Skip to main content
Top
Published in: Progress in Additive Manufacturing 4/2022

16-01-2022 | Full Research Article

Forward and backward modeling of direct metal deposition using metaheuristic algorithms tuned artificial neural network and extreme gradient boost

Authors: Ananda Rabi Dhar, Dhrubajyoti Gupta, Shibendu Shekhar Roy, Aditya Kumar Lohar

Published in: Progress in Additive Manufacturing | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To enhance the automation in additive manufacturing technology, establishment of accurate relationship between the process parameters and responses is extremely important. Direct metal deposition (DMD) or laser metal deposition (LMD) is an ever-emerging field in additive manufacturing spectrum because of its higher build-up rate with flexibility at multiple scales and reduced material wastage. In this work, a feed-forward neural network-based model is proposed for predicting the clad height and capture efficiency while building austenitic steel part through DMD process with variations in input parameters, namely laser power, scan speed, and powder flow rate. With an aim to enhance the prediction performance, the model is hybridized with ancient metaheuristic algorithms, namely genetic algorithm and particle swarm optimization as well as some rare and new metaheuristic algorithms, namely firefly algorithm, bio-geography-based optimization, flower pollination algorithm, dragonfly algorithm, and gray wolf optimization. The backward mapping model is also established along similar lines using the same hybridization schema and all the approaches are comparatively studied. The bi-directional models are further investigated by applying extreme gradient boost (XGBoost), a new and emerging paradigm in the field of machine learning. The comparison is further emphasized by employing a statistical test known as ‘technique for order of preference by similarity to ideal solution (TOPSIS).’ The novelty of the present study lies in utilizing the aforementioned rare and new metaheuristic algorithms for training artificial neural networks in order to develop predictive models in the domain of DMD as well as application of XGBoost for the same. The results clearly recommend the application of hybridized computational intelligence-based approaches in case of the forward mapping model and XGBoost in case of the backward mapping model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ansari M, Razavi RS, Barekat M (2016) An empirical-statistical model for coaxial laser cladding of nicraly powder on inconel 738 superalloy. Opt Laser Technol 86:136–144CrossRef Ansari M, Razavi RS, Barekat M (2016) An empirical-statistical model for coaxial laser cladding of nicraly powder on inconel 738 superalloy. Opt Laser Technol 86:136–144CrossRef
2.
go back to reference Balu P, Leggett P, Hamid S, Kovacevic R (2013) Multi-response optimization of laser-based powder deposition of multi-track single layer hastelloy c-276. Mater Manuf Processes 28(2):173–182CrossRef Balu P, Leggett P, Hamid S, Kovacevic R (2013) Multi-response optimization of laser-based powder deposition of multi-track single layer hastelloy c-276. Mater Manuf Processes 28(2):173–182CrossRef
3.
go back to reference Bhardwaj T, Shukla M (2020) Laser additive manufacturing-direct energy deposition of ti-15mo biomedical alloy: artificial neural network based modeling of track dilution. Lasers Manuf Mater Process 7:245–258CrossRef Bhardwaj T, Shukla M (2020) Laser additive manufacturing-direct energy deposition of ti-15mo biomedical alloy: artificial neural network based modeling of track dilution. Lasers Manuf Mater Process 7:245–258CrossRef
4.
go back to reference Caiazzo F, Caggiano A (2018) Laser direct metal deposition of 2024 al alloy: trace geometry prediction via machine learning. Materials 11(3):444CrossRef Caiazzo F, Caggiano A (2018) Laser direct metal deposition of 2024 al alloy: trace geometry prediction via machine learning. Materials 11(3):444CrossRef
5.
go back to reference Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp 785–794 Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp 785–794
6.
go back to reference Choi J, Chang Y (2005) Characteristics of laser aided direct metal/material deposition process for tool steel. Int J Mach Tools Manuf 45(4–5):597–607CrossRef Choi J, Chang Y (2005) Characteristics of laser aided direct metal/material deposition process for tool steel. Int J Mach Tools Manuf 45(4–5):597–607CrossRef
7.
go back to reference De Veaux RD, Ungar LH (1994) Multicollinearity: A tale of two nonparametric regressions. In: Selecting models from data, Springer, pp 393–402 De Veaux RD, Ungar LH (1994) Multicollinearity: A tale of two nonparametric regressions. In: Selecting models from data, Springer, pp 393–402
8.
go back to reference Eberhart R, Kennedy J (1995) Particle swarm optimization. Proc IEEE Int conf Neural Netw Citeseer 4:1942–1948CrossRef Eberhart R, Kennedy J (1995) Particle swarm optimization. Proc IEEE Int conf Neural Netw Citeseer 4:1942–1948CrossRef
9.
go back to reference El Cheikh H, Courant B, Branchu S, Hascoët JY, Guillén R (2012) Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process. Opt Lasers Eng 50(3):413–422CrossRef El Cheikh H, Courant B, Branchu S, Hascoët JY, Guillén R (2012) Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process. Opt Lasers Eng 50(3):413–422CrossRef
10.
go back to reference Farahmand P, Kovacevic R (2014) Parametric study and multi-criteria optimization in laser cladding by a high power direct diode laser. Lasers Manuf Mater Process 1(1–4):1–20CrossRef Farahmand P, Kovacevic R (2014) Parametric study and multi-criteria optimization in laser cladding by a high power direct diode laser. Lasers Manuf Mater Process 1(1–4):1–20CrossRef
11.
go back to reference Feenstra D, Molotnikov A, Birbilis N (2021) Utilisation of artificial neural networks to rationalise processing windows in directed energy deposition applications. Materials & Design 198:109342CrossRef Feenstra D, Molotnikov A, Birbilis N (2021) Utilisation of artificial neural networks to rationalise processing windows in directed energy deposition applications. Materials & Design 198:109342CrossRef
12.
go back to reference Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928CrossRef Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928CrossRef
13.
go back to reference Gibson I, Rosen DW, Stucker B (2010) Printing processes. In: Additive Manufacturing Technologies, Springer, pp 187–222 Gibson I, Rosen DW, Stucker B (2010) Printing processes. In: Additive Manufacturing Technologies, Springer, pp 187–222
14.
go back to reference Guan X, Zhao YF (2020) Modeling of the laser powder-based directed energy deposition process for additive manufacturing: a review. Int J Adv Manuf Technol 107(5):1959–1982CrossRef Guan X, Zhao YF (2020) Modeling of the laser powder-based directed energy deposition process for additive manufacturing: a review. Int J Adv Manuf Technol 107(5):1959–1982CrossRef
15.
go back to reference Holland JH, et al. (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press Holland JH, et al. (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press
16.
go back to reference Izadi M, Farzaneh A, Mohammed M, Gibson I, Rolfe B (2020) A review of laser engineered net shaping (lens) build and process parameters of metallic parts. Rapid Prototyping Journal Izadi M, Farzaneh A, Mohammed M, Gibson I, Rolfe B (2020) A review of laser engineered net shaping (lens) build and process parameters of metallic parts. Rapid Prototyping Journal
17.
go back to reference LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef
18.
go back to reference Lee HK (2008) Effects of the cladding parameters on the deposition efficiency in pulsed nd: Yag laser cladding. J Mater Process Technol 202(1–3):321–327CrossRef Lee HK (2008) Effects of the cladding parameters on the deposition efficiency in pulsed nd: Yag laser cladding. J Mater Process Technol 202(1–3):321–327CrossRef
19.
go back to reference Lestan Z, Klancnik S, Balic J, Brezocnik M (2015) Modeling and design of experiments of laser cladding process by genetic programming and nondominated sorting. Mater Manuf Processes 30(4):458–463CrossRef Lestan Z, Klancnik S, Balic J, Brezocnik M (2015) Modeling and design of experiments of laser cladding process by genetic programming and nondominated sorting. Mater Manuf Processes 30(4):458–463CrossRef
20.
go back to reference Lewis GK, Schlienger E (2000) Practical considerations and capabilities for laser assisted direct metal deposition. Mater Des 21(4):417–423CrossRef Lewis GK, Schlienger E (2000) Practical considerations and capabilities for laser assisted direct metal deposition. Mater Des 21(4):417–423CrossRef
21.
go back to reference Liu H, Qin X, Huang S, Jin L, Wang Y, Lei K (2018) Geometry characteristics prediction of single track cladding deposited by high power diode laser based on genetic algorithm and neural network. Int J Precis Eng Manuf 19(7):1061–1070CrossRef Liu H, Qin X, Huang S, Jin L, Wang Y, Lei K (2018) Geometry characteristics prediction of single track cladding deposited by high power diode laser based on genetic algorithm and neural network. Int J Precis Eng Manuf 19(7):1061–1070CrossRef
22.
go back to reference Mahamood RM, Akinlabi ET (2016) Processing parameters optimization for material deposition efficiency in laser metal deposited titanium alloy. Lasers Manuf Mater Process 3(1):9–21CrossRef Mahamood RM, Akinlabi ET (2016) Processing parameters optimization for material deposition efficiency in laser metal deposited titanium alloy. Lasers Manuf Mater Process 3(1):9–21CrossRef
23.
go back to reference Mazumder J (2000) A crystal ball view of direct-metal deposition. JOM 52(12):28–29CrossRef Mazumder J (2000) A crystal ball view of direct-metal deposition. JOM 52(12):28–29CrossRef
24.
go back to reference Mazumder J, Dutta D, Kikuchi N, Ghosh A (2000) Closed loop direct metal deposition: art to part. Opt Lasers Eng 34(4–6):397–414CrossRef Mazumder J, Dutta D, Kikuchi N, Ghosh A (2000) Closed loop direct metal deposition: art to part. Opt Lasers Eng 34(4–6):397–414CrossRef
25.
go back to reference Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073MathSciNetCrossRef Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073MathSciNetCrossRef
26.
go back to reference Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef
27.
go back to reference Mondal S, Bandyopadhyay A, Pal PK (2014) Application of artificial neural network for the prediction of laser cladding process characteristics at taguchi-based optimized condition. Int J Adv Manuf Technol 70(9–12):2151–2158CrossRef Mondal S, Bandyopadhyay A, Pal PK (2014) Application of artificial neural network for the prediction of laser cladding process characteristics at taguchi-based optimized condition. Int J Adv Manuf Technol 70(9–12):2151–2158CrossRef
28.
go back to reference Onwubolu GC, Davim JP, Oliveira C, Cardoso A (2007) Prediction of clad angle in laser cladding by powder using response surface methodology and scatter search. Opt Laser Technol 39(6):1130–1134CrossRef Onwubolu GC, Davim JP, Oliveira C, Cardoso A (2007) Prediction of clad angle in laser cladding by powder using response surface methodology and scatter search. Opt Laser Technol 39(6):1130–1134CrossRef
29.
go back to reference Opricovic S, Tzeng GH (2004) Compromise solution by mcdm methods: A comparative analysis of vikor and topsis. Eur J Oper Res 156(2):445–455CrossRef Opricovic S, Tzeng GH (2004) Compromise solution by mcdm methods: A comparative analysis of vikor and topsis. Eur J Oper Res 156(2):445–455CrossRef
30.
go back to reference Pant P, Chatterjee D, Nandi T, Samanta SK, Lohar AK, Changdar A (2019) Statistical modelling and optimization of clad characteristics in laser metal deposition of austenitic stainless steel. J Braz Soc Mech Sci Eng 41(7):1–10CrossRef Pant P, Chatterjee D, Nandi T, Samanta SK, Lohar AK, Changdar A (2019) Statistical modelling and optimization of clad characteristics in laser metal deposition of austenitic stainless steel. J Braz Soc Mech Sci Eng 41(7):1–10CrossRef
31.
go back to reference Pinkerton A (2010) Laser direct metal deposition: theory and applications in manufacturing and maintenance. In: Advances in laser materials processing, Elsevier, pp 461–491 Pinkerton A (2010) Laser direct metal deposition: theory and applications in manufacturing and maintenance. In: Advances in laser materials processing, Elsevier, pp 461–491
32.
go back to reference Pinkerton AJ, Li L (2004) The significance of deposition point standoff variations in multiple-layer coaxial laser cladding (coaxial cladding standoff effects). Int J Mach Tools Manuf 44(6):573–584CrossRef Pinkerton AJ, Li L (2004) The significance of deposition point standoff variations in multiple-layer coaxial laser cladding (coaxial cladding standoff effects). Int J Mach Tools Manuf 44(6):573–584CrossRef
33.
go back to reference Saqib S, Urbanic R, Aggarwal K (2014) Analysis of laser cladding bead morphology for developing additive manufacturing travel paths. Procedia Cirp 17:824–829CrossRef Saqib S, Urbanic R, Aggarwal K (2014) Analysis of laser cladding bead morphology for developing additive manufacturing travel paths. Procedia Cirp 17:824–829CrossRef
34.
go back to reference Sathiya P, Panneerselvam K, Soundararajan R (2012) Optimal design for laser beam butt welding process parameter using artificial neural networks and genetic algorithm for super austenitic stainless steel. Opt Laser Technol 44(6):1905–1914CrossRef Sathiya P, Panneerselvam K, Soundararajan R (2012) Optimal design for laser beam butt welding process parameter using artificial neural networks and genetic algorithm for super austenitic stainless steel. Opt Laser Technol 44(6):1905–1914CrossRef
35.
go back to reference Schmidt M, Merklein M, Bourell D, Dimitrov D, Hausotte T, Wegener K, Overmeyer L, Vollertsen F, Levy GN (2017) Laser based additive manufacturing in industry and academia. CIRP Ann 66(2):561–583CrossRef Schmidt M, Merklein M, Bourell D, Dimitrov D, Hausotte T, Wegener K, Overmeyer L, Vollertsen F, Levy GN (2017) Laser based additive manufacturing in industry and academia. CIRP Ann 66(2):561–583CrossRef
36.
go back to reference Shamsaei N, Yadollahi A, Bian L, Thompson SM (2015) An overview of direct laser deposition for additive manufacturing; part ii: Mechanical behavior, process parameter optimization and control. Addit Manuf 8:12–35 Shamsaei N, Yadollahi A, Bian L, Thompson SM (2015) An overview of direct laser deposition for additive manufacturing; part ii: Mechanical behavior, process parameter optimization and control. Addit Manuf 8:12–35
37.
go back to reference Shrivastava A, Mukherjee S, Chakraborty SS (2021) Addressing the challenges in remanufacturing by laser-based material deposition techniques. Optics & Laser Technology 144:107404CrossRef Shrivastava A, Mukherjee S, Chakraborty SS (2021) Addressing the challenges in remanufacturing by laser-based material deposition techniques. Optics & Laser Technology 144:107404CrossRef
38.
go back to reference Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713CrossRef Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713CrossRef
39.
go back to reference Singh A, Kapil S, Das M (2020) A comprehensive review of the methods and mechanisms for powder feedstock handling in directed energy deposition. Additive Manufacturing p 101388 Singh A, Kapil S, Das M (2020) A comprehensive review of the methods and mechanisms for powder feedstock handling in directed energy deposition. Additive Manufacturing p 101388
40.
go back to reference Tabernero I, Lamikiz A, Ukar E, Martínez S, Celaya A (2014) Modeling of the geometry built-up by coaxial laser material deposition process. Int J Adv Manuf Technol 70(5–8):843–851CrossRef Tabernero I, Lamikiz A, Ukar E, Martínez S, Celaya A (2014) Modeling of the geometry built-up by coaxial laser material deposition process. Int J Adv Manuf Technol 70(5–8):843–851CrossRef
41.
go back to reference Thompson SM, Bian L, Shamsaei N, Yadollahi A (2015) An overview of direct laser deposition for additive manufacturing; part i: Transport phenomena, modeling and diagnostics. Addit Manuf 8:36–62 Thompson SM, Bian L, Shamsaei N, Yadollahi A (2015) An overview of direct laser deposition for additive manufacturing; part i: Transport phenomena, modeling and diagnostics. Addit Manuf 8:36–62
42.
go back to reference Wasserman PD (1989) Neural computing: theory and practice. Van Nostrand Reinhold Co Wasserman PD (1989) Neural computing: theory and practice. Van Nostrand Reinhold Co
43.
go back to reference Yang XS (2009) Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms, Springer, pp 169–178 Yang XS (2009) Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms, Springer, pp 169–178
44.
go back to reference Yang XS (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation, Springer, pp 240–249 Yang XS (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation, Springer, pp 240–249
45.
go back to reference Yildiz AR (2013) Comparison of evolutionary-based optimization algorithms for structural design optimization. Eng Appl Artif Intell 26(1):327–333CrossRef Yildiz AR (2013) Comparison of evolutionary-based optimization algorithms for structural design optimization. Eng Appl Artif Intell 26(1):327–333CrossRef
46.
go back to reference Yu T, Yang L, Zhao Y, Sun J, Li B (2018) Experimental research and multi-response multi-parameter optimization of laser cladding fe313. Opt Laser Technol 108:321–332CrossRef Yu T, Yang L, Zhao Y, Sun J, Li B (2018) Experimental research and multi-response multi-parameter optimization of laser cladding fe313. Opt Laser Technol 108:321–332CrossRef
Metadata
Title
Forward and backward modeling of direct metal deposition using metaheuristic algorithms tuned artificial neural network and extreme gradient boost
Authors
Ananda Rabi Dhar
Dhrubajyoti Gupta
Shibendu Shekhar Roy
Aditya Kumar Lohar
Publication date
16-01-2022
Publisher
Springer International Publishing
Published in
Progress in Additive Manufacturing / Issue 4/2022
Print ISSN: 2363-9512
Electronic ISSN: 2363-9520
DOI
https://doi.org/10.1007/s40964-021-00251-w

Other articles of this Issue 4/2022

Progress in Additive Manufacturing 4/2022 Go to the issue

Premium Partners