Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

08-06-2020 | Regular Paper | Issue 6/2020

The VLDB Journal 6/2020

Finding skyline communities in multi-valued networks

Journal:
The VLDB Journal > Issue 6/2020
Authors:
Rong-Hua Li, Lu Qin, Fanghua Ye, Guoren Wang, Jeffrey Xu Yu, Xiaokui Xiao, Nong Xiao, Zibin Zheng
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Given a scientific collaboration network, how can we find a group of collaborators with high research indicator (e.g., h-index) and diverse research interests? Given a social network, how can we identify the communities that have high influence (e.g., PageRank) and also have similar interests to a specified user? In such settings, the network can be modeled as a multi-valued network where each node has d (\(d \ge 1\)) numerical attributes (i.e., h-index, diversity, PageRank, similarity score, etc.). In the multi-valued network, we want to find communities that are not dominated by the other communities in terms of d numerical attributes. Most existing community search algorithms either completely ignore the numerical attributes or only consider one numerical attribute of the nodes. To capture d numerical attributes, we propose a novel community model, called skyline community, based on the concepts of k-core and skyline. A skyline community is a maximal connected k-core that cannot be dominated by the other connected k-cores in the d-dimensional attribute space. We develop an elegant space-partition algorithm to efficiently compute the skyline communities. Two striking advantages of our algorithm are that (1) its time complexity relies mainly on the size of the answer s (i.e., the number of skyline communities), and thus, it is very efficient if s is small; and (2) it can progressively output the skyline communities, which is very useful for applications that only require part of the skyline communities. In addition, we also develop three efficient graph reduction techniques to further speed up the proposed algorithms. Extensive experiments on both synthetic and real-world networks demonstrate the efficiency, scalability, and effectiveness of the proposed algorithm.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 6/2020

The VLDB Journal 6/2020 Go to the issue

Premium Partner

    Image Credits