storage performances and degradation behavior of rapid quenching-annealed La4MgNi19 alloy. Chin J Rare Met. 2017;41(12):1318. Xing L, Li YM, Zhang YH, Ren HP, Jin ZL. Electrochemical hydrogen storage performances and degradation behavior of rapid quenching-annealed La4MgNi19 alloy. Chin J Rare Met. 2017;41(12):1318.
[14]
Zurück zum Zitat Wang BP, Zhao LM, Wang XW, Hou CP. Structure and electrochemical properties of R–Mg–Ni-based alloys with Sn substitution for Ni. Chin J Rare Met. 2015;39(6):487. Wang BP, Zhao LM, Wang XW, Hou CP. Structure and electrochemical properties of R–Mg–Ni-based alloys with Sn substitution for Ni. Chin J Rare Met. 2015;39(6):487.
[15]
Zurück zum Zitat Teresiak A, Gebert A, Savyak M, Uhlemann M, Mickel C, Mattern N. In situ high temperature XRD studies of the thermal behaviour of the rapidly quenched Mg77Ni18Y5 alloy under hydrogen. J Alloys Compd. 2005;398(1–2):156.CrossRef Teresiak A, Gebert A, Savyak M, Uhlemann M, Mickel C, Mattern N. In situ high temperature XRD studies of the thermal behaviour of the rapidly quenched Mg77Ni18Y5 alloy under hydrogen. J Alloys Compd. 2005;398(1–2):156.CrossRef
[16]
Zurück zum Zitat Lai WH, Yu CZ. Research survey of improving discharge voltage platform for Ni–H battery. Battery Bimon. 1996;26(4):189. Lai WH, Yu CZ. Research survey of improving discharge voltage platform for Ni–H battery. Battery Bimon. 1996;26(4):189.
[17]
Zurück zum Zitat Wu Y, Han W, Zhou SX, Lototsky MV, Solberg JK, Yartys VA. Microstructure and hydrogenation behavior of ball-milled and melt-spun Mg–10Ni–2Mm alloys. J Alloys Compd. 2008;466(1–2):176.CrossRef Wu Y, Han W, Zhou SX, Lototsky MV, Solberg JK, Yartys VA. Microstructure and hydrogenation behavior of ball-milled and melt-spun Mg–10Ni–2Mm alloys. J Alloys Compd. 2008;466(1–2):176.CrossRef
[18]
Zurück zum Zitat Orimo S, Fujii H. Materials science of Mg–Ni-based new hydrides. Appl Phys A. 2001;72(2):167.CrossRef Orimo S, Fujii H. Materials science of Mg–Ni-based new hydrides. Appl Phys A. 2001;72(2):167.CrossRef
[19]
Zurück zum Zitat Wu MS, Wu HR, Wang YY, Wan CC. Surface treatment for hydrogen storage alloy of nickel/metal hydride battery. J Alloys Compd. 2000;302(1–2):248.CrossRef Wu MS, Wu HR, Wang YY, Wan CC. Surface treatment for hydrogen storage alloy of nickel/metal hydride battery. J Alloys Compd. 2000;302(1–2):248.CrossRef
[20]
Zurück zum Zitat Yao QY, Tang Y, Zhou HY, Deng JQ, Wang ZM, Pan SK, Rao GH, Zhu QM. Effect of rapid solidification treatment on structure and electrochemical performance of low-Co AB5-type hydrogen storage alloy. J Rare Earths. 2014;32(6):526.CrossRef Yao QY, Tang Y, Zhou HY, Deng JQ, Wang ZM, Pan SK, Rao GH, Zhu QM. Effect of rapid solidification treatment on structure and electrochemical performance of low-Co AB5-type hydrogen storage alloy. J Rare Earths. 2014;32(6):526.CrossRef
[21]
Zurück zum Zitat Zhao XY, Ding Y, Ma LQ, Wang LY, Yang M, Shen XD. Electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2 hydrogen storage alloy modified with nanocrystalline nickel. Int J Hydrogen Energy. 2008;33(22):6727.CrossRef Zhao XY, Ding Y, Ma LQ, Wang LY, Yang M, Shen XD. Electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2 hydrogen storage alloy modified with nanocrystalline nickel. Int J Hydrogen Energy. 2008;33(22):6727.CrossRef
[22]
Zurück zum Zitat Yang T, Zhai TT, Yuan ZM, Bu WG, Qi Y, Zhang YH. Structure and electrochemical properties of LaMgNi4−xCox (x = 0–0.8) hydrogen storage electrode alloys. Rare Met. 2018;37(3):249.CrossRef Yang T, Zhai TT, Yuan ZM, Bu WG, Qi Y, Zhang YH. Structure and electrochemical properties of LaMgNi4−xCox (x = 0–0.8) hydrogen storage electrode alloys. Rare Met. 2018;37(3):249.CrossRef
[24]
Zurück zum Zitat Kuriyama N, Sakai T, Miyamura H, Uehara I, Ishikawa H. Electrochemical impedance and deterioration behavior of metal hydride electrodes. J Alloys Compd. 1993;202(1–2):183.CrossRef Kuriyama N, Sakai T, Miyamura H, Uehara I, Ishikawa H. Electrochemical impedance and deterioration behavior of metal hydride electrodes. J Alloys Compd. 1993;202(1–2):183.CrossRef
[25]
Zurück zum Zitat Ding H, Han SM, Liu Y, Hao JS, Li Y, Zhang JW. Electrochemical performance studies on cobalt and nickel electroplated La–Mg–Ni-based hydrogen storage alloys. Int J Hydrogen Energy. 2009;34(23):9402.CrossRef Ding H, Han SM, Liu Y, Hao JS, Li Y, Zhang JW. Electrochemical performance studies on cobalt and nickel electroplated La–Mg–Ni-based hydrogen storage alloys. Int J Hydrogen Energy. 2009;34(23):9402.CrossRef
[26]
Zurück zum Zitat Kleperis J, Wójcik G, Czerwinski A, Skowronski J, Kopczyk M, Beltowska-Brzezinska M. Electrochemical behavior of metal hydrides. J Solid State Electron. 2001;5(4):229.CrossRef Kleperis J, Wójcik G, Czerwinski A, Skowronski J, Kopczyk M, Beltowska-Brzezinska M. Electrochemical behavior of metal hydrides. J Solid State Electron. 2001;5(4):229.CrossRef
[27]
Zurück zum Zitat Zhang YH, Li BW, Ren HP, Cai Y, Dong XP, Wang XL. Cycle stabilities of the La0.7Mg0.3Ni2.55−xCo0.45Mx, (M = Fe, Mn, Al; x = 0, 0.1) electrode alloys prepared by casting and rapid quenching. J Alloy Compd. 2008;458(1–2):340.CrossRef Zhang YH, Li BW, Ren HP, Cai Y, Dong XP, Wang XL. Cycle stabilities of the La0.7Mg0.3Ni2.55−xCo0.45Mx, (M = Fe, Mn, Al; x = 0, 0.1) electrode alloys prepared by casting and rapid quenching. J Alloy Compd. 2008;458(1–2):340.CrossRef
[28]
Zurück zum Zitat Ruggeri S, Roué L, Huot J, Schulz R, Aymard L, Tarascon JM. Properties of mechanically alloyed Mg–Ni–Ti ternary hydrogen storage alloys for Ni–MH batteries. J Power Sources. 2002;112(2):547.CrossRef Ruggeri S, Roué L, Huot J, Schulz R, Aymard L, Tarascon JM. Properties of mechanically alloyed Mg–Ni–Ti ternary hydrogen storage alloys for Ni–MH batteries. J Power Sources. 2002;112(2):547.CrossRef
[29]
Zurück zum Zitat Zheng G, Popov BN, White RE. Electrochemical determination of the diffusion coefficient of hydrogen through an LaNi4.25Al0.75 electrode in alkaline aqueous solution. J Electrochem Soc. 1995;142(8):2695.CrossRef Zheng G, Popov BN, White RE. Electrochemical determination of the diffusion coefficient of hydrogen through an LaNi4.25Al0.75 electrode in alkaline aqueous solution. J Electrochem Soc. 1995;142(8):2695.CrossRef
[30]
Zurück zum Zitat Cui N, Luo JL. Electrochemical study of hydrogen diffusion behavior in Mg2Ni-type hydrogen storage alloy electrodes. Int J Hydrogen Energy. 1999;24(1):37.CrossRef Cui N, Luo JL. Electrochemical study of hydrogen diffusion behavior in Mg2Ni-type hydrogen storage alloy electrodes. Int J Hydrogen Energy. 1999;24(1):37.CrossRef
Metadaten
Titel
Electrochemical hydrogen storage behaviors of as-cast and spun RE–Mg–Ni–Co–Al-based AB2-type alloys applied to Ni–MH battery
verfasst von
Yang-Huan Zhang
Gang Huang
Ze-Ming Yuan
Shi-Hai Guo
Yan Qi
Dong-Liang Zhao
Publikationsdatum
09.11.2018
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 2/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-018-1147-2

Weitere Artikel der Ausgabe 2/2020

Rare Metals 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.