Skip to main content
Top
Published in: Rare Metals 11/2017

28-11-2015

FePO4-coated Li[Li0.2Ni0.13Co0.13Mn0.54]O2 with improved cycling performance as cathode material for Li-ion batteries

Authors: Zhong Wang, Hua-Quan Lu, Yan-Ping Yin, Xue-Yi Sun, Xiang-Tao Bai, Xue-Ling Shen, Wei-Dong Zhuang, Shi-Gang Lu

Published in: Rare Metals | Issue 11/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode materials were synthesized by carbonate-based co-precipitation method, and then, its surface was coated by thin layers of FePO4. The prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The XRD and TEM results suggest that both the pristine and the coated materials have a hexagonal layered structure, and the FePO4 coating layer does not make any major change in the crystal structure. The FePO4-coated sample exhibits both improved initial discharge capacity and columbic efficiency compared to the pristine one. More significantly, the FePO4 coating layer has a much positive influence on the cycling performance. The FePO4-coated sample exhibits capacity retention of 82 % after 100 cycles at 0.5 °C between 2.0 and 4.8 V, while only 28 % for the pristine one at the same charge–discharge condition. The electrochemical impedance spectroscopy (EIS) results indicate that this improved cycling performance could be ascribed to the presence of FePO4 on the surface of Li[Li0.2Ni0.13Co0.13Mn0.54]O2 particle, which helps to protect the cathode from chemical attacks by HF and thus suppresses the large increase in charge transfer resistance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Lu Z, MacNeil DD, Dahn JR. Layered cathode materials Li[Ni x Li(1/3−2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. Electrochem Solid State Lett. 2001;4(11):A191.CrossRef Lu Z, MacNeil DD, Dahn JR. Layered cathode materials Li[Ni x Li(1/3−2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. Electrochem Solid State Lett. 2001;4(11):A191.CrossRef
[2]
go back to reference Lu Z, Dahn JR. Understanding the anomalous capacity of Li/Li[Ni x Li(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc. 2002;149(7):A815.CrossRef Lu Z, Dahn JR. Understanding the anomalous capacity of Li/Li[Ni x Li(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc. 2002;149(7):A815.CrossRef
[3]
go back to reference Kang SH, Amine K. Layered Li(Li0.2Ni0.15+0.5z Co0.10Mn0.55−0.5z )O2−zF z cathode materials for Li-ion secondary batteries. J Power Sources. 2005;146(1–2):654.CrossRef Kang SH, Amine K. Layered Li(Li0.2Ni0.15+0.5z Co0.10Mn0.55−0.5z )O2zF z cathode materials for Li-ion secondary batteries. J Power Sources. 2005;146(1–2):654.CrossRef
[4]
go back to reference Johnson CS, Li N, Lefief C, Thackeray MM. Anomalous capacity and cycling stability of xLi2MnO3·(1−x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50 °C. Electrochem Commun. 2007;9(4):787.CrossRef Johnson CS, Li N, Lefief C, Thackeray MM. Anomalous capacity and cycling stability of xLi2MnO3·(1−x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50 °C. Electrochem Commun. 2007;9(4):787.CrossRef
[5]
go back to reference Kim JS, Johnson CS, Thackeray MM. Electrochemical and structural properties of xLi2M′O3·(1−x)LiMn0.5Ni0.5O2 electrodes for lithium batteries (M′ = Ti, Mn, Zr; 0 ≤ x ≤ 0.3). Chem Mater. 2004;16:1996.CrossRef Kim JS, Johnson CS, Thackeray MM. Electrochemical and structural properties of xLi2M′O3·(1−x)LiMn0.5Ni0.5O2 electrodes for lithium batteries (M′ = Ti, Mn, Zr; 0 ≤ x ≤ 0.3). Chem Mater. 2004;16:1996.CrossRef
[6]
go back to reference Kang SH, Kempgens P, Greenbaum S, Kropf AJ, Amine K, Thackeray MM. Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M = Mn0.5−x Ni0.5−x Co2x , 0 ≤ x ≤ 0.5). J Mater Chem. 2007;17(20):2069.CrossRef Kang SH, Kempgens P, Greenbaum S, Kropf AJ, Amine K, Thackeray MM. Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M = Mn0.5−x Ni0.5−x Co2x , 0 ≤ x ≤ 0.5). J Mater Chem. 2007;17(20):2069.CrossRef
[7]
go back to reference Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem. 2007;17(30):3112.CrossRef Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem. 2007;17(30):3112.CrossRef
[8]
go back to reference Sun YK, Lee MJ, Yoon CS, Hassoun J, Amine K, Scrosati B. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion Batteries. Adv Mater. 2012;24(9):1192.CrossRef Sun YK, Lee MJ, Yoon CS, Hassoun J, Amine K, Scrosati B. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion Batteries. Adv Mater. 2012;24(9):1192.CrossRef
[9]
go back to reference Yu H, Zhou H. High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. J Phys Chem. Lett. 2013;4(8):1268.CrossRef Yu H, Zhou H. High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. J Phys Chem. Lett. 2013;4(8):1268.CrossRef
[10]
go back to reference Manthiram A. Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett. 2011;2(3):176.CrossRef Manthiram A. Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett. 2011;2(3):176.CrossRef
[11]
go back to reference Kang SH, Thackeray MM. Enhancing the rate capability of high capacity xLi2MnO3·(1−x)LiMO2 (M = Mn, Ni, Co) electrodes by Li–Ni–PO4 treatment. Electrochem Commun. 2009;11(4):748.CrossRef Kang SH, Thackeray MM. Enhancing the rate capability of high capacity xLi2MnO3·(1−x)LiMO2 (M = Mn, Ni, Co) electrodes by Li–Ni–PO4 treatment. Electrochem Commun. 2009;11(4):748.CrossRef
[12]
go back to reference Kim D, Gallagher KG, Kang SH. Synthesis and electrochemistry of Li x (Ni0.25−y Co2y Mn0.75−y )O z electrode materials with integrated ‘layered-spinel’ structure. In: 218th Electrochemical Society Meeting. Las Vegas; 2010. 407. Kim D, Gallagher KG, Kang SH. Synthesis and electrochemistry of Li x (Ni0.25−y Co2y Mn0.75−y )O z electrode materials with integrated ‘layered-spinel’ structure. In: 218th Electrochemical Society Meeting. Las Vegas; 2010. 407.
[13]
go back to reference West WC, Soler J, Smart MC, Ratnakumar BV, Firdosy S, Ravi V, Anderson MS, Hrbacek J, Lee ES, Manthiram A. Electrochemical behavior of layered solid solution Li2MnO3–LiMO2 (M = Ni, Mn, Co) Li-ion cathodes with and without alumina coatings. J Electrochem Soc. 2011;158(8):A883.CrossRef West WC, Soler J, Smart MC, Ratnakumar BV, Firdosy S, Ravi V, Anderson MS, Hrbacek J, Lee ES, Manthiram A. Electrochemical behavior of layered solid solution Li2MnO3–LiMO2 (M = Ni, Mn, Co) Li-ion cathodes with and without alumina coatings. J Electrochem Soc. 2011;158(8):A883.CrossRef
[14]
go back to reference Singh G, Thomas R, Kumar A, Katiyar RS, Manivannan A. Electrochemical and structural investigations on ZnO treated 0.5Li2MnO3–0.5LiMn0.5Ni0.5O2 layered composite cathode material for lithium ion battery. J Electrochem Soc. 2012;159(4):A470.CrossRef Singh G, Thomas R, Kumar A, Katiyar RS, Manivannan A. Electrochemical and structural investigations on ZnO treated 0.5Li2MnO3–0.5LiMn0.5Ni0.5O2 layered composite cathode material for lithium ion battery. J Electrochem Soc. 2012;159(4):A470.CrossRef
[15]
go back to reference Wu F, Li N, Su Y, Lu H, Zhang L, An R, Wang Z, Bao L, Chen S. Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials. J Mater Chem. 2012;22(4):1489.CrossRef Wu F, Li N, Su Y, Lu H, Zhang L, An R, Wang Z, Bao L, Chen S. Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials. J Mater Chem. 2012;22(4):1489.CrossRef
[16]
go back to reference Wu Y, Manthiram A. Effect of surface modifications on the layered solid solution cathodes (1−z)Li[Li1/3Mn2/3]O2-(z)Li[Mn0.5−y Ni0.5−y Co2y ]O2. Solid State Ion. 2009;180(1):50.CrossRef Wu Y, Manthiram A. Effect of surface modifications on the layered solid solution cathodes (1−z)Li[Li1/3Mn2/3]O2-(z)Li[Mn0.5−y Ni0.5−y Co2y ]O2. Solid State Ion. 2009;180(1):50.CrossRef
[17]
go back to reference Wang Z, Liu E, Guo L, Shi C, He C, Li J, Zhao N. Cycle performance improvement of Li-rich layered cathode material Li [Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating. Surf Coat Technol. 2013;235:570.CrossRef Wang Z, Liu E, Guo L, Shi C, He C, Li J, Zhao N. Cycle performance improvement of Li-rich layered cathode material Li [Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating. Surf Coat Technol. 2013;235:570.CrossRef
[18]
go back to reference Wu Y, Murugan AV, Manthiram A. Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes by AlPO4. J Electrochem Soc. 2008;155(9):A635.CrossRef Wu Y, Murugan AV, Manthiram A. Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes by AlPO4. J Electrochem Soc. 2008;155(9):A635.CrossRef
[19]
go back to reference Wu Y, Manthiram A. Electrochem surface-modified layered Li[Li(1−x)/3Mn(2−x)/3Ni x/3Co x/3]O2 cathodes with low irreversible capacity loss. Solid State Lett. 2006;9:A221.CrossRef Wu Y, Manthiram A. Electrochem surface-modified layered Li[Li(1−x)/3Mn(2−x)/3Ni x/3Co x/3]O2 cathodes with low irreversible capacity loss. Solid State Lett. 2006;9:A221.CrossRef
[20]
go back to reference Cho SW, Kim G, Ryu KS. Sulfur anion doping and surface modification with LiNiPO4 of a Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for Li-ion batteries. Solid State Ionics. 2012;206(1):84.CrossRef Cho SW, Kim G, Ryu KS. Sulfur anion doping and surface modification with LiNiPO4 of a Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for Li-ion batteries. Solid State Ionics. 2012;206(1):84.CrossRef
[21]
go back to reference Shin D, Wolverton C, Croy JR, Balasubramanian M, Kang SH, Rivera CML, Thackeray MM. First-principles calculations, electrochemical and X-ray absorption studies of Li–Ni–PO4 surface-treated xLi2MnO3·(1−x)LiMO2 (M = Mn, Ni, Co) electrodes for Li-ion batteries. J Electrochem Soc. 2012;159(2):A121.CrossRef Shin D, Wolverton C, Croy JR, Balasubramanian M, Kang SH, Rivera CML, Thackeray MM. First-principles calculations, electrochemical and X-ray absorption studies of Li–Ni–PO4 surface-treated xLi2MnO3·(1−x)LiMO2 (M = Mn, Ni, Co) electrodes for Li-ion batteries. J Electrochem Soc. 2012;159(2):A121.CrossRef
[22]
go back to reference Lee SH, Koo BK, Kim JC, Kim KM. Effect of Co3(PO4)2 coating on Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for lithium rechargeable batteries. J Power Sources. 2008;184(1):276.CrossRef Lee SH, Koo BK, Kim JC, Kim KM. Effect of Co3(PO4)2 coating on Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for lithium rechargeable batteries. J Power Sources. 2008;184(1):276.CrossRef
[23]
go back to reference Deng H, Belharouak I, Yoon CS, Sun YK, Amine K. High temperature performance of surface-treated Li1.1(Ni0.15Co0.1Mn0.55)O1.95 layered oxide. J Electrochem Soc. 2010;157(10):A1035.CrossRef Deng H, Belharouak I, Yoon CS, Sun YK, Amine K. High temperature performance of surface-treated Li1.1(Ni0.15Co0.1Mn0.55)O1.95 layered oxide. J Electrochem Soc. 2010;157(10):A1035.CrossRef
[24]
go back to reference Kim JH, Parka MS, Songa JH, Byunb DJ, Kima YJ, Kima JS. Effect of aluminum fluoride coating on the electrochemical and thermal properties of 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 composite material. J Alloys Compd. 2012;517:20.CrossRef Kim JH, Parka MS, Songa JH, Byunb DJ, Kima YJ, Kima JS. Effect of aluminum fluoride coating on the electrochemical and thermal properties of 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 composite material. J Alloys Compd. 2012;517:20.CrossRef
[25]
go back to reference Li G, Yang Z, Yang W. Effect of FePO4 coating on electrochemical and safety performance of LiCoO2 as cathode material for Li-ion batteries. J Power Sources. 2008;183(2):741.CrossRef Li G, Yang Z, Yang W. Effect of FePO4 coating on electrochemical and safety performance of LiCoO2 as cathode material for Li-ion batteries. J Power Sources. 2008;183(2):741.CrossRef
[26]
go back to reference Qing C, Bai Y, Yang J, Zhang W. Enhanced cycling stability of LiMn2O4 cathode by amorphous FePO4 coating. Electrochim Acta. 2011;56(19):6612.CrossRef Qing C, Bai Y, Yang J, Zhang W. Enhanced cycling stability of LiMn2O4 cathode by amorphous FePO4 coating. Electrochim Acta. 2011;56(19):6612.CrossRef
[27]
go back to reference Liu D, Bai Y, Zhao S, Zhang W. Improved cycling performance of 5 V spinel LiMn1.5Ni0.5O4 by amorphous FePO4 coating. J Power Sources. 2012;219:333.CrossRef Liu D, Bai Y, Zhao S, Zhang W. Improved cycling performance of 5 V spinel LiMn1.5Ni0.5O4 by amorphous FePO4 coating. J Power Sources. 2012;219:333.CrossRef
[28]
go back to reference Liu X, Li H, Yoo E, Ishid M, Zhou H. Fabrication of FePO4 layer coated LiNi1/3Co1/3Mn1/3O2: towards high-performance cathode materials for lithium ion batteries. Electrochim Acta. 2012;83:253.CrossRef Liu X, Li H, Yoo E, Ishid M, Zhou H. Fabrication of FePO4 layer coated LiNi1/3Co1/3Mn1/3O2: towards high-performance cathode materials for lithium ion batteries. Electrochim Acta. 2012;83:253.CrossRef
[29]
go back to reference Bai Y, Wang X, Yang S, Zhang X, Yang X, Shu H, Wu Q. The effects of FePO4-coating on high-voltage cycling stability and rate capability of Li[Ni0.5Co0.2Mn0.3]O2. J Alloys Compd. 2012;541:125.CrossRef Bai Y, Wang X, Yang S, Zhang X, Yang X, Shu H, Wu Q. The effects of FePO4-coating on high-voltage cycling stability and rate capability of Li[Ni0.5Co0.2Mn0.3]O2. J Alloys Compd. 2012;541:125.CrossRef
[30]
go back to reference Jarvis KA, Deng Z, Allard LF, Manthiram A, Ferreira PJ. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem Mater. 2011;23(16):3614.CrossRef Jarvis KA, Deng Z, Allard LF, Manthiram A, Ferreira PJ. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem Mater. 2011;23(16):3614.CrossRef
[31]
go back to reference Armstrong AR, Holzapfel M, Novak P, Johnson CS, Kang SH, Thackeray MM, Bruce PG. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc. 2006;128(26):8694.CrossRef Armstrong AR, Holzapfel M, Novak P, Johnson CS, Kang SH, Thackeray MM, Bruce PG. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc. 2006;128(26):8694.CrossRef
[32]
go back to reference Ju JH, Cho SW, Hwang SG, Yun SR, Lee Y, Jeong HM, Hwang MJ, Kim KM, Ryu KS. Electrochemical performance of Li[Co0.1Ni0.15Li0.2Mn0.55]O2 modified by carbons as cathode materials. Electrochim Acta. 2011;56(24):8791.CrossRef Ju JH, Cho SW, Hwang SG, Yun SR, Lee Y, Jeong HM, Hwang MJ, Kim KM, Ryu KS. Electrochemical performance of Li[Co0.1Ni0.15Li0.2Mn0.55]O2 modified by carbons as cathode materials. Electrochim Acta. 2011;56(24):8791.CrossRef
[33]
go back to reference He W, Qian J, Cao Y, Ai X, Yang H. Improved electrochemical performances of nanocrystalline Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries. RSC Adv. 2012;2(8):3423.CrossRef He W, Qian J, Cao Y, Ai X, Yang H. Improved electrochemical performances of nanocrystalline Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries. RSC Adv. 2012;2(8):3423.CrossRef
[34]
go back to reference Ito A, Li D, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y. Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2. J Power Sources. 2010;195(2):567.CrossRef Ito A, Li D, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y. Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2. J Power Sources. 2010;195(2):567.CrossRef
[35]
go back to reference Levi MD, Gamolsky K, Aurbach D, Heiden U, Oesten R. On electrochemical impedance measurements of Li x Co0.2Ni0.8O2 and Li x NiO2 intercalation electrodes. Electrochim Acta. 2000;45(11):1781.CrossRef Levi MD, Gamolsky K, Aurbach D, Heiden U, Oesten R. On electrochemical impedance measurements of Li x Co0.2Ni0.8O2 and Li x NiO2 intercalation electrodes. Electrochim Acta. 2000;45(11):1781.CrossRef
[36]
go back to reference Shaju KM, Rao GVS, Chowdari BVR. Electrochemical kinetic studies of Li-ion in O2-structured Li2/3(Ni1/3Mn2/3)O2 and Li(2/3)+x (Ni1/3Mn2/3)O2 by EIS and GITT. J Electrochem Soc. 2003;150(1):A1.CrossRef Shaju KM, Rao GVS, Chowdari BVR. Electrochemical kinetic studies of Li-ion in O2-structured Li2/3(Ni1/3Mn2/3)O2 and Li(2/3)+x (Ni1/3Mn2/3)O2 by EIS and GITT. J Electrochem Soc. 2003;150(1):A1.CrossRef
Metadata
Title
FePO4-coated Li[Li0.2Ni0.13Co0.13Mn0.54]O2 with improved cycling performance as cathode material for Li-ion batteries
Authors
Zhong Wang
Hua-Quan Lu
Yan-Ping Yin
Xue-Yi Sun
Xiang-Tao Bai
Xue-Ling Shen
Wei-Dong Zhuang
Shi-Gang Lu
Publication date
28-11-2015
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 11/2017
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-015-0647-6

Other articles of this Issue 11/2017

Rare Metals 11/2017 Go to the issue

Premium Partners