Skip to main content
Top
Published in: Journal of Computational Electronics 2/2018

14-02-2018

A fast method for process reliability analysis of CNFET-based digital integrated circuits

Authors: Fereshteh Saeedi, Behnam Ghavami, Mohsen Raji

Published in: Journal of Computational Electronics | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to aggressive technology scaling in electronic of digital integrated circuits, the circuit reliability is becoming an ever-increasing challenge. In nanoscale technologies, the physical and chemical properties of materials are fundamentally different compared to the larger scales. Therefore, it is necessary to revise the conventional reliability assessment techniques considering their applicability to nanoscale integrated circuits. This paper presents a method for evaluating the circuit reliability at the transistor level of abstraction considering the physical characteristics of the transistors. The proposed method considers various parameters, including the probability of different types of a transistor failure, the topology of logic gates and the logical values of the applied input vectors. Experimental results show that the proposed approach provides accurate transistor-level circuit reliability evaluations (with < 4% inaccuracy) as compared to a reference method based on Monte Carlo HSPICE simulations in addition to more than 800 times speedup. Moreover, to show the comprehensiveness and extensibility of the proposed reliability analysis method for the technologies beyond conventional MOSFETs, it is applied to carbon nanotube field-effect transistor (CNFET) technology as one of the most promising candidates for future CMOS circuits. The obtained results re-acknowledge that in order to achieve a more accurate reliability estimation approach for CNFET circuits, it is necessary to consider the open and short failure probability values individually instead of considering them in the form of a single transistor failure probability.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference The International Technology Roadmap for Semiconductors (ITRS) (2009) The International Technology Roadmap for Semiconductors (ITRS) (2009)
2.
go back to reference Krishnaswamy, S., Viamontes, G., Markov, I., Hayes, J.: Accurate reliability evaluation and enhancement via probabilistic transfer matrices. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 282–28 (2005) Krishnaswamy, S., Viamontes, G., Markov, I., Hayes, J.: Accurate reliability evaluation and enhancement via probabilistic transfer matrices. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 282–28 (2005)
3.
go back to reference Rejimon, T., Bhanja, S.: Scalable probabilistic computing models using Bayesian networks. In: Proceedings of International Midwest Symposium on Circuits and Systems, pp. 712–715 (2005) Rejimon, T., Bhanja, S.: Scalable probabilistic computing models using Bayesian networks. In: Proceedings of International Midwest Symposium on Circuits and Systems, pp. 712–715 (2005)
4.
go back to reference Bahar, I., Mundy, J. L., Chen, J.: A probabilistic-based design methodology for nano-scale computation. In: Proceedings of the 2003 IEEE/ACM International Conference on Computer-Aided Design, pp. 480–486 (2003) Bahar, I., Mundy, J. L., Chen, J.: A probabilistic-based design methodology for nano-scale computation. In: Proceedings of the 2003 IEEE/ACM International Conference on Computer-Aided Design, pp. 480–486 (2003)
5.
go back to reference Choudhury, M.R., Mohanram, K.: Reliability analysis of logic circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 28(3), 392–405 (2009)CrossRef Choudhury, M.R., Mohanram, K.: Reliability analysis of logic circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 28(3), 392–405 (2009)CrossRef
6.
go back to reference Han, J., Chen, H., Boykin, E., Fortes, J.: Reliability evaluation of logic circuits using probabilistic gate models. Microelectron. Reliab. 51(2), 468–476 (2011)CrossRef Han, J., Chen, H., Boykin, E., Fortes, J.: Reliability evaluation of logic circuits using probabilistic gate models. Microelectron. Reliab. 51(2), 468–476 (2011)CrossRef
7.
go back to reference Mohyuddi, N., Pakbaznia, E., Pedram, M.: Probabilistic error propagation in logic circuits using the boolean difference calculus. In: Proceedings of International Conference on Computer Design, pp. 7–13 (2008) Mohyuddi, N., Pakbaznia, E., Pedram, M.: Probabilistic error propagation in logic circuits using the boolean difference calculus. In: Proceedings of International Conference on Computer Design, pp. 7–13 (2008)
8.
go back to reference Nicolic, K., Sadek, A., Forshaw, M.: Architectures for reliable computing with unreliable nano devices. In: IEEE Conference on Nanotechnology, pp. 254–259 (2001) Nicolic, K., Sadek, A., Forshaw, M.: Architectures for reliable computing with unreliable nano devices. In: IEEE Conference on Nanotechnology, pp. 254–259 (2001)
9.
go back to reference El-Maleh, A.H., Al-Hashimi, B.M., Melouki, A., Khan, F.: Defect-tolerant N\(^{2}\)-transistor structure for reliable nano electronic designs. IET Comput. Digit. Tech. 3(6), 570–580 (2009)CrossRef El-Maleh, A.H., Al-Hashimi, B.M., Melouki, A., Khan, F.: Defect-tolerant N\(^{2}\)-transistor structure for reliable nano electronic designs. IET Comput. Digit. Tech. 3(6), 570–580 (2009)CrossRef
10.
go back to reference McElvain, K.: LGSynth93 Benchmark Set Version 4.0, May (1993) McElvain, K.: LGSynth93 Benchmark Set Version 4.0, May (1993)
11.
go back to reference Chen, H., Han, J.: Stochastic computational models for accurate reliability evaluation of logic circuits. In: Proceedings of the 20th IEEE/ACM Great Lakes Symposium on VLSI, pp. 61–66 (2010) Chen, H., Han, J.: Stochastic computational models for accurate reliability evaluation of logic circuits. In: Proceedings of the 20th IEEE/ACM Great Lakes Symposium on VLSI, pp. 61–66 (2010)
12.
go back to reference Raychowdhury, A., Roy, K.: Carbon-nanotube-based voltage-mode multiple-valued logic design. IEEE Trans. Nanotechnol. 4(2), 168–179 (2005)CrossRef Raychowdhury, A., Roy, K.: Carbon-nanotube-based voltage-mode multiple-valued logic design. IEEE Trans. Nanotechnol. 4(2), 168–179 (2005)CrossRef
13.
go back to reference El-Naggar, A., Mansour, A., Wanass, A., Hassan, S.: Comparative review of carbon nanotube FETs. In: Third International Conference on Electrical, Electronics, Computer Engineering and their Applications (EECEA), Beirut (2016) El-Naggar, A., Mansour, A., Wanass, A., Hassan, S.: Comparative review of carbon nanotube FETs. In: Third International Conference on Electrical, Electronics, Computer Engineering and their Applications (EECEA), Beirut (2016)
14.
go back to reference Raychowdhury, A., Roy, K.: Carbon nanotube electronics: design of high-performance and low power digital circuits. IEEE Trans. Circuits Syst. I: Regul. Pap. 54(11), 2391–2401 (2007)CrossRef Raychowdhury, A., Roy, K.: Carbon nanotube electronics: design of high-performance and low power digital circuits. IEEE Trans. Circuits Syst. I: Regul. Pap. 54(11), 2391–2401 (2007)CrossRef
15.
go back to reference Appenzeller, J., Lin, Y., Knoch, J., Chen, Z., Avouris, P.: Comparing carbon nanotube transistors—the ideal choice: a novel tunneling device design. IEEE Trans. Electron Dev. 52(12), 25, 68-2576 (2005)CrossRef Appenzeller, J., Lin, Y., Knoch, J., Chen, Z., Avouris, P.: Comparing carbon nanotube transistors—the ideal choice: a novel tunneling device design. IEEE Trans. Electron Dev. 52(12), 25, 68-2576 (2005)CrossRef
16.
go back to reference Ghavami, B., Raji, M.: Failure characterization of carbon nanotube FETs under process variations: technology scaling issues. IEEE Trans. Dev. Mater. Reliab. 16(2), 164–171 (2016)CrossRef Ghavami, B., Raji, M.: Failure characterization of carbon nanotube FETs under process variations: technology scaling issues. IEEE Trans. Dev. Mater. Reliab. 16(2), 164–171 (2016)CrossRef
17.
go back to reference Ashraf, R., Chrzanowska-Jeske, M.: Yield estimation of CNFET-based circuits with imperfections. In: 2015 IEEE Nanotechnology Materials and Devices Conference. NMDC, Anchorage, AK (2015) Ashraf, R., Chrzanowska-Jeske, M.: Yield estimation of CNFET-based circuits with imperfections. In: 2015 IEEE Nanotechnology Materials and Devices Conference. NMDC, Anchorage, AK (2015)
18.
go back to reference Zhang, J., Patil, N., Hazeghi, A., Mitra, S.: Carbon nanotube circuits in the presence of carbon nanotube density variations. In: IEEE/ACM Design Automation Conference (DAC), pp. 71–76 (2009) Zhang, J., Patil, N., Hazeghi, A., Mitra, S.: Carbon nanotube circuits in the presence of carbon nanotube density variations. In: IEEE/ACM Design Automation Conference (DAC), pp. 71–76 (2009)
19.
go back to reference Sato, H., et al.: Growth of carbon nanotubes on silicon nano-protrusions. Int. Vac. Nanoelectron. Conf. 2005, 268–269 (2005) Sato, H., et al.: Growth of carbon nanotubes on silicon nano-protrusions. Int. Vac. Nanoelectron. Conf. 2005, 268–269 (2005)
20.
go back to reference Ghavami, B., Raji, M., Pedram, H., Pedram, M.: Statistical functional yield analysis and enhancement of CNFET-based VLSI circuits. IEEE Trans. VLSI Syst. 21(5), 887–900 (2012)CrossRef Ghavami, B., Raji, M., Pedram, H., Pedram, M.: Statistical functional yield analysis and enhancement of CNFET-based VLSI circuits. IEEE Trans. VLSI Syst. 21(5), 887–900 (2012)CrossRef
21.
go back to reference Deng, J., Patil, N., Ryu, K., Badmaev, A., Zhou, C.H., Mitra, S.: Carbon nanotube transistor circuits: circuit-level performance benchmarking and design options for living with imperfections. In: Proceedings on ISSCC, pp. 70–588 (2007) Deng, J., Patil, N., Ryu, K., Badmaev, A., Zhou, C.H., Mitra, S.: Carbon nanotube transistor circuits: circuit-level performance benchmarking and design options for living with imperfections. In: Proceedings on ISSCC, pp. 70–588 (2007)
22.
go back to reference Ibrahim, W., Beiu, V., Beg, A.: GREDA: a fast and more accurate gate reliability EDA tool. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 31(4), 509–521 (2012)CrossRef Ibrahim, W., Beiu, V., Beg, A.: GREDA: a fast and more accurate gate reliability EDA tool. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 31(4), 509–521 (2012)CrossRef
Metadata
Title
A fast method for process reliability analysis of CNFET-based digital integrated circuits
Authors
Fereshteh Saeedi
Behnam Ghavami
Mohsen Raji
Publication date
14-02-2018
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2018
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-018-1134-8

Other articles of this Issue 2/2018

Journal of Computational Electronics 2/2018 Go to the issue