Skip to main content
Top
Published in: Journal of Computational Electronics 2/2018

14-02-2018

First-principles study of electron transport in azulene molecular junction: effect of electrode material on electrical rectification behavior

Authors: C. Preferencial Kala, D. John Thiruvadigal

Published in: Journal of Computational Electronics | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The feasibility of using an azulene molecule as a molecular rectifier with different electrode materials, viz. gold (Au), silver (Ag), and copper (Cu), was investigated using density functional theory (DFT) and the nonequilibrium Green’s function (NEGF) method. It was found that the azulene-like molecule exhibited high conductance and bias-dependent rectification effect. The dipole moment was increased due to the charge effect in the azulene molecular junction, based on charge transfer from the seven- to five-membered ring, giving the system stability and forming a dipole. It was also observed that the azulene–Au molecular junction showed higher rectification ratio than those with Ag or Cu, due to high coupling strength between the molecule and electrodes. Thus, Au electrodes are suggested as a good potential candidate for use in azulene-based highly conductive unimolecular rectifiers operating in lower bias region.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aviram, A., Ratner, M.A.: Moleculer rectifiers. Chem. Phys. Lett. 29, 277–283 (1974)CrossRef Aviram, A., Ratner, M.A.: Moleculer rectifiers. Chem. Phys. Lett. 29, 277–283 (1974)CrossRef
2.
go back to reference Metzger, R.M.: Unimolecular electrical rectifiers. Chem. Rev. 103, 3803–3834 (2003)CrossRef Metzger, R.M.: Unimolecular electrical rectifiers. Chem. Rev. 103, 3803–3834 (2003)CrossRef
3.
go back to reference Metzger, R.M.: Unimolecular electronics. Mater. J. Chem. 18, 4364–4396 (2008)CrossRef Metzger, R.M.: Unimolecular electronics. Mater. J. Chem. 18, 4364–4396 (2008)CrossRef
4.
go back to reference Migliore, A., Nitzan, A.: Nonlinear charge transport in redox molecular junctions: a marcus perspective. ACS Nano 5(8), 6669–6685 (2011)CrossRef Migliore, A., Nitzan, A.: Nonlinear charge transport in redox molecular junctions: a marcus perspective. ACS Nano 5(8), 6669–6685 (2011)CrossRef
5.
go back to reference Parashar, S., Srivastava, P., Pattanaik, M.: Modeling of Cu-linked rectification devices by varying torsion angles. J. Comput. Electron. 12, 775–781 (2013)CrossRef Parashar, S., Srivastava, P., Pattanaik, M.: Modeling of Cu-linked rectification devices by varying torsion angles. J. Comput. Electron. 12, 775–781 (2013)CrossRef
6.
go back to reference Zeng, J., Chen, K.-Q., He, J., Zhang, X.-J., Sun, C.Q.: Edge hydrogenation-induced spin-filtering and rectifying behaviors in the graphene nanoribbon heterojunctions. J. Phys. Chem. C 115, 25072–25076 (2011)CrossRef Zeng, J., Chen, K.-Q., He, J., Zhang, X.-J., Sun, C.Q.: Edge hydrogenation-induced spin-filtering and rectifying behaviors in the graphene nanoribbon heterojunctions. J. Phys. Chem. C 115, 25072–25076 (2011)CrossRef
7.
go back to reference Deng, X.Q., Zhang, Z.H., Tang, G.P., Fan, Z.Q., Qiu, M., Guo, C.: Rectifying behaviors induced by BN-doping in trigonal graphene with zigzag edges. Appl. Phys. Lett. 100, 063107 (2012)CrossRef Deng, X.Q., Zhang, Z.H., Tang, G.P., Fan, Z.Q., Qiu, M., Guo, C.: Rectifying behaviors induced by BN-doping in trigonal graphene with zigzag edges. Appl. Phys. Lett. 100, 063107 (2012)CrossRef
8.
go back to reference Donhauser, Z.J., Mantooth, B.A., Kelly, K.F., Bumm, L.A., Monnell, J.D., Stapleton, J.J., Price, D.W., et al.: Conductance switching in single molecules through conformational changes. Science 292(5525), 2303–2307 (2001)CrossRef Donhauser, Z.J., Mantooth, B.A., Kelly, K.F., Bumm, L.A., Monnell, J.D., Stapleton, J.J., Price, D.W., et al.: Conductance switching in single molecules through conformational changes. Science 292(5525), 2303–2307 (2001)CrossRef
9.
go back to reference Reed, M.A., Chen, J., Rawlett, A.M., Price, D.W., Tour, J.M.: Molecular random access memory cell. Appl. Phys. Lett. 78(23), 3735–3737 (2001)CrossRef Reed, M.A., Chen, J., Rawlett, A.M., Price, D.W., Tour, J.M.: Molecular random access memory cell. Appl. Phys. Lett. 78(23), 3735–3737 (2001)CrossRef
10.
go back to reference Tour, J.M.: Molecular electronics: synthesis and testing of components. Acc. Chem. Res. 33(11), 791–804 (2000)CrossRef Tour, J.M.: Molecular electronics: synthesis and testing of components. Acc. Chem. Res. 33(11), 791–804 (2000)CrossRef
11.
go back to reference Qiu, W., Nguyen, P.D., Skafidas, E.: Graphene nanopores as negative differential resistance devices. J. Appl. Phys. 117(5), 054306 (2015)CrossRef Qiu, W., Nguyen, P.D., Skafidas, E.: Graphene nanopores as negative differential resistance devices. J. Appl. Phys. 117(5), 054306 (2015)CrossRef
12.
go back to reference Kala, C.P., Priya, P.A., Thiruvadigal, D.J.: Role of side groups and temperature dependent studies in a molecular device. J. Comput. Electron. 14(1), 240–248 (2015)CrossRef Kala, C.P., Priya, P.A., Thiruvadigal, D.J.: Role of side groups and temperature dependent studies in a molecular device. J. Comput. Electron. 14(1), 240–248 (2015)CrossRef
13.
go back to reference Qiu, M., Zhang, Z., Fan, Z., Deng, X., Pan, J.: Transport properties of a squeezed carbon monatomic ring: a route to a negative differential resistance device. J. Phys. Chem. C 115(23), 11734–11737 (2011)CrossRef Qiu, M., Zhang, Z., Fan, Z., Deng, X., Pan, J.: Transport properties of a squeezed carbon monatomic ring: a route to a negative differential resistance device. J. Phys. Chem. C 115(23), 11734–11737 (2011)CrossRef
14.
go back to reference Wu, Y., Farmer, D.B., Zhu, W., Han, S.-J., Dimitrakopoulos, C.D., Bol, A.A., Avouris, P., Lin, Y.-M.: Three-terminal graphene negative differential resistance devices. ACS Nano 6(3), 2610–2616 (2012)CrossRef Wu, Y., Farmer, D.B., Zhu, W., Han, S.-J., Dimitrakopoulos, C.D., Bol, A.A., Avouris, P., Lin, Y.-M.: Three-terminal graphene negative differential resistance devices. ACS Nano 6(3), 2610–2616 (2012)CrossRef
15.
go back to reference Hinchliffe, A., Soscún, H.J.: Ab initio studies of the dipole moment and polarizability of azulene in its ground and excited singlet states. Chem. Phys. Lett. 412(4), 365–368 (2005)CrossRef Hinchliffe, A., Soscún, H.J.: Ab initio studies of the dipole moment and polarizability of azulene in its ground and excited singlet states. Chem. Phys. Lett. 412(4), 365–368 (2005)CrossRef
16.
go back to reference Zhou, K.-G., Zhang, Y.-H., Wang, L.-J., Xie, K.-F., Xiong, Y.-Q., Zhang, H.-L., Wang, C.-W.: Can azulene-like molecules function as substitution-free molecular rectifiers? Phys. Chem. Chem. Phys. 13(35), 15882–15890 (2011)CrossRef Zhou, K.-G., Zhang, Y.-H., Wang, L.-J., Xie, K.-F., Xiong, Y.-Q., Zhang, H.-L., Wang, C.-W.: Can azulene-like molecules function as substitution-free molecular rectifiers? Phys. Chem. Chem. Phys. 13(35), 15882–15890 (2011)CrossRef
17.
go back to reference Dutta, S., Lakshmi, S., Pati, S.K.: Comparative study of electron conduction in azulene and naphthalene. Bull. Mater. Sci. 31(3), 353–358 (2008)CrossRef Dutta, S., Lakshmi, S., Pati, S.K.: Comparative study of electron conduction in azulene and naphthalene. Bull. Mater. Sci. 31(3), 353–358 (2008)CrossRef
18.
go back to reference Parashar, S., Srivastava, P., Pattanaik, M., Jain, S.K.: Electron transport in asymmetric biphenyl molecular junctions: effects of conformation and molecule-electrode distance. The. Eur. Phys. J. B 87(9), 220 (2014)CrossRef Parashar, S., Srivastava, P., Pattanaik, M., Jain, S.K.: Electron transport in asymmetric biphenyl molecular junctions: effects of conformation and molecule-electrode distance. The. Eur. Phys. J. B 87(9), 220 (2014)CrossRef
19.
go back to reference Kergueris, C., Bourgoin, J.-P., Palacin, S., Estève, D., Urbina, C., Magoga, M., Joachim, C.: Electron transport through a metal-molecule-metal junction. Phys. Rev. B 59(19), 12505 (1999)CrossRef Kergueris, C., Bourgoin, J.-P., Palacin, S., Estève, D., Urbina, C., Magoga, M., Joachim, C.: Electron transport through a metal-molecule-metal junction. Phys. Rev. B 59(19), 12505 (1999)CrossRef
20.
go back to reference Hall, L.E., Reimers, J.R., Hush, N.S., Silverbrook, K.: Formalism, analytical model, and a priori Green’s-function-based calculations of the current–voltage characteristics of molecular wires. J. Chem. Phys. 112(3), 1510–1521 (2000)CrossRef Hall, L.E., Reimers, J.R., Hush, N.S., Silverbrook, K.: Formalism, analytical model, and a priori Green’s-function-based calculations of the current–voltage characteristics of molecular wires. J. Chem. Phys. 112(3), 1510–1521 (2000)CrossRef
21.
go back to reference Palacios, J.J., Pérez-Jiménez, A.J., Louis, E., SanFabián, E., Vergés, J.A.: First-principles approach to electrical transport in atomic-scale nanostructures. Phys. Rev. B 66(3), 035322 (2002)CrossRef Palacios, J.J., Pérez-Jiménez, A.J., Louis, E., SanFabián, E., Vergés, J.A.: First-principles approach to electrical transport in atomic-scale nanostructures. Phys. Rev. B 66(3), 035322 (2002)CrossRef
22.
go back to reference Pantelides, S.T., Di Ventra, M., Lang, N.D.: Molecular electronics by the numbers. Phys. B 296(1), 72–77 (2001)CrossRef Pantelides, S.T., Di Ventra, M., Lang, N.D.: Molecular electronics by the numbers. Phys. B 296(1), 72–77 (2001)CrossRef
23.
go back to reference Cuevas, J.C., Scheer, E.: Molecular electronics: an introduction to theory and experiment (2010) Cuevas, J.C., Scheer, E.: Molecular electronics: an introduction to theory and experiment (2010)
24.
go back to reference Stokbro, K., Taylor, J., Brandbyge, M., Mozos, J.-L., Ordejon, P.: Theoretical study of the nonlinear conductance of Di-thiol benzene coupled to Au (111) surfaces via thiol and thiolate bonds. Comput. Mater. Sci. 27(1), 151–160 (2003)CrossRef Stokbro, K., Taylor, J., Brandbyge, M., Mozos, J.-L., Ordejon, P.: Theoretical study of the nonlinear conductance of Di-thiol benzene coupled to Au (111) surfaces via thiol and thiolate bonds. Comput. Mater. Sci. 27(1), 151–160 (2003)CrossRef
25.
go back to reference Zahid, F., Paulsson, M., Datta, S.: Advanced Semiconductors and Organic Nano-Techniques. Electrical Conduction Through Molecules. Academic Press, New York (2003) Zahid, F., Paulsson, M., Datta, S.: Advanced Semiconductors and Organic Nano-Techniques. Electrical Conduction Through Molecules. Academic Press, New York (2003)
27.
go back to reference Haug, H., Jahuo, A.P.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer, Berlin (1996) Haug, H., Jahuo, A.P.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer, Berlin (1996)
29.
go back to reference Datta, S.: The non-equilibrium Green’s function (NEGF) formalism: an elementary introduction. In: Electron Devices Meeting. IEDM’02. International. IEEE, pp. 703–706 (2002) Datta, S.: The non-equilibrium Green’s function (NEGF) formalism: an elementary introduction. In: Electron Devices Meeting. IEDM’02. International. IEEE, pp. 703–706 (2002)
30.
go back to reference Datta, S.: Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28(4), 253–278 (2000)CrossRef Datta, S.: Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28(4), 253–278 (2000)CrossRef
31.
go back to reference Meir, Y., Wingreen, N.S.: Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 68(16), 2512–2515 (1992)CrossRef Meir, Y., Wingreen, N.S.: Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 68(16), 2512–2515 (1992)CrossRef
32.
go back to reference Ghosh, A.W., Rakshit, T., Datta, S.: Gating of a molecular transistor: electrostatic and conformational. Nano Lett. 4(4), 565–568 (2004)CrossRef Ghosh, A.W., Rakshit, T., Datta, S.: Gating of a molecular transistor: electrostatic and conformational. Nano Lett. 4(4), 565–568 (2004)CrossRef
33.
go back to reference Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14(11), 2725 (2002) Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14(11), 2725 (2002)
34.
go back to reference Yuan, S., Wang, S., Mei, Q., Ling, Q., Wang, L., Huang, W.: First-principles study of rectification in bis-2-(5-ethynylthienyl) ethyne molecular junctions. J. Phys. Chem. A 115(32), 9033–9042 (2011)CrossRef Yuan, S., Wang, S., Mei, Q., Ling, Q., Wang, L., Huang, W.: First-principles study of rectification in bis-2-(5-ethynylthienyl) ethyne molecular junctions. J. Phys. Chem. A 115(32), 9033–9042 (2011)CrossRef
35.
go back to reference Yin, X., Liu, H., Zhao, J.: Electronic transportation through asymmetrically substituted oligo (phenylene ethynylene) s: Studied by first principles nonequilibrium Green’s function formalism. J. Chem. Phys. 125(9), 094711 (2006)CrossRef Yin, X., Liu, H., Zhao, J.: Electronic transportation through asymmetrically substituted oligo (phenylene ethynylene) s: Studied by first principles nonequilibrium Green’s function formalism. J. Chem. Phys. 125(9), 094711 (2006)CrossRef
36.
go back to reference Taylor, J., Brandbyge, M., Stokbro, K.: Theory of rectification in tour wires: the role of electrode coupling. Phys. Rev. Lett. 89(13), 138301 (2002)CrossRef Taylor, J., Brandbyge, M., Stokbro, K.: Theory of rectification in tour wires: the role of electrode coupling. Phys. Rev. Lett. 89(13), 138301 (2002)CrossRef
37.
go back to reference Hiremath, R.K., Hussain, M., Rabinal, K., Mulimani, B.G.: Dipole tuning of charge transport in molecular junctions. Phys. Chem. Chem Phys. 12(11), 2564–2568 (2010)CrossRef Hiremath, R.K., Hussain, M., Rabinal, K., Mulimani, B.G.: Dipole tuning of charge transport in molecular junctions. Phys. Chem. Chem Phys. 12(11), 2564–2568 (2010)CrossRef
38.
go back to reference Morales, G.M., Jiang, P., Yuan, S., Lee, Y., Sanchez, A., You, W., Yu, L.: Inversion of the rectifying effect in diblock molecular diodes by protonation. J. Am. Chem. Soc. 127(30), 10456–10457 (2005)CrossRef Morales, G.M., Jiang, P., Yuan, S., Lee, Y., Sanchez, A., You, W., Yu, L.: Inversion of the rectifying effect in diblock molecular diodes by protonation. J. Am. Chem. Soc. 127(30), 10456–10457 (2005)CrossRef
Metadata
Title
First-principles study of electron transport in azulene molecular junction: effect of electrode material on electrical rectification behavior
Authors
C. Preferencial Kala
D. John Thiruvadigal
Publication date
14-02-2018
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2018
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-018-1130-z

Other articles of this Issue 2/2018

Journal of Computational Electronics 2/2018 Go to the issue